
MOVING BEYOND MOVING AVERAGES

IN DATA INTERPOLATION

ANTHONY D. BLAOM

This article discusses a method for interpolating data that is a clever
fusion of two methods you have probably encountered before: moving aver-
ages, and simple linear regression. Before describing this method, known as
locally linear regression, we review moving average interpolation.

1. Moving averages

Suppose that we seek an interpolating function y(x) for the five data
points (x1, y2), (x2, y2), . . . (x5, y5) tabulated below:

i 1 2 3 4 5
xi -2 -1 0 1 2
yi 0.5 1.5 2 1.5 0.5

We will refer to the xi’s as inputs and the yi’s as outputs. Then, in the
method of moving averages, one declares y(x) to be the average of all those
outputs yi for which the corresponding input xi is sufficiently close to x, in
the sense that |x − xi| < h. Here h is a parameter fixed before-hand and
called the bandwidth. Figure 1 shows the data tabulated above, together
with the moving average interpolator for h = 1.5.
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Figure 1. A moving average interpolator for the data shown in the
previous figure. Here the bandwidth is h = 1.5.
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Figure 2. Comparison of the boxcar (blue) and Gaussian (red) kernels.

The interpolator y(x) could be criticized on two grounds: it is not partic-
ularly smooth; and, for small bandwidths, y(x) need not be defined, because
there may be no xi sufficiently close to x, and so we averaging an empty set
of numbers. Before addressing this, let us first express y(x) using an explicit
formula: If we let k(x) denote the so-called boxcar function, defined by

k(x) =

{
1
2 if |x| < 1

0 if |x| ≥ 1
,

then we can write

y(x) =
k(x−x1

h )y1 + k(x−x2
h )y2 + k(x−x3

h )y3 + k(x−x4
h )y4 + k(x−x5

h )y5

k(x−x1
h ) + k(x−x2

h ) + k(x−x3
h ) + k(x−x4

h ) + k(x−x5
h )

. (1)

For example, with h = 1.5, this formula predicts

y(0.25) =
1
2y2 + 1

2y3 + 1
2y3

1
2 + 1

2 + 1
2

=
y1 + y2 + y3

3
,

as required.
To address the criticisms above we replace the boxcar function — known

as the kernel of the interpolator — with a “smeared out” version (see Figure
2). Any smooth, positive, symmetric function having the same total integral
(namely one) will serve our purposes; we choose the Gaussian function,

k(x) =
1√
2π
e−x

2/2, (2)

but there are several other commonly used kernels. The interpolator is
defined by Equation (1) as before, which may be compactly written

y(x) =

N∑
i=1

li(x)yi, where li(x) =
k(x−xi

h )∑N
i=1 k(x−xi

h )
.

Here N is the total number of data points, in this case five. Gaussian kernel
interpolators, for three different bandwidths, are shown in Figure 3 below.
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Figure 3. Gaussian kernel moving average interpolation. Interpolators
for three different bandwidths h are shown.

The yellow curve corresponds to the interpolator with the same bandwidth
as the boxcar interpolator in Figure 1 above.

Figure 3 suggests that in the limit h → 0, the interpolator fits the data
perfectly, and is constant in the neighborhood of each input data point xi.
We will return to this aspect of moving average interpolation in §2.

When interpolating real data one must avoid the problem of overfitting
and choose a non-zero bandwidth, generally selected by cross-validation,
which we discuss in §4.

2. Locally linear regression

We assume the reader is familiar with simple linear regression, i.e., with
the construction of a straight line interpolator y(x) = mx + c minimizing
the training error,

Ê =
1

N

N∑
i=1

(y(xi)− yi)2. (3)

Consider for a moment a cruder form of interpolation, in which one seeks
a constant function y(x) = c (i.e., horizontal line) minimizing the training

error Ê. Substituting y(x) = c into (3), we minimize Ê by differentiating

with respect to c and equating to zero. This gives c = 1
N

∑N
i=1 yi, i.e., the

average value of the outputs. Fine, but not very interesting.
Now fix a particular input value x, and repeat the above “constant re-

gression” exercise; but, to make the interpolation more relevant for inputs
close to x, penalize most those squared residuals (y(xi) − yi)2 at inputs xi
closest to x. We can do this by defining a x-dependent training error Ê(x)
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as the following weighted-sum of squared residuals:

Ê(x) =
1

N

N∑
i=1

k

(
xi − x
h

)
(y(xi)− yi)2. (4)

Here k is the Gaussian kernel defined in (2) and h > 0 a parameter control-
ling how localized the error penalty should be. Substituting c for y(xi) on
the right of (4), and using calculus as before to find the c value minimizing

Ê(x), one derives the result,

c =

N∑
i=1

li(x)yi, where li(x) =
k(x−xi

h )∑N
i=1 k(x−xi

h )
.

But this is precisely the prediction at x of the moving average interpola-
tor! For this reason, moving average interpolation is also known as locally
constant regression.

We can now explain the locally constant behavior of moving average in-
terpolators observed in §1 (for small bandwidth h): As the bandwidth de-

creases, the penalty for residuals in the training error Ê(x), at some input
x close to xi, is dominated by the single contribution k(0)(y(xi)− yi)2. So,
close to xi, the constant-valued interpolator is y = yi.

Locally linear regression improves on locally constant regression in the
obvious way: For each input x, the output prediction y(x) is obtained by
finding the straight line y′(x′) = mx′ + c minimizing the weighted-sum of

squared residuals Ê(x), and then setting y(x) = y′(x). When the dust
settles (see the Appendix for details), one obtains an interpolator y(x) with
a similar form:

y(x) =
N∑
i=1

li(x)yi, where li(x) =
gi(x)∑N
j=1 gj(x)

(5)

and gj(x) =

(
N∑
i=1

(xi − xj)(xi − x)K

(
xi − x
h

))
K

(
xj − x
h

)
. (6)

Locally linear regression interpolators for the five-point data set analyzed
in §1 are plotted in Figure 4. Notice that in the limit h→ 0, the interpolator
becomes a piece-wise linear interpolator fitting the data perfectly.

3. Comparison of locally constant and
locally linear regression

Figures 5 and 6 show the results of applying locally constant and locally
linear regression to experiments performed on six subjects injected with
the drug Indomethacin [3]. In both cases the bandwidth was selected by
generalized cross-validation (see §4 below).

The performance of the two interpolators can be compared by comparing
their generalized cross-validation errors, EGCV. In the locally constant case,
we have

√
EGCV = 0.0200µg/ml; locally linear regression is only a tad better,
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Figure 4. Locally linear regression (with Gaussian kernel). Interpola-
tors for three different bandwidths h are shown.
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Figure 5. Locally constant regression applied to the Indomethacin
data of [3]; c is concentration of Indomethacin in µg/ml, and T the time
in hours. A Gaussian kernel bandwidth of h = 0.106 was chosen by
generalized cross-validation.

with
√
EGCV = 0.0199µg/ml. However, the locally constant regressor has a

less regular, and clearly unrealistic, step-like shape, as well as indications of
boundary bias (look at predictions for small values of T in Figure 5).

From purely theoretical considerations, one can show that boundary bias,
as well as design bias (sensitivity to the form of the distribution of the input
data), are symptomatic of locally constant regression (a.k.a. moving average
interpolation). By contrast, locally linear regression has no design bias, and
the boundary bias is much less; specifically it is asymptotically of order h2

instead of order h. For details see Fan [1] and Fan and Gijbels [2], or the
textbook [4].
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Figure 6. Locally linear regression applied to the Indomethacin data
of [3]; c is concentration of Indomethacin in µg/ml, and T the time
in hours. A Gaussian kernel bandwidth of h = 0.155 was chosen by
generalized cross-validation.
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Figure 7. Locally constant regression applied to the daily sales of a
chain of convenience stores, as a function of maximum daily tempera-
ture. Bandwidth chosen by generalized cross-validation.

Figures 7 and 8 show the results of applying locally constant and lo-
cally linear regression to the daily icecream sales of a (fictitious) chain of
convenience stores, as a function of temperature. Performance of locally
linear regression is slightly better with

√
EGCV = $38.80, compared with√

EGCV = $39.80 for for locally constant regression.

4. Cross-validation and bandwidth selection

To avoid overfitting in local regression one chooses a bandwidth minimiz-
ing a cross-validation error. Fixing a particular interpolation scheme (e.g.,
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Figure 8. Locally linear regression applied to the daily sales of a chain
of convenience stores, as a function of maximum daily temperature.
Bandwidth chosen by generalized cross-validation.

locally linear regression), the leave-one-out cross-validation error is defined
by

ECV =
1

N

N∑
i=1

(y(i)(xi)− yi)2,

where y(i) is the interpolator obtained by applying the fixed scheme to the
data with the ith data point removed. In general, the cross-validation error is
computationally expensive. However, for many interpolators of the general
form (5) (known as linear smoothers), including both locally constant and
locally linear regression, one has the following simplification in the prediction
y(i)(xi):

y(i)(xi) =
y(xi)− li(xi)yi

1− li(xi)
.

Here y(xi) is the prediction at the input xi of the interpolator y obtained by
applying the given scheme to the full data set. Applying this simplification
to the definition of ECV, we obtain,

ECV =
1

N

N∑
i=1

(
y(xi)− yi
1− li(xi)

)2

(7)

The sum,

ν =

N∑
i=1

li(xi)

is known as the effective degrees of freedom. If, on the right-hand side of
(7), we approximate each li(xi) (i = 1, 2, . . . , N) by its average value ν/N ,
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Figure 9. A plot of the generalized cross-validation error EGVC against
log10 h, for locally linear regression applied to the Indomethacin data of
[3]. Here h denotes the Gaussian kernel bandwidth.

then we obtain an approximation of ECV known as the generalized cross-
validation error:

EGCV =
1

N(1− ν/N)2

N∑
i=1

(y(xi)− yi)2 =
Ê

(1− ν/N)2
,

where Ê is the training error for the full data set. For locally constant
and locally linear regression, both Ê and ν are functions of the bandwidth,
h. Usually, the bandwidth that minimizes EGCV is close enough to the
bandwidth minimizing ECV that in common practice the proxy EGVC is
used.

Figure 9 shows a plot of EGVC against log10 h for locally linear regression,
as applied to the Indomethacin data of the previous section.

5. Beyond locally linear regression

Locally linear regression is a special case of a large and well-studied fam-
ily of techniques known as nonparametric regression. While one can extend
locally linear regression to the case of several input variables (multiple re-
gression) the “curse of dimensionality” currently restricts its application to
problems of fairly low dimension. For high-dimensional data, tree-based
models, such as random forests and gradient boosted trees, are currently
popular non-parametric alternatives.



BEYOND MOVING AVERAGES 9

Appendix A. Derivation of the formula for
locally linear regression

Locally linear regression has been motivated and defined in §2. Here we
furnish a detailed derivation of Equations (5) and (6).

Fix an input x. Then every straight line in the input-output space is
described by a function y′(x′) = m(x′−x)+c, for some c and m independent
of x′. The prediction y(x) of locally linear regression is c = y′(x), where c
and m have been chosen so as to minimize the weighted sum of squared
residuals,

Ê(x) =
1

N

N∑
i=1

wi(x)(y′(xi)− yi)2, where wi(x) = k

(
xi − x
h

)
,

=
1

N

N∑
i=1

wi(x)(m(xi − x) + c− yi)2.

Since Ê(x) is quadratic in c and m it has a global minimum which can be

found by setting the partial derivatives ∂Ê/∂c and ∂Ê/∂m to zero. This
gives us two linear equations in the two unknowns c and m:

(∑
i

wi

)
c+

(∑
i

ξiwi

)
m =

∑
i

wiyi(∑
i

ξiwi

)
c+

(∑
i

ξ2i wi

)
m =

∑
i

ξiwiyi

. (8)

Here ξi = (xi − x) and we have suppressed the dependence of wi on x.
The determinant for the linear system (8) is

∆ =

(∑
i

wi

)(∑
i

ξ2i wi

)
−

(∑
i

ξiwi

)2

=
∑
i

∑
j

(ξj − ξi)ξjwiwj

=
∑
j

∑
i

(ξi − ξj)ξiwiwj =
∑
j

gj , where gj =

(∑
i

(ξi − ξj)ξiwi

)
wj .

Notice that, unravelling the definitions of ξi and wi = wi(x), the definition
of gj here coincides with the one given in (6), §2.
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From the general form of solutions to two-variable linear systems, we
obtain,

c∆ =

(∑
i

ξ2i wi

)(∑
i

wiyi

)
−

(∑
i

ξiwi

)(∑
i

ξiwiyi

)

=
∑
j

((∑
i

ξ2i wi

)
wjyj −

(∑
i

ξiwi

)
ξjwjyj

)
=
∑
j

∑
i

(ξi − ξj)ξiwiwjyj =
∑
j

gjyj

=⇒ c =
∑
j

(gjyj
∆

)
=
∑
j

ljyj ,

where lj =
gj∑
i gi

, Q. E. D.
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