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Learning outcomes

I Be able to understand the structure of regression and
classification models

I Know how to read and interpret the output of a statistical
model

I Be familiar with some of the extensions to basic regression and
classification models
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Why regression and classification?

I t-tests are only really useful when you have a continuous
outcome variable and one discrete variable with two groups
(e.g. treatment vs control)

I For almost any real life situation you have multiple variables of
all different types

I For these situations you need a statistical model
I A statistical model allows us to perform probabilistic prediction

of the outcome variable from the remaining variables, and/or
to explain how the other variables are causing the outcome
variable to change
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Regression vs Classification: what’s the difference?

I In regression we have a single continuous outcome variable and
lots of other variables which we think might be good predictors
of the outcome

I In classification we have a single discrete outcome variable and
lots of other variables

I In the machine learning literature this is often known as
supervised learning

I Situations where there are multiple outcome variables are
beyond the scope of this course
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Response and explanatory variables

I The outcome variable is more commonly known as the
response variable

I The other variables which we think might be good predictors of
the response variable are called the explanatory variables
(though be careful with causation)

I We will use these words from now on, but beware there are lots
of other terms in the literature
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A basic regression model
I Let’s go back to the prostate cancer data
I Recall the key outcome variable is lpsa the log of the prostate

specific antigen value. This is our response variable
I Suppose we had one explanatory variable lweight
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Creating the model

I Looking at the plot, there may be a positive, linear relationship
between log(weight) and log(psa)

I Perhaps we can create a prediction model that allows us to
predict log(psa) from log(weight)

I Suppose, for each patient we multiplied the log(weight) value
by 1.2 and then subtracted the value 2 so:

prediction = 1.2 × log(weight) − 2

I If we do this repeatedly for every value in the data set we get
. . .
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A first model
prediction = 1.2 * prostate$lweight - 2
plot(prostate$lweight, prostate$lpsa,

xlab = ’log(weight)’, ylab= ’log(psa)’)
points(prostate$lweight, prediction, col=’red’)
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Refining the model

I Is this model any good?
I How might we measure how close our predictions are to the

truth?
I How can we choose the values (here 1.2 and -2) better?
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Getting R to do the work
I Luckily the R function lm will do the work for us

model_1 = lm(formula = lpsa ~ lweight, data = prostate)
summary(model_1)

...
coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.7586 0.9103 -1.932 0.0564 .
lweight 1.1676 0.2491 4.686 9.28e-06 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.046 on 95 degrees of freedom
Multiple R-squared: 0.1878, Adjusted R-squared: 0.1792
F-statistic: 21.96 on 1 and 95 DF, p-value: 9.276e-06
...
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Background details

I The two values here are the y -intercept and the slope of the
line. They are commonly known as the regression coefficients

I R chooses these coefficients by minimising the vertical
distances between the black and the red points

I A key assumption in the model is that these vertical distances
(known as residuals) are normally distributed

I R uses this assumption to run t-tests on the parameters, which
you can see the results of in the summary output
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Plotting the fit
One way is to type plot(model_1) which gives residual diagnostics.
A quick plot of the fitted line via:

plot(prostate$lweight, prostate$lpsa,
xlab = ’log(weight)’, ylab= ’log(psa)’)

abline(model_1, col=’red’)
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Expanding the model with two explanatory variables
Suppose we wanted to use two explanatory variables, lweight and
age:

model_2 = lm(formula = lpsa ~ lweight + age,
data = prostate)

summary(model_2)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -1.897709 1.119033 -1.696 0.0932 .
lweight 1.147487 0.267094 4.296 4.23e-05 ***
age 0.003318 0.015369 0.216 0.8295
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.051 on 94 degrees of freedom
Multiple R-squared: 0.1882, Adjusted R-squared: 0.1709
F-statistic: 10.89 on 2 and 94 DF, p-value: 5.558e-05
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Expanding the fit even more

model_3 = lm(formula = lpsa ~ . - train, data = prostate)
summary(model_3)

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.181561 1.320568 0.137 0.89096
lcavol 0.564341 0.087833 6.425 6.55e-09 ***
lweight 0.622020 0.200897 3.096 0.00263 **
age -0.021248 0.011084 -1.917 0.05848 .
lbph 0.096713 0.057913 1.670 0.09848 .
svi 0.761673 0.241176 3.158 0.00218 **
lcp -0.106051 0.089868 -1.180 0.24115
gleason 0.049228 0.155341 0.317 0.75207
pgg45 0.004458 0.004365 1.021 0.31000
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Multiple regression

I When you have lots of explanatory variables this is known as
multiple regression

I You can still use the values in the Estimate column to create
predictions of lpsa by multiplying and adding up

I Beware the p-values as before: they might be highly significant
but still a very poor model

I R gives you two other useful statistics:
I The R-squared which measures the proportion of variation in

the response variable explained by the explanatory variables
I The residual standard error which measures how far away the

data points are from the fitted line
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Dealing with interactions
I Our explanatory variables will often interact with each other to

affect the response variable
I The usual way to deal with interactions is to create new

explanatory variables by multiplying them together. lm does
this for you:

model_4 = lm(formula = lpsa ~ lweight + age + lweight:age, data = prostate)
summary(model_4)

Estimate Std. Error t value Pr(>|t|)
(Intercept) -9.97325 8.45553 -1.179 0.241
lweight 3.45163 2.40620 1.434 0.155
age 0.12575 0.12800 0.982 0.328
lweight:age -0.03481 0.03613 -0.964 0.338

Residual standard error: 1.051 on 93 degrees of freedom
Multiple R-squared: 0.1962, Adjusted R-squared: 0.1703
F-statistic: 7.566 on 3 and 93 DF, p-value: 0.000139116/29



Final remarks on regression models

I There is lots of research on regression models of all different
types

I The vast majority of them involve creating a set of coefficients
to multiply the explanatory variables by and then adding
everything up

I It becomes very hard to plot the predictions in large and
complex models

I It’s very important to check the model diagnostics using plot
and to look at the R-squared and residual standard error values
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Classification models
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Intro to classification models

I Returning to the South African heart rate data, recall that here
we are interested in predicting whether someone has CHD or
not

I We have explanatory variables including adiposity, alcohol use,
age, etc

I CHD is a discrete binary variable (1 or 0). It thus makes more
sense to try and predict a probability of CHD i.e. a value
between 0 and 1, rather than CHD itself

I If we use our previous approach to guess coefficients for the
different explanatory variables we will run into problems with
values going outside 1 or 0
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The logit transformation

I Suppose we wanted to predict CHD from age
I We might come up with the model:

Prob(CHD) = 0.06 × age − 2

I Thus if someone has an age of 40 they have probability 0.4
I But if someone has an age of 20 they have probability -0.8. Oh

dear!
I Instead use a transformation, such as the logit

Prob(CHD) =
exp(0.06 × age − 2)

1+ exp(0.06 × age − 2)

I This transformation guarantee the values will be between 0 and
1 - try it!
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About classification models

I Rather than try to predict a continuous response variable,
classification models aim to find the probability that an
observation is in a particular class

I Underneath the hood though, they are exactly like regression
models with coefficients applied to each of the explanatory
variables before adding everything up

I We then use a clever transformation (such as the logit, but
there are others) to turn it into a probability

I Rather than the normal distribution, we use the binomial
distribution to judge how close the observations are to the
predictions and hence estimate the missing coefficients

I The R function glm will fit a classification model for us
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Example: SA Heart rate

model_1 = glm(chd ~ age, data = SA, family = ’binomial’)
summary(model_1)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.521710 0.416031 -8.465 < 2e-16 ***
age 0.064108 0.008532 7.513 5.76e-14 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 596.11 on 461 degrees of freedom
Residual deviance: 525.56 on 460 degrees of freedom
AIC: 529.56
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Understanding the output

I The output here is much less helpful
I We have the coefficient values, but this is before the logit

transformation so not particularly useful
I We have the p-values of the coefficients but we should be wary

of these
I The other values (deviance etc) aren’t particularly helpful
I AIC we’ll talk about in the next class
I In fact, to judge the performance of the model we need to do a

lot more work!
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Extending the model

We can extend to multiple explanatory variables in exactly the same
way as before:

model_2 = glm(chd ~ age + adiposity + age:adiposity,
data = SA, family = ’binomial’)

summary(model_2)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -4.6909894 1.3851412 -3.387 0.000708 ***
age 0.0811012 0.0300150 2.702 0.006892 **
adiposity 0.0583492 0.0596028 0.979 0.327596
age:adiposity -0.0009184 0.0012051 -0.762 0.446000
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Plotting the fitted model

plot(jitter(SA$age), SA$chd, ylab = ’chd’, xlab = ’Age’)
points(SA$age, model_1$fitted.values, col=’red’)
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Regularisation and shrinkage

I When you have lots and lots of explanatory variables, the
model can become very slow or might not fit at all

I Worse, we might have lots of spurious small p-values without
any predictive power

I It makes sense to remove or reduce some of the coefficients on
the explanatory variables if we think their effect is over-stated

I One way of doing this is via regularisation, where we set some
of the values to zero, another is via shrinkage where we reduce
the values (shrink them towards zero)
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Lasso and Ridge

I The R package glmnet will perform shrinkage and
regularisation for both regression and classification

I The Lasso model imposes a restricted sum on the absolute
value of all of the coefficient values

I The Ridge model imposes an assumption that all of the
coefficient values come from a normal distribution with some
small standard deviation

I Fitting these types of model is beyond the scope of this course
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More advanced classification approaches

I Much like regression, classification models have a long literature
I However, classification models tend to be more complicated as

there are transformations involved (e.g. logit) and often
multiple response variables (i.e. more than two categories for
the response)

I Sometimes you have the choice between using a discrete
response variable or a continuous one. I would always pick the
continuous one: in general regression models perform better
than classification models
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Summary

I We now know how to implement regression and classification
models in R

I We know how to interpret the output of some regression
models

I We’re familiar with some of the more advanced concepts in
regression and classification
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