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Learning outcomes

I Know how to create and interpret a two-sample t-test
I Understand what a p-value means
I Be able to perform a simple sample size calculation
I Understand the basics of experimental design

General goal for the course: be able to create a statistical model for
a medical test in R and check that it is robust
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Course details

I Mixture of lectures and practicals. More details in the
timetable.

I All course notes, code and data sets available on Github page
I All slides available in pdf or RMarkdown (Rmd) format which

can be opened in Rstudio
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https://rawgit.com/andrewcparnell/bio_course/master/Timetable.html
https://github.com/andrewcparnell/bio_course


Some basic concepts:

I One way data can be grouped is either continuous (e.g. age,
weight), or discrete (disease state, Gleason grade, etc)

I You can divide continuous into interval (temperature) or ratio
(age, weight)

I You can divide discrete into ordinal (e.g. Gleason grade) or
nominal (disease state, eye colour)

The type of statistical model we fit is almost entirely dependent on
the type of data we have
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Two examples: prostate cancer (regression)
Prostate cancer data set:

I lcavol: log(cancer volume)
I lweight: log(weight)
I age: age
I lbph: log(benign prostatic hyperplasia amount)
I svi: seminal vesicle invasion
I lcp: log(capsular penetration)
I gleason: grade of cancer
I pgg45: percentage Gleason scores 4 or 5
I lpsa: outcome variable - log prostate specific antigen
I train: whether the observation should be included in the

training or test set

Task: predict lpsa based on other variables for the training
set, and check performance on the test set
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Prostate example matrix scatter plot
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Example 2: South African Heart Rate data (classification)

462 observations, with 10 variables:

I sbp - systolic blood pressure
I tobacco - cumulative tobacco (kg)
I ldl - low density lipoprotein cholesterol
I adiposity - approx percentage body fat
I famhist - family history of heart disease (Present, Absent)
I typea - type-A behavior
I obesity - a measure of obesity
I alcohol - current alcohol consumption
I age - age at onset
I chd - output variable - coronary heart disease

Task: predict probability of chd based on other variables

7/30



Heart rate data plots

0 1

20

30

40

50

60

chd

ag
e

0 1

0

5

10

15

20

25

30

chd

to
ba

cc
o

0 1

0

50

100

150

chd

al
co

ho
l

0 1

15

20

25

30

35

40

45

chd

ob
es

ity

8/30



Testing differences between groups; the two-sample t-test

I Goal: test whether the mean of one group is equal to the mean
of another group

I Obviously we only have a sample of data, not all the potential
data (this is generally impossible)

I Use the mathematics of sampling distributions to determine
whether the data look ‘unlike’ a situation where the two means
are equal
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Sampling distributions of data

I If we re-ran the experiment we would get different data. What
might the sample means of these data sets look like?

I Amazingly, no matter what the shape of the original data, the
sample mean will always follow a normal distribution

I The mean of this normal distribution will be the mean of the
population, and the standard deviation (known as the standard
error) will be the same as the population standard deviation
divided by the square root of the sample size
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Sampling distributions in pictures
population = runif(1000) # 1000 uniform(0,1) numbers
sample_size = 30 # A sample size
sample_mean = rep(NA, 10000) # Create 10k samples
for(i in 1:10000) {

current_sample = sample(population, sample_size)
sample_mean[i] = mean(current_sample)

}
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Sampling distributions in theory and in practice

I It’s nice to know that in theory if we took thousands of samples
we would end up with a normally distributed sample mean

I However, we usually only take 1 sample, so we don’t know what
the standard deviation of this sampling distribution really is

I The usual shortcut is to use the sample standard error (i.e. the
standard deviation of the sample divided by the sample size)

I This shortcut allows us to quantify our sampling variability and
therefore decide whether any differences between samples occur
because of sampling, or because there is a real difference
between the sample means
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Null and alternative hypotheses

I The usual way to run a two-sample t-test is to define a null
hypothesis that says both population means are equal, and an
alternative hypothesis that states that they are not

I We then create a sampling distribution of the difference
between the two samples

I If the two sample means are sufficiently different after taking
account of their standard errors then we usually reject the null
hypothesis
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Example: the heart rate data

Suppose we wished to test whether tobacco consumption had an
effect on coronary heart disease:

with(SA, t.test(tobacco[chd==0], tobacco[chd==1]))

data: tobacco[chd == 0] and tobacco[chd == 1]
t = -5.9396, df = 231.8, p-value = 1.038e-08
alternative hypothesis: true difference in means is not
equal to 0
95 percent confidence interval:
-3.848845 -1.931434

sample estimates:
mean of x mean of y
2.634735 5.524875
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Drawing pictures
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Getting and understanding the p-value

I Most people look for the p-value. A small p-value (often, for
no reason, smaller than 0.05) is considered to be a ‘statistically
significant result’

I The meaning of the word significant here is that of signifying
something, not that it is necessarily important

I It is often far more helpful to look at the confidence interval
which is a measure of effect size, than the p-value
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Warnings about p-values

I p-values are almost universally mis-used in science (and
medicine in particular)

I A small p-value just means that you have quantified an effect
well, and is usually just a function of the sample size

I The null hypothesis is almost never true, so it’s easy to
manipulate your experiment to get small p-values

I From the American Statistical Association statement on
p-values:

By itself, a p-value does not provide a good measure
of evidence regarding a model or hypothesis.

17/30

https://www.amstat.org/newsroom/pressreleases/P-ValueStatement.pdf


Sample size calculations
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Introduction to sample size calculations

I The t-test (and the formula behind it) is often more useful for
deriving a sample size for an experiment to quantify a given
effect

I A commonly used formula is:

N >
2σ2(zα/2 + zβ)2

d2

I where:
I N is the sample size required
I σ is the unknown population standard deviation
I d is the clinically significant difference
I zα/2 and zβ are the cut-off values for a given type 1 and type 2

error
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Type 1 and Type 2 error

Figure 1: Type 1 and Type 2 error
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Getting the values to put in to the formula

I You can usually find a good value of σ from a previous
experiment

I d should be easy to choose if you are familiar with the research
I zα/2 and zβ are harder to choose. Many people set α = 0.05

and β = 0.2 which gives zα/2 = 1.96 and zβ = 0.842

Once you have all these values you can plug them into the formula
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Example
I Let’s suppose we wanted to conduct a new version of the test

of tobacco levels on coronary heart disease. We might guess
the population standard deviation to be:

sd(SA$tobacco)

## [1] 4.593024

I Suppose a difference of 2 is considered to be clinically
significant, then:

N = (2 * sd(SA$tobacco)^2 * (1.96 + 0.842)^2 ) / ( 2^2 )
N

## [1] 82.81399

So we need at least 83 samples in each group
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Final notes about sample size calculations

I Many people just plug in values to the above formula until they
get a number they are happy with. This will often lead to a
useless experiment!

I Be especially careful choosing the value of σ - the population
standard deviation. Previous experiments are likely to have
under-estimated it

I Be even more careful when performing comparisons between
multiple groups, the type 1 and type 2 error terms (α and β)
may need to be changed

I There are many more complicated and interesting versions of
sample size formulae
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Experimental design
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Introduction

I In statistics, most experiments are not designed, and we have
to pick apart the effects of different variables according to the
data we are presented with.

I A problem we often face is that of confounding where multiple
factors have changed our outcome variable and we cannot pick
apart which is the cause of the change

I For example, in the CHD data most of those with CHD have
adiposity scores, and consume more tobacco. If adiposity was
really the key factor we have no way of separating it out from
tobacco consumption

I If it were ethical to design an experiment here we could, for
example, force there to be some non-smokers with high
adiposity in the CHD and no-CHD groups
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The golden rule of designing an experiment

Block everything you can control, randomise over
everything else, and replicate as much as possible
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Blocking

I A block is simply a variable in an experiment you have control
over, e.g. temperature, sex, age, etc.

I The idea is that in each block the people in the sample are
broadly similar across the treatment groups

I When there are multiple factors we might have a more complex
design, such as a Latin square or similar
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Randomisation

I When we can’t control a variable, or we have so many variables
that we can’t control them all, we rely on randomisation,
i.e. randomly allocating people to treatment groups

I Randomisation helps by reducing the effect of confounding
I A related concept is that of blinding where the

subjects/experimenters do not know which group they will be
put in

28/30



Replication

I It’s all very well designing a beautiful experiment, but if you
only end up with 5 observations at the end it will be hard to
produce meaningful results

I The more replicates you have the more chance of identifying
the effect size

I There are lots of different ways to replicate, including taking
multiple observations on people (repeated measures) or taking
them over time (longitudinal analysis)

I For more complicated experiments, simple t-tests will not work
well, but regression and classification models still do!
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Summary

I Two sample t-tests not ideal for most proper data sets
I Beware of mis-interpretations of p-values
I Sample size calculations are a good idea
I Always design an experiment if possible
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