
Worksheet: An Introduction to MATLAB

The aim of this worksheet is to give you an introduction to some of the elementary
features of MATLAB, including basic commands, plotting, loops and the manipulation
of vectors. These commands will all come in useful when you come to write your own
programs.

1. Use MATLAB to do the following simple calculations

(i) 1 + 2 + 3 (ii)
√
2 (iii) cos(π/6)

N.B. The pre-defined variable pi is a numerical approximation of π. The result of the
calculation gets saved in a variable called ans. To recall the last value, type ans.

2. For (iii) above, type ans∧2 to compute cos2(π/6) . Now subtract this from the
exact answer of 3/4. You should find that the result is not zero, but is very very small
∼ 10−16. Why is this? N.B. To get an answer presented to more decimal places, type
format long. Other options you could experiment with include: format short e,

format hex, format bank and format rat.

3. Variables. Often, you may wish to save the result of a calculation for later use. To
do this, you should assign the result to a variable. For example, try typing:
>> myvar = 3*pi*log(2);

>> myvar

The first line assigns the value 3π ln 2 to the variable name myvar. The second line just
recalls the value of myvar and writes it to screen. Note that adding a semicolon ; to the
end of an expression suppresses the screen output.

4. Vectors. Matlab handles vectors (and lists of numbers) very naturally - this is one
of its great strengths.
(a) Generate a vector of even integers from 0 to 20 by typing x = [0:2:20]. Do you
understand this expression? Try creating some other lists of numbers.
(b) The third element of x can be found by typing x(3). Do this. What do you think
x(7) is? Check your answer.
(c) We can create other vectors from x. Try the following operations:

(i) sin(x) (ii) x.∧2 (iii) x.∧(−1)

In (ii) and (iii) the decimal point after x means that the operation is applied pointwise
to the elements of x. Note that MATLAB set 1/0 to Inf.

Make sure you understand how pointwise operation works. For example, try predict-
ing the result of entering

[0 : 1 : 5].∧2

then check your prediction.



5. Simple plotting. Plotting in MATLAB is easy. To plot the components of a
vector x type plot(x). To plot the vector y against x type plot(x,y). To plot this
with green crosses type plot(x,y,’g+’). Simple!
(a) Generate the vector x = [0:0.01:10];. Remember, the semi-colon stops the vector
being printed out – preventing a lot of messy data appearing on screen. Now construct
the vectors y = sin(pi*x) and z = cos(3*pi*x) (adding semicolons at the end, as
before). Plot the vector y against x. To keep this figure and add another graph over the
top, type hold on. Do this and plot the vector z against x in green. Now type hold

off.
(b) Plot a pretty Lissajous figure by plotting z against y.
(c) Typing help plot will tell you much more about the way to use the plot function,
and the alternative options.

6. Loops. In implementing most numerical methods you will need to repeat a
simple set of instructions over and over again. MATLAB achieves this by using a for

<statements> end loop. Here is a an example of a loop to print the squares of the first
10 numbers:
for k = 1:10

k ∧ 2

end

(a) Type in this set of instructions and check that it works.
(b) Modify the loop so that it types out the cubes of the numbers between 11 and 20.

7. Time series. Use function findpeaks to find values and locations of local maxima in
a set of data. The file spots num.mat contains the average number of sunspots observed
every year from 1749 to 2012. The data are available from NASA. Find the maxima and
their years of occurrence. Plot them along with the data.

load sunspot.dat

year = sunspot(:,1);

avSpots = sunspot(:,2);

[pks,locs] = findpeaks(avSpots);

plot(year,avSpots,year(locs),pks,’or’)

xlabel(’Year’)

ylabel(’Number’)

axis tight

Can you estimate how many such peaks were observed per each 50-year period?

8. Images. Read an image into the workspace, using the imread command. The
example reads one of the sample images included with the toolbox, an image of a young
girl in a file named pout.tif , and stores it in an array named I .

I = imread(’pout.tif’);

mshow(I)

Check how the imread function stores the image data in the workspace, using the whos
command: whos I



The image pout.tif is a somewhat low contrast image. To see the distribution of
intensities in the image, create a histogram by calling the imhist function. (Precede the
call to imhist with the figure command so that the histogram does not overwrite the
display of the image I in the current figure window.) Notice how the histogram indicates
that the intensity range of the image is rather narrow. The range does not cover the
potential range of [0, 255], and is missing the high and low values that would result in
good contrast.

figure, imhist(I)

Improve the contrast in an image, using the histeq function. Histogram equalization
spreads the intensity values over the full range of the image. Display the image.

I2 = histeq(I);

figure, imshow(I2)

Call the imhist function again to create a histogram of the equalized image I2. The
histogram of I2 is more spread out over the entire range than the histogram of I .

figure, imhist(I2)

Write the newly adjusted image I2 to a disk file, using the imwrite function and
’.png’ format.

imwrite (I2, ’pout2.png’);

Check the contents of the newly written file. The imfinfo function returns information
about the image in the file, such as its format, size, width, and height.

imfinfo(’pout2.png’)

9. M-Files By now, it is becoming quite a chore to have to re-type all the lines of your
program every time you just want to make a trivial change. Instead, you can store many
lines of code (your “program”) in a script file. These are files with the extension .m.
Try creating a new script file called pout.m. To do this, right-click in the panel on the
left of the Matlab window, and select New -> M-File. Then copy and paste the code
from (8) straight into this file.
(a) Try running the file by typing its name at the command prompt: >> pout.
(b) Change the code to cut larger or smaller part of the image each time the program is
run. To do this, replace the second line of the program with:
n = input("Please enter the number of pixels : ");

(c) At the top of the script file, add a few comments describing the program. A comment
is human-readable text that MATLAB ignores. A comment must be preceded by a %.
It is good practice to comment your code thoroughly. Try adding something like:
% CELL: Written by <yourname> on <date>

Now, try entering help cell at the command prompt.

10. MATLAB introduction. Finally, if you have time, try the built-in introductory
session by typing intro after the prompt. Further information on MATLAB can be
obtained by typing help and a demonstration of what it can do can be obtained by
typing demo.


