dispRity R package manual

Thomas Guillerme (guillert@tcd.ie)

2024-11-12

mailto:guillert@tcd.ie

Contents

1 dispRity
1.1 Whatis dispRity?
1.2 Installing and running the package
1.3 Which version do I choose?
1.4 dispRity is always changing, how do I know it’s not broken? . .
1.5 Help o
1.6 Citations

2 Glossary
2.1 Glossary equivalences in palaeobiology and ecology

3 Getting started with dispRity
3.1 What sort of data does dispRity work with?
3.2 Ordinated matrices
3.3 Performing a simple dispRity analysis

4 Details of specific functions
4.1 Timeslicing
4.2 Customised subsets L oL
4.3 Bootstraps and rarefactions L.
4.4 Disparity metrics Lo
4.5 Summarising dispRity data (plots)
4.6 Testing disparity hypotheses
4.7 Fitting modes of evolution to disparity data
4.8 Disparity as a distributiono
4.9 Disparity from other matrices
4.10 Disparity from multiple matrices (and multiple trees!)
4.11 Disparity with trees: dispRitree!
4.12 Disparity of variance-covariance matrices (covar)
4.13 Disparity and distances

5 Making stuff up!
5.1 Simulating discrete morphological data

3

11
12

13
13
13
16

25
25
28
29
32
63
76
84
103
107
109
115
117
121

125

CONTENTS

5.2 Simulating multidimensional spaces 129
Other functionalities 141
6.1 char.diff 141
6.2 clean.data 145
6.3 crown.stem 146
6.4 get.bin.ages. oo 147
6.5 match.tip.edge L. 147
6.6 MCMCglmm utilities. 149
6.7 pair.plot. 151
6.8 reduce.matrix 154
6.9 select.axeso 156
6.10 set.root.time 160
6.11 slice.tree e 161
6.12 slide.nodes and remove.zero.brlen 162
6.13 tree.age 167
6.14 multi.ace i e e e e e e e e 168
The guts of the dispRity package 177
7.1 Manipulating dispRity objects 177
7.2 dispRity utilities.o oo 178
7.3 The dispRity object content 184
dispRity ecology demo 189
81 Data e 189
8.2 Classicanalysis L o 190
8.3 A multidimensional approach with dispRity 192
Palaeobiology demo: disparity-through-time and within groupsl99
9.1 Beforestarting o oo 199
9.2 A disparity-through-time analysis 204
9.3 Some more advanced stuff 0L 212
10 Morphometric geometric demo: a between group analysis 213
10.1 Before starting e 213
10.2 Calculating disparity 215
10.3 Analyse theresults 217
11 dispRity R package manual 221

12 References 223

Chapter 1
dispRity

This is a package for measuring disparity (aka multidimensional space occu-
pancy) in R. It allows users to summarise matrices as representations as multidi-
mensional spaces into a single value or distribution describing a specific aspect
of this multidimensional space (the disparity). Multidimensional spaces can
be ordinated matrices from MDS, PCA, PCO, PCoA but the package is not
restricted to any type of matrices! This manual is based on the version 1.7.

1.1 What is dispRity?

This is a modular package for measuring disparity in R. It allows users to sum-
marise ordinated matrices (e.g. MDS, PCA, PCO, PCoA) to perform some
multidimensional analysis. Typically, these analysis are used in palaeobiology
and evolutionary biology to study the changes in morphology through time.
However, there are many more applications in ecology, evolution and beyond.

1.1.1 Modular?

Because their exist a multitude of ways to measure disparity, each adapted to
every specific question, this package uses an easy to modify modular architecture.
In coding, each module is simply a function or a modification of a function
that can be passed to the main functions of the package to tweak it to your
proper needs! In practice, you will notice throughout this manual that some
function can take other functions as arguments: the modular architecture of
this package allows you to use any function for these arguments (with some
restrictions explained for each specific cases). This will allow you to finely tune
your multidimensional analysis to the needs of your specific question!

6 CHAPTER 1. DISPRITY

1.2 Installing and running the package

You can install this package easily, directly from the CRAN:
install.packages("dispRity")

Alternatively, for the most up to data version and some functionalities not com-
patible with the CRAN, you can use the package through GitHub using devtool
(see to CRAN or not to CRAN? for more details):

Checking if devtools is already installed
if (!require(devtools)) install.packages('"devtools")

Installing the latest released version directly from GitHub
install_github("TGuillerme/dispRity", ref = "release")

Note this uses the release branch (1.7). For the piping-hot (but potentially un-
stable) version, you can change the argument ref = release to ref = master.
dispRity depends mainly on the ape package and uses functions from several
other packages (ade4, geometry, grDevices, hypervolume, paleotree, snow,
Claddis, geomorph and RCurl).

1.3 Which version do I choose?

There are always three version of the package available:

¢ The CRAN one
e The GitHub release one
¢ The GitHub master one

The differences between the CRAN one and the GitHub release or master
ones is explained just above. For the the GitHub version, the differences are
that the release one is more stable (i.e. more rarely modified) and the master
one is more live one (i.e. bug fixes and new functionalities are added as they
come).

If you want the latest-latest version of the package I suggest using the GitHub
master one, especially if you recently emailed me reporting a minor bug or
wanting a new functionality! Note however that it can happen that the master
version can sometimes be bugged (especially when there are major R and R pack-
ages updates), however, the status of the package state on both the release and
the master version is constantly displayed on the README page of the package
with the nice badges displaying these different (and constantly tested) informa-
tion.

https://github.com/TGuillerme/dispRity/

1.4. DISPRITYIS ALWAYS CHANGING, HOW DOIKNOW IT’S NOT BROKEN?7

1.4 dispRity is always changing, how do I know
it’s not broken?

This is a really common a legitimate question in software development. Like R
itself:

dispRity is free software and comes with ABSOLUTELY NO WAR-
RANTY.

So you are using it at your own risk.

HOWEVER, there are two points that can be used as objective-ish markers
on why it’s OK to use dispRity.

First, the package has been use in a number of peer reviewed publications (the
majority of them independently) which could be taken as warranty.

Second, I spend a lot of time and attention in making sure that every function
in every version actually does what I think it is supposed to do. This is done
through CI; continuous integration development, the CRAN check, and unit
testing. The two first checks (CRAN and CI) ensure that the version you are
using is not bugged (the CRAN check if you are using the CRAN version and
the Travis CI if you are using a GitHub version). The third check, unit testing,
is checking that every function is doing what it is supposed to do. For a real
basic example, it is testing that the following expression should always return
the same thing no matter what changes in the package.

> mean(c(1,2,3))
[1] 2

Or, more formally:

testthat: :expect_equal(object = mean(c(1,2,3)),
expected = 2)

You can always access what is actually tested in the test/testthat sub-folder.
For example here is how the core function dispRity is tested (through > 500
tests!). All these tests are run every time a change is made to the package and
you can always see for yourself how much a single function is covered (i.e. what
percentage of the function is actually covered by at least one test). You can
always see the global coverage here or the specific coverage for each function
here.

Finally, this package is build on the shoulders of the whole open science philoso-
phy so when bugs do occur and are caught by myself or the package users, they
are quickly fixed and notified in the NEWS.md file. And all the changes to the
package are public and annotated so there’s that too...

https://scholar.google.co.uk/scholar?oi=bibs&hl=en&cites=13311379491028410826,7753828186872068057
https://en.wikipedia.org/wiki/Continuous_integration
https://cran.r-project.org/web/checks/check_results_dispRity.html
https://en.wikipedia.org/wiki/Unit_testing
https://en.wikipedia.org/wiki/Unit_testing
https://cran.r-project.org/web/checks/check_results_dispRity.html
https://travis-ci.org/TGuillerme/dispRity
https://github.com/TGuillerme/dispRity/tree/master/tests/testthat
https://github.com/TGuillerme/dispRity/blob/master/tests/testthat/test-dispRity.R
https://app.codecov.io/gh/TGuillerme/dispRity
https://codecov.io/gh/TGuillerme/dispRity/tree/master/R
https://github.com/TGuillerme/dispRity/blob/master/NEWS.md
https://github.com/TGuillerme/dispRity/commits/master

8 CHAPTER 1. DISPRITY

1.5 Help

If you need help with the package, hopefully the following manual will be useful.
However, parts of this package are still in development and some other parts
are probably not covered. Thus if you have suggestions or comments on on
what has already been developed or will be developed, please send me an email
(guillert@ted.ie) or if you are a GitHub user, directly create an issue on the
GitHub page.

1.6 Citations

To cite the package, this manual or some specific functionalities, you can use
the following references:

The package main paper:

Guillerme T. dispRity: A modular R package for measuring dispar-
ity. Methods Ecol Evol. 2018;9:1755-1763. doi.org/10.1111/2041-
210X.13022.

The package manual (regularly updated!):

Guillerme, T. & Cooper, N. (2018): dispRity manual. figshare.
Preprint. 10.6084/m9.figshare.6187337.v1.

The time-slicing method implemented in chrono.subsets (unfortunately not
Open Access, but you can still get a free copy from here):

Guillerme, T. and Cooper, N. (2018), Time for a rethink: time sub-
sampling methods in disparity-through-time analyses. Palaeontol-
ogy, 61: 481-493. doi:10.1111/pala.12364.

Furthermore, don’t forget to cite R:

R Core Team (2020). R: A language and environment for statis-
tical computing. R Foundation for Statistical Computing, Vienna,
Austria. URL https://www.R-project.org/.

Bonus: you can also cite ape since the dispRity package heavily relies on it:

Paradis E. & Schliep K. 2019. ape 5.0: an environment for mod-
ern phylogenetics and evolutionary analyses in R. Bioinformatics 35:
526-528.

1.6.1 Why is it important to cite us?

Aside from how science works (if you're using a method from a specific paper,
cite that specific paper to refer to that specific method), why is it important to
also cite the package and the manual?

mailto:guillert@tcd.ie
https://github.com/TGuillerme/dispRity
https://doi.org/10.1111/2041-210X.13022
https://doi.org/10.1111/2041-210X.13022
https://doi.org/10.6084/m9.figshare.6187337.v1
https://tguillerme.github.io/papers/Guillerme&Cooper-2018-Palaeontology.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111/pala.12364
https://www.R-project.org/

1.6. CITATIONS 9

All the people involve in making the dispRity package happened to do it en-
thusiastically, freely and most amazingly without asking anything in return! I
created the package with this idea in mind and I am still sticking to it. However,
academia (the institutions and people producing science around the globe) is
unfortunately not optimal at many level (some might even say “broken”): high
impact papers attract big grants that attract high impact papers and big grants
again, all this along with livelihood, permanent position and job security. Un-
fortunately however, method development has a hard time to catch up with the
current publish or perish system: constantly updating the dispRity package
and this manual is hugely time consuming (but really fun!) and that is not even
taking into account maintenance and helping users. Although I do truly believe
that this time spent doing these things modestly help the scientific endeavour,
it does not contribute to our paper list!

Therefore, by citing the package and this manual, you help provide visibility
to other workers and you might help them in their work! And you directly
contribute in making this project fun for all the people involved and most of all,
free, updated and independent from the publish and perish system!

Thank you!

10

CHAPTER 1.

DISPRITY

Chapter 2

Glossary

e Multidimensional space (or just space). The mathematical multidi-
mensional object that will be analysed with this package. In morphomet-
rics, this is often referred to as the morphospace. However it may also
be referred to as the cladisto-space for cladistic data or the eco-space for
ecological data etc. In practice, this term designates a matrix where the
columns represent the dimensions of the space (often — but not necessarily
- > 3!) and the rows represent the elements within this space.

¢ Elements. The rows of the multidimensional space matrix. Elements can
be taxa, field sites, countries etc.

e Dimensions. The columns of the multidimensional space matrix. The
dimensions can be referred to as axes of variation, or principal components,
for ordinated spaces obtained from a PCA for example.

o Subsets. Subsets of the multidimensional space. A subset (or subsets)
contains the same number of dimensions as the space but may contain a
smaller subset of elements. For example, if our space is composed of birds
and mammals (the elements) and 50 principal components of variation
(the dimensions), we can create two subsets containing just mammals or
birds, but with the same 50 dimensions, to compare disparity in the two
clades.

o Disparity. A metric expressing the similarities/dissimilarities of the el-
ements within the space or a summarising the space dimensions. For
example the pairwise distances between elements or the range of each
dimensions.

11

12

CHAPTER 2. GLOSSARY

2.1 Glossary equivalences in palaeobiology and

ecology

In this manual In dispRity

E.g. in
palaeobiology

E.g. in ecology

the a matrix object

multidimensional (n X d)

space

elements rows (n)

dimensions columns (d)

subsets amatrix (m x d,
with m < n)

disparity a function

a morphospace

taxa
morphological
characters

time series

sum of variances

a
function-space

field
experiments
communities’
compositions
experimental
treatments
ellipsoid
volume

Chapter 3

Getting started with
dispRity

3.1 What sort of data does dispRity work with?

Any matrix object in R. Disparity can be estimated from pretty much any ma-
trix as long as rows represent the elements and columns the dimensions. These
matrices can be observations, pairwise differences between elements, ordinations,
ete...

Since version 1.4 it is also possible to include a "1ist" containing matrices.
These matrices need to have the same dimensions and rownames but can contain
different values. This is especially useful for modelling uncertainty (see here for
more details).

3.2 Ordinated matrices

Classically, when a high number of variables is used, disparity is calculated from
ordinated matrices. These can be any type of ordinations (PCO, PCA, PCoA,
MDS, etc.) as long as elements are the rows (taxa, countries, field experiments)
and the dimensions are the columns. However, note that this is not required
from any of the functions in this package. You can also use distance matrices
or any other matrix type that suits your question and your analysis!

3.2.1 Ordination matrices from geomorph

You can also easily use data from geomorph using the geomorph.ordination
function. This function simply takes Procrustes aligned data and performs an
ordination:

13

14 CHAPTER 3. GETTING STARTED WITH DISPRITY

require (geomorph)

Loading the plethodon dataset
data(plethodon)

Performing a Procrustes transform on the landmarks
procrustes <- gpagen(plethodon$land, PrinAxes = FALSE,
print.progress = FALSE)

Ordinating this data
geomorph.ordination(procrustes) [1:5,1:5]

#i# PC1 PC2 PC3 PC4

PC5

[1,] -0.0369930887 0.05118246 -0.0016971586 -0.003128881 -0.010935739
[2,] -0.0007493689 0.05942083 0.0001371682 -0.002768621 -0.008117767
[3,] 0.0056004751 0.07419599 -0.0052612189 -0.005034502 -0.002747104
[4,] -0.0134808326 0.06463958 -0.0458436274 -0.007887336 0.009817034
[5,] -0.0334696064 0.06863518 0.0136292227 0.007359383 0.022347215

Options for the ordination (from ?prcomp) can be directly passed to this func-
tion to perform customised ordinations. Additionally you can give the func-
tion a geomorph.data.frame object. If the latter contains sorting information
(i.e. factors), they can be directly used to make a customised dispRity object
customised dispRity object!

Using a geomorph.data.frame
geomorph_df <- geomorph.data.frame(procrustes,
species = plethodon$species, site = plethodon$site)

Ordinating this data and making a dispRity object
geomorph.ordination(geomorph_df)

---- dispRity object ----
4 customised subsets for 40 elements in one matrix:
#i# species.Jord, species.Teyah, site.Allo, site.Symp.

More about these dispRity objects below!

3.2.2 Ordination matrices from Claddis

dispRity package can also easily take data from the Claddis package using the
Claddis.ordination function. For this, simply input a matrix in the Claddis
format to the function and it will automatically calculate and ordinate the
distances among taxa:

require(Claddis)

3.2. ORDINATED MATRICES

Ordinating the example data from Claddis
Claddis.ordination(michaux_1989)

#it
#it

Ancilla

[,1]

0.000000e+00 4.154578e-01

[,2]

[,3]

0.2534942

Turrancilla -5.106645e-01 -1.304614e-16 -0.2534942

##
#t

Note that several options are available, namely which type of distance should
be computed. See more info in the function manual (?Claddis.ordination).
Alternatively, it is of course also possible to manual calculate the ordination
matrix using the functions Claddis::calculate_morphological_distances

Ancillista
Amalda

and stats::cmdscale.

3.2.3 Other kinds of ordination matrices

If you are not using the packages mentioned above (Claddis and geomorph) you
can easily make your own ordination matrices by using the following functions
from the stats package. Here is how to do it for the following types of matrices:

A multivariate matrix

Rape
21.
44 .
31.
19.
40.
38.

~N o oo o N

head (USArrests)

Murder Assault UrbanPop
Alabama 13.2 236 58
Alaska 10.0 263 48
Arizona 8.1 294 80
Arkansas 8.8 190 50
California 9.0 276 91
Colorado 7.9 204 78
Ordinating the matrix using “prcomp’

ordination <- prcomp(USArrests)

Selecting the ordinated matrix
ordinated_matrix <- ordination$x
head(ordinated_matrix)

##
##
#i#t
#it
#it
##
##

Alabama 64.
Alaska 92.
Arizona 124.
Arkansas 18.
California 107.

Colorado 34.

PC1
80216
82745
06822
34004
42295
97599

-11
-17.

-16.
22.
13.

PC2

.448007

982943

.830403

703911
520070
719584

PC3

.4949328
.1265749
.6874484
.2101894
. 7458730
.2793628

= N O DD

5.106645e-01 -1.630768e-17 -0.2534942

1.603581e-16 -4.154578e-01 0.2534942

o Multivariate matrices (principal components analysis; PCA)

pPC4

.4079009
.0940470
.3536852
.5209936
.8118259
. 7214637

16 CHAPTER 3. GETTING STARTED WITH DISPRITY

This results in a ordinated matrix with US states as elements and four dimen-
sions (PC 1 to 4). For an alternative method, see the ?princomp function.

« Distance matrices (classical multidimensional scaling; MDS)

A matrix of distances between cities
str(eurodist)

'dist' num [1:210] 3313 2963 3175 3339 2762 ...
- attr(x, "Size")= num 21
- attr(x, "Labels")= chr [1:21] "Athens" "Barcelona" "Brussels" "Calais"

Ordinating the matrix using cmdscale() with k = 5 dimensions
ordinated_matrix <- cmdscale(eurodist, k = 5)
head(ordinated_matrix)

[,1] [,2] [,3] [,4] [,5]
Athens 2290.27468 1798.8029 53.79314 -103.82696 -156.95511
Barcelona -825.38279 546.8115 -113.85842 84.58583 291.44076
Brussels 59.18334 -367.0814 177.55291 38.79751 -95.62045
Calais -82.84597 -429.9147 300.19274 106.35369 -180.44614
Cherbourg -352.49943 -290.9084 457.35294 111.44915 -417.49668
Cologne 293.68963 -405.3119 360.09323 -636.20238 159.39266

This results in a ordinated matrix with European cities as elements and five
dimensions.

Of course any other method for creating the ordination matrix is totally valid,
you can also not use any ordination at alll The only requirements for the
dispRity functions is that the input is a matrix with elements as rows and
dimensions as columns.

3.3 Performing a simple dispRity analysis

Two dispRity functions allow users to run an analysis pipeline simply by in-
putting an ordination matrix. These functions allow users to either calculate
the disparity through time (dispRity.through.time) or the disparity of user-
defined groups (dispRity.per.group).

IMPORTANT

Note that disparity.through.time and disparity.per.group are wrapper
functions (i.e. they incorporate lots of other functions) that allow users to
run a basic disparity-through-time, or disparity among groups, analysis with-
out too much effort. As such they use a lot of default options. These are
described in the help files for the functions that are used to make the wrap-
per functions, and not described in the help files for disparity.through.time
and disparity.per.group. These defaults are good enough for data explo-
ration, but for a proper analysis you should consider the best parameters for

3.3. PERFORMING A SIMPLE DISPRITY ANALYSIS 17

your question and data. For example, which metric should you use? How
many bootstraps do you require? What model of evolution is most appropri-
ate if you are time slicing? Should you rarefy the data? See chrono.subsets,
custom.subsets, boot.matrix and dispRity.metric for more details of the de-
faults used in each of these functions. Note that any of these default arguments
can be changed within the disparity.through.time or disparity.per.group
functions.

3.3.1 Example data

To illustrate these functions, we will use data from Beck and Lee [2014].
This dataset contains an ordinated matrix of 50 discrete characters from
mammals (BeckLee_mat50), another matrix of the same 50 mammals and the
estimated discrete data characters of their descendants (thus 50 + 49 rows,
BeckLee_mat99), a dataframe containing the ages of each taxon in the dataset
(BeckLee_ages) and finally a phylogenetic tree with the relationships among
the 50 mammals (BeckLee_tree).

Loading the ordinated matrices
data(BeckLee_mat50)
data(BeckLee_mat99)

The first five taxa and dimensions of the 50 taxa matrix
head (BeckLee_mat50[, 1:5])

#i [,1] [,2] [,3] [,4] [,5]
Cimolestes -0.5613001 0.06006259 0.08414761 -0.2313084 0.18825039
Maelestes -0.4186019 -0.12186005 0.25556379 0.2737995 0.28510479
Batodon -0.8337640 0.28718501 -0.10594610 -0.2381511 0.07132646
Bulaklestes -0.7708261 -0.07629583 0.04549285 -0.4951160 0.39962626
Daulestes -0.8320466 -0.09559563 0.04336661 -0.5792351 0.37385914
Uchkudukodon -0.5074468 -0.34273248 0.40410310 -0.1223782 0.34857351

The first five taxa and dimensions of the 99 taxa + ancestors matrix
BeckLee_mat99[c(1, 2, 98, 99), 1:5]

[,1] [,2] (,3] [,4] (,5]
Cimolestes -0.6662114 0.152778203 0.04859246 -0.34158286 0.26817202
Maelestes -0.5719365 0.051636855 -0.19877079 -0.08318416 -0.14166592
n48 0.2511551 -0.002014967 0.22408002 0.06857018 -0.05660113
nd9 0.3860798 0.131742956 0.12604056 -0.14738050 0.05095751

Loading a list of first and last occurrence dates for the fossils
data(BeckLee_ages)
head (BeckLee_ages)

#it FAD LAD
Adapis 37.2 36.8

18

##
##
##
##
##

##

Asioryctes

Notharctus

CHAPTER 3. GETTING STARTED WITH DISPRITY

83.6 72.1
33.9 33.3
49.0 46.7
61.6 59.2
50.2 47.0

Loading and plotting the phylogeny

data(BeckLee_tree)

plot (BeckLee_tree, cex = 0.8)
axisPhylo(root = 140)
nodelabels(cex = 0.5)

—FEoryctes
= Y Solengdon
Soricidae
Icaronycteris
CcIS
momams
[Iz
I:,leSIa%tharctus
Purgatoriu ~
ynocephalus
0
horﬁagomylus

(ed Tr|bongenomys

ITEE nc\ﬁocyon
|dabdalfarf15|a
ambdogale
Potamogalinae
gl rmecophagldae

)yp% idae

ypsomctops

ensng{r%eg) li’:\T’s\mgdalestld

120 100 80 60 40 20 0

Of course you can use your own data as detailed in the previous section.

3.3. PERFORMING A SIMPLE DISPRITY ANALYSIS 19

3.3.2 Disparity through time

The dispRity.through.time function calculates disparity through time, a com-
mon analysis in palaeontology. This function (and the following one) uses an
analysis pipeline with a lot of default parameters to make the analysis as simple
as possible. Of course all the defaults can be changed if required, more on this
later.

For a disparity through time analysis, you will need:

e An ordinated matrix (we covered that above)

o A phylogenetic tree: this must be a phylo object (from the ape package)
and needs a root.time element. To give your tree a root time (i.e. an age
for the root), you can simply do\ my_tree$root.time <- my_age.

e The required number of time subsets (here time = 3)

e Your favourite disparity metric (here the sum of variances)

Using the Beck and Lee (2014) data described above:

Measuring disparity through time

disparity_data <- dispRity.through.time(BeckLee_mat50, BeckLee_tree,
metric = c(sum, variances),
time = 3)

This generates a dispRity object (see here for technical details). When dis-
played, these dispRity objects provide us with information on the operations
done to the matrix:

Print the disparity_data object
disparity_data

---- dispRity object ----

3 discrete time subsets for 50 elements in one matrix with 48 dimensions with 1 phylogenetic t
133.51 - 89.01, 89.01 - 44.5, 44.5 - 0.

Rows were bootstrapped 100 times (method:"full").

Disparity was calculated as: metric.

We asked for three subsets (evenly spread across the age of the tree), the data
was bootstrapped 100 times (default) and the metric used was the sum of vari-
ances.

We can now summarise or plot the disparity_data object, or perform statisti-
cal tests on it (e.g. a simple 1m):

Summarising disparity through time
summary (disparity_data)

#it subsets n obs bs.median 2.5% 25% 75% 97.5%
1 133.51 - 89.01 5 2.123 1.775 1.017 1.496 1.942 2.123
2 89.01 - 44.5 29 2.456 2.384 2.295 2.350 2.404 2.427

3 44.5 - 0 16 2.528 2.363 2.213 2.325 2.406 2.466

20 CHAPTER 3. GETTING STARTED WITH DISPRITY

Plotting the results
plot(disparity_data, type = "continuous")

0
<
o
N
L2
5]
1S
v
i
e
i
I I I
133.51 -89.01 89.01 - 445 445-0

Subsets

Testing for an difference among the time bins
disp_lm <- test.dispRity(disparity_data, test = 1lm,

comparisons = "all")
summary (disp_lm)

##

Call:

test(formula = data ~ subsets, data = data)
##

Residuals:

Min 1Q Median 3Q Max
-0.87430 -0.04100 0.01456 0.05318 0.41059
##

3.3. PERFORMING A SIMPLE DISPRITY ANALYSIS 21

Coefficients:

#Hit Estimate Std. Error t value Pr(>|tl)
(Intercept) 1.71217 0.01703 100.55 <2e-16 *xx*
subsets44.5 - 0 0.64824 0.02408 26.92 <2e-16 *x*x*

subsets89.01 - 44.5 0.66298 0.02408 27.53 <2e-16 **x
#H -

Signif. codes: O '*xx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
#i#

Residual standard error: 0.1703 on 297 degrees of freedom

Multiple R-squared: 0.769, Adjusted R-squared: 0.7674

F-statistic: 494.3 on 2 and 297 DF, p-value: < 2.2e-16

Please refer to the specific tutorials for (much!) more information on the nuts
and bolts of the package. You can also directly explore the specific function
help files within R and navigate to related functions.

3.3.3 Disparity among groups

The dispRity.per.group function is used if you are interested in looking at
disparity among groups rather than through time. For example, you could ask
if there is a difference in disparity between two groups?

To perform such an analysis, you will need:

e An matrix with rows as elements and columns as dimensions (always!)

e A list of group members: this list should be a list of numeric vectors
or names corresponding to the row names in the matrix. For example
list("A" = c(1,2), "B" = c(3,4)) will create a group A containing
elements 1 and 2 from the matrix and a group B containing elements 3
and 4. Note that elements can be present in multiple groups at once.

¢ Your favourite disparity metric (here the sum of variances)

Using the Beck and Lee [2014] data described above:

Creating the two groups (crown versus stem) as a list
mammal_groups <- crown.stem(BeckLee_tree, inc.nodes = FALSE)

Measuring disparity for each group

disparity_data <- dispRity.per.group(BeckLee_mat50,
group = mammal_groups,
metric = c(sum, variances))

We can display the disparity of both groups by simply looking at the output
variable (disparity_data) and then summarising the disparity_data object
and plotting it, and/or by performing a statistical test to compare disparity
across the groups (here a Wilcoxon test).

Print the disparity_data object
disparity_data

22 CHAPTER 3. GETTING STARTED WITH DISPRITY

---- dispRity object ---—-

2 customised subsets for 50 elements in one matrix with 48 dimensions:
crown, stem.

Rows were bootstrapped 100 times (method:"full").

Disparity was calculated as: metric.

Summarising disparity in the different groups
summary (disparity_data)

#it subsets n obs bs.median 2.5 25% 75% 97.5%
1 crown 30 2.526 2.446 2.380 2.429 2.467 2.498
2 stem 20 2.244 2.134 2.025 2.105 2.164 2.208

Plotting the results
plot(disparity_data)

Lﬂ —
N 1
[]
|]
< | H
o~ |
S
@ _|
N
Q
=
o _—
E o .
a7 H
— | T
N '
1
-
o
N o
o
o _|
“' T 1
crown stem

Subsets

Testing for a difference between the groups
test.dispRity(disparity_data, test = wilcox.test, details = TRUE)

3.3. PERFORMING A SIMPLE DISPRITY ANALYSIS 23

$ crown : stem”

$ crown : stem [[1]]

##

Wilcoxon rank sum test with continuity correction

##

data: dots[[1L]11[[1L]] and dots[[2L1][[1L]]

W = 10000, p-value < 2.2e-16

alternative hypothesis: true location shift is not equal to O

24

CHAPTER 3. GETTING STARTED WITH DISPRITY

Chapter 4

Details of specific functions

The following section contains information specific to some functions. If any
of your questions are not covered in these sections, please refer to the function
help files in R, send me an email (guillert@tcd.ie), or raise an issue on GitHub.
The several tutorials below describe specific functionalities of certain functions;
please always refer to the function help files for the full function documentation!

Before each section, make sure you loaded the Beck and Lee [2014] data (see
example data for more details).

Loading the data
data(BeckLee_mat50)
data(BeckLee_mat99)
data(BeckLee_tree)
data(BeckLee_ages)

4.1 Time slicing

The function chrono.subsets allows users to divide the matrix into different
time subsets or slices given a dated phylogeny that contains all the elements
(i.e. taxa) from the matrix. Each subset generated by this function will then
contain all the elements present at a specific point in time or during a specific
period in time.

Two types of time subsets can be performed by using the method option:

o Discrete time subsets (or time-binning) using method = discrete
o Continuous time subsets (or time-slicing) using method = continuous

For the time-slicing method details see Guillerme and Cooper [2018]. For both
methods, the function takes the time argument which can be a vector of numeric
values for:

25

mailto:guillert@tcd.ie
https://github.com/TGuillerme/dispRity/issues

26 CHAPTER 4. DETAILS OF SPECIFIC FUNCTIONS

¢ Defining the boundaries of the time bins (when method = discrete)
o Defining the time slices (when method = continuous)

Otherwise, the time argument can be set as a single numeric value for automati-
cally generating a given number of equidistant time-bins/slices. Additionally, it
is also possible to input a dataframe containing the first and last occurrence data
(FAD/LAD) for taxa that span over a longer time than the given tips/nodes age,
S0 taxa can appear in more than one time bin/slice.

4.1.1 Time-binning

Here is an example for the time binning method (method = discrete):

Generating three time bins containing the taxa present every 40 Ma
chrono.subsets(data = BeckLee_mat50, tree = BeckLee_tree,

method = "discrete",

time = c(120, 80, 40, 0))

—---- dispRity object ---—-
3 discrete time subsets for 50 elements in one matrix with 1 phylogenetic tree
120 - 80, 80 - 40, 40 - 0.

Note that we can also generate equivalent results by just telling the function
that we want three time-bins as follow:

Automatically generate three equal length bins:
chrono.subsets(data = BeckLee_mat50, tree = BeckLee_tree,

method = "discrete",

time = 3)
--——- dispRity object --—-
3 discrete time subsets for 50 elements in one matrix with 1 phylogenetic tree
#i# 133.51 - 89.01, 89.01 - 44.5, 44.5 - 0.

In this example, the taxa were split inside each time-bin according to their age.
However, the taxa here are considered as single points in time. It is totally
possible that some taxa could have had longer longevity and that they exist in
multiple time bins. In this case, it is possible to include them in more than one
bin by providing a table of first and last occurrence dates (FAD/LAD). This
table should have the taxa names as row names and two columns for respectively
the first and last occurrence age:

Displaying the table of first and last occurrence dates
for each taxa
head (BeckLee_ages)

#i# FAD LAD
Adapis 37.2 36.8
Asioryctes 83.6 72.1
Leptictis 33.9 33.3

4.1. TIME SLICING 27

Miacis 49.0 46.7
Mimotona 61.6 59.2
Notharctus 50.2 47.0

Generating time bins including taxa that might span between them
chrono.subsets(data = BeckLee_mat50, tree = BeckLee_tree,

method = "discrete",

time = c(120, 80, 40, 0), FADLAD = BeckLee_ages)

---- dispRity object ----
3 discrete time subsets for 50 elements in one matrix with 1 phylogenetic tree
120 - 80, 80 - 40, 40 - 0.

When using this method, the oldest boundary of the first bin (or the first slice,
see below) is automatically generated as the root age plus 1% of the tree length,
as long as at least three elements/taxa are present at that point in time. The
algorithm adds an extra 1% tree length until reaching the required minimum
of three elements. It is also possible to include nodes in each bin by using
inc.nodes = TRUE and providing a matrix that contains the ordinated distance
among tips and nodes.

If you want to generate time subsets based on stratigraphy, the package proposes
a useful functions to do it for you: get.bin.ages (check out the function’s
manual in R)!

4.1.2 Time-slicing

For the time-slicing method (method = continuous), the idea is fairly similar.
This option, however, requires a matrix that contains the ordinated distance
among taxa and nodes and an extra argument describing the assumed evolu-
tionary model (via the model argument). This model argument is used when
the time slice occurs along a branch of the tree rather than on a tip or a node,
meaning that a decision must be made about what the value for the branch
should be. The model can be one of the following:

e Punctuated models
— acctran where the data chosen along the branch is always the one
of the descendant
— deltran where the data chosen along the branch is always the one
of the ancestor
— random where the data chosen along the branch is randomly chosen
between the descendant or the ancestor
— proximity where the data chosen along the branch is either the de-
scendant or the ancestor depending on branch length
¢ Gradual models
— equal.split where the data chosen along the branch is both the
descendant and the ancestor with an even probability
— gradual.split where the data chosen along the branch is both the

28 CHAPTER 4. DETAILS OF SPECIFIC FUNCTIONS

descendant and the ancestor with a probability depending on branch
length

Note that the four first models are a proxy for punctuated evolution:
the selected data is always either the one of the descendant or the
ancestor. In other words, changes along the branches always occur
at either ends of it. The two last models are a proxy for gradual
evolution: the data from both the descendant and the ancestor is
used with an associate probability. These later models perform bet-
ter when bootstrapped, effectively approximating the “intermediate”
state between and the ancestor and the descendants.

More details about the differences between these methods can be found in
Guillerme and Cooper [2018].

Generating four time slices every 40 million years

under a model of proximity evolution

chrono.subsets(data = BeckLee_mat99, tree = BeckLee_tree,
method = "continuous", model = "proximity",
time = c(120, 80, 40, 0),
FADLAD = BeckLee_ages)

—---- dispRity object ---—-
4 continuous (proximity) time subsets for 99 elements in one matrix with 1 phylogen
#H 120, 80, 40, O.

Generating four time slices automatically

chrono.subsets(data = BeckLee_mat99, tree = BeckLee_tree,
method = "continuous", model = "proximity",
time = 4, FADLAD = BeckLee_ages)

---- dispRity object ---—-
4 continuous (proximity) time subsets for 99 elements in one matrix with 1 phylogen
133.51, 89.01, 44.5, 0.

4.2 Customised subsets

Another way of separating elements into different categories is to use customised
subsets as briefly explained above. This function simply takes the list of elements
to put in each group (whether they are the actual element names or their position
in the matrix).

Creating the two groups (crown and stems)
mammal_groups <- crown.stem(BeckLee_tree, inc.nodes = FALSE)

Separating the dataset into two different groups
custom.subsets(BeckLee_mat50, group = mammal_groups)

4.3. BOOTSTRAPS AND RAREFACTIONS 29

---- dispRity object ----
2 customised subsets for 50 elements in one matrix:
#it crown, stem.

Like in this example, you can use the utility function crown.stem that allows
to automatically separate the crown and stems taxa given a phylogenetic tree.
Also, elements can easily be assigned to different groups if necessary!

Creating the three groups as a list

weird_groups <- list("even" = seq(from =
"odd" = seq(from
"all" = c(1:50))

|
[
ct
(o]
|

= 49, by = 2),
50, by = 2),

]
N
ot
(e]

]

The custom.subsets function can also take a phylogeny (as a phylo object) as
an argument to create groups as clades:

Creating groups as clades
custom.subsets(BeckLee_mat50, group = BeckLee_tree)

This automatically creates 49 (the number of nodes) groups containing between
two and 50 (the number of tips) elements.

4.3 Bootstraps and rarefactions

One important step in analysing ordinated matrices is to pseudo-replicate the
data to see how robust the results are, and how sensitive they are to outliers in
the dataset. This can be achieved using the function boot.matrix to bootstrap
and/or rarefy the data. The default options will bootstrap the matrix 100 times
without rarefaction using the “full” bootstrap method (see below):

Default bootstrapping
boot.matrix(data = BeckLee_mat50)

---- dispRity object ----
50 elements in one matrix with 48 dimensions.
Rows were bootstrapped 100 times (method:"full").

The number of bootstrap replicates can be defined using the bootstraps option.
The method can be modified by controlling which bootstrap algorithm to use
through the boot.type argument. Currently two algorithms are implemented:

o "full" where the bootstrapping is entirely stochastic (n elements are
replaced by any m elements drawn from the data)

e "single" where only one random element is replaced by one other random
element for each pseudo-replicate

e "null" where every element is resampled across the whole matrix (not just
the subsets). Le. for each subset of n elements, this algorithm resamples n
elements across ALL subsets (not just the current one). If only one subset
(or none) is used, this does the same as the "full" algorithm.

30 CHAPTER 4. DETAILS OF SPECIFIC FUNCTIONS

Bootstrapping with the single bootstrap method
boot.matrix(BeckLee_mat50, boot.type = "single")

---- dispRity object ---—-
50 elements in one matrix with 48 dimensions.
Rows were bootstrapped 100 times (method:"single").

This function also allows users to rarefy the data using the rarefaction argu-
ment. Rarefaction allows users to limit the number of elements to be drawn at
each bootstrap replication. This is useful if, for example, one is interested in
looking at the effect of reducing the number of elements on the results of an
analysis.

This can be achieved by using the rarefaction option that draws only n-z at
each bootstrap replicate (where z is the number of elements not sampled). The
default argument is FALSE but it can be set to TRUE to fully rarefy the data
(i.e. remove elements for the number of pseudo-replicates, where z varies from
the maximum number of elements present in each subset to a minimum of three
elements). It can also be set to one or more numeric values to only rarefy to
the corresponding number of elements.

Bootstrapping with the full rarefaction
boot.matrix(BeckLee_mat50, bootstraps = 20,
rarefaction = TRUE)

—---- dispRity object ---—-
50 elements in one matrix with 48 dimensions.
Rows were bootstrapped 20 times (method:"full") and fully rarefied.

Or with a set number of rarefaction levels
boot.matrix(BeckLee_mat50, bootstraps = 20,
rarefaction = c(6:8, 3))

---- dispRity object ----
50 elements in one matrix with 48 dimensions.
Rows were bootstrapped 20 times (method:"full") and rarefied to 6, 7, 8, 3 elements

Note that using the rarefaction argument also bootstraps the data.
In these examples, the function bootstraps the data (without rarefac-
tion) AND also bootstraps the data with the different rarefaction
levels.

Creating subsets of crown and stem mammals
crown_stem <- custom.subsets(BeckLee _mat50,
group = crown.stem(BeckLee_tree,
inc.nodes = FALSE))
Bootstrapping and rarefying these groups
boot.matrix(crown_stem, bootstraps = 200, rarefaction = TRUE)

4.3. BOOTSTRAPS AND RAREFACTIONS 31

---- dispRity object ----
2 customised subsets for 50 elements in one matrix with 48 dimensions:
#it crown, stem.

Rows were bootstrapped 200 times (method:"full") and fully rarefied.

Creating time slice subsets

time_slices <- chrono.subsets(data = BeckLee_mat99,
tree = BeckLee_tree,
method = "continuous",
model = "proximity",
time = c(120, 80, 40, 0),
FADLAD = BeckLee_ages)

Bootstrapping the time slice subsets
boot.matrix(time_slices, bootstraps = 100)

---- dispRity object ----

4 continuous (proximity) time subsets for 99 elements in one matrix with 97 dimensions with 1
120, 80, 40, O.

Rows were bootstrapped 100 times (method:"full").

4.3.1 Bootstrapping with probabilities

It is also possible to specify the sampling probability in the bootstrap for each
elements. This can be useful for weighting analysis for example (i.e. giving
more importance to specific elements). These probabilities can be passed to the
prob argument individually with a vector with the elements names or with a
matrix with the rownames as elements names. The elements with no specified
probability will be assigned a probability of 1 (or 1/maximum weight if the
argument is weights rather than probabilities).

Attributing a weight of 0 to Cimolestes and 10 to Maelestes
boot.matrix (BeckLee_mat50,
prob = c("Cimolestes" = 0, "Maelestes" = 10))

---- dispRity object ----
50 elements in one matrix with 48 dimensions.
Rows were bootstrapped 100 times (method:"full").

4.3.2 Bootstrapping dimensions

In some cases, you might also be interested in bootstrapping dimensions rather
than observations. I.e. bootstrapping the columns of a matrix rather than the
TOWS.

It’s pretty easy! By default, boot.matrix uses the option boot.by = "rows"
which you can toggle to boot.by = "columns"

32 CHAPTER 4. DETAILS OF SPECIFIC FUNCTIONS

Bootstrapping the observations (default)
set.seed(1)
boot_obs <- boot.matrix(data = crown_stem, boot.by = "rows")

Bootstrapping the columns rather than the rows
set.seed(1)

boot_dim <- boot.matrix(data = crown_stem, boot.by = "columns")

In these two examples, the first one boot_obs bootstraps the rows as showed
before (default behaviour). But the second one, boot_dim bootstraps the di-
mensions. That means that for each bootstrap sample, the value calculated
is actually obtained by reshuffling the dimensions (columns) rather than the
observations (rows).

Measuring disparity and summarising
summary (dispRity(boot_obs, metric = sum))

#it subsets n obs bs.median 2.5% @ 25% 75% 97.5%
1 crown 30 -1.1 -2.04 -19.4 -7.56 3.621 14.64
2 stem 20 1.1 1.52 -10.8 -1.99 6.712 13.97

summary (dispRity(boot_dim, metric = sum))

#it subsets n obs bs.median 2.5% 25% 75% 97.5%
1 crown 30 -1.1 -2.04 -18.5 -8.84 5.440 19.80
2 stem 20 1.1 1.31 -16.7 -2.99 6.338 14.99

Note here how the observed sum is the same (no bootstrapping) but the boot-
strapping distributions are quiet different even though the same seed was used.

4.4 Disparity metrics

There are many ways of measuring disparity! In brief, disparity is a summary
metric that will represent an aspect of an ordinated space (e.g. a MDS, PCA,
PCO, PCoA). For example, one can look at ellipsoid hyper-volume of the or-
dinated space (Donohue et al. 2013), the sum and the product of the ranges
and variances (Wills et al. 1994) or the median position of the elements relative
to their centroid (Wills et al. 1994). Of course, there are many more exam-
ples of metrics one can use for describing some aspect of the ordinated space,
with some performing better than other ones at particular descriptive tasks, and
some being more generalist. Check out this paper on selecting the best metric
for your specific question in Ecology and Evolution. You can also use the moms
shiny app to test which metric captures which aspect of traitspace occupancy
regarding your specific space and your specific question.

Regardless, and because of this great diversity of metrics, the package dispRity
does not have one way to measure disparity but rather proposes to facilitate

https://onlinelibrary.wiley.com/doi/full/10.1002/ece3.6452
https://tguillerme.shinyapps.io/moms/
https://tguillerme.shinyapps.io/moms/

4.4. DISPARITY METRICS 33

users in defining their own disparity metric that will best suit their particular
analysis. In fact, the core function of the package, dispRity, allows the user
to define any metric with the metric argument. However the metric argument
has to follow certain rules:

1. It must be composed from one to three function objects;
2. The function(s) must take as a first argument a matrix or a vector;
3. The function(s) must be of one of the three dimension-levels described

below;
4. At least one of the functions must be of dimension-level 1 or 2 (see below).

4.4.1 The function dimension-levels

The metric function dimension-levels determine the “dimensionality of decom-
position” of the input matrix. In other words, each dimension-level designates
the dimensions of the output, i.e. either three (a matrix); two (a vector); or
one (a single numeric value) dimension.

level 3 function

—[OTTTTTT]—0O

requires
additional
function

matrix

R /IEUEI:!functiun
function |4
vetor
\IEI.rEI'I function
O

single value

O

Figure 4.1: Illustration of the different dimension-levels of functions with an
input matrix

4.4.1.1 Dimension-level 1 functions

A dimension-level 1 function will decompose a matrix or a vector into a single
value:

Creating a dummy matrix
dummy_matrix <- matrix(rnorm(12), 4, 3)

Example of dimension-level 1 functions
mean (dummy_matrix)

[1] -0.183358

34 CHAPTER 4. DETAILS OF SPECIFIC FUNCTIONS

median (dummy_matrix)

[1] -0.3909538

Any summary metric such as mean or median are good examples of dimension-
level 1 functions as they reduce the matrix to a single dimension (i.e. one value).

4.4.1.2 Dimension-level 2 functions

A dimension-level 2 function will decompose a matrix into a vector.

Defining the function as the product of rows
prod.rows <- function(matrix) apply(matrix, 1, prod)

A dimension-level 2 metric
prod.rows (dummy_matrix)

[1] 0.63727584 -0.09516528 -1.24477435 -0.10958022

Several dimension-level 2 functions are implemented in dispRity (see
?dispRity.metric) such as the variances or ranges functions that calculate
the variance or the range of each dimension of the ordinated matrix respectively.

4.4.1.3 Dimension-level 3 functions

Finally a dimension-level 3 function will transform the matrix into another ma-
trix. Note that the dimension of the output matrix doesn’t need to match the
the input matrix:

A dimension-level 3 metric
var (dummy_matrix)

[,1] [,2] [,3]
[1,] 0.6356714 -0.2017617 0.2095042
[2,] -0.2017617 1.3656124 1.0850900
[3,] 0.2095042 1.0850900 1.0879400

A dimension-level 3 metric with a forced matrix output
as.matrix(dist (dummy_matrix))

#it 1 2 3 4
1 0.000000 1.390687 2.156388 2.984951
2 1.390687 0.000000 2.557670 1.602143
3 2.156388 2.557670 0.000000 3.531033
4 2.984951 1.602143 3.531033 0.000000

4.4.2 Between groups metrics

One specific category of metrics in the dispRity package is the between groups
metrics. As the name suggest, these metrics can be used to calculate the dis-

4.4. DISPARITY METRICS 35

parity between groups rather than within the groups. These metrics follow the
same classifications as the “normal” (within group) metrics with dimension-level
1, 2 and 3 between groups metrics. However, at the difference of the “normal”
metrics, their input arguments must be matrix and matrix2 (and of course any
other additional arguments). For example, this metric measures the difference
in mean between two matrices:

A simple example
mean.difference <- function(matrix, matrix2) {
mean(matrix) - mean(matrix?2)

3

You can find the list of implemented between groups metric here or design them
yourself for your specific needs (potentially using make.metric for help).

The function works by simply using the two available matrices, with no restric-
tion in terms of dimensions (although you’d probably want both matrices to
have the same number of dimensions)

A second matrix
dummy_matrix2 <- matrix(runif(12), 4, 3)

The difference between groups
mean.difference (dummy_matrix, dummy_matrix2)

[1] -0.5620336

Beyond this super simple example, it might probably be interesting to use
this metric on dispRity objects, especially the ones from custom.subsets and
chrono.subsets. In fact, the dispRity function allows to apply the between
groups metric directly to the dispRity objects using the between.groups =
TRUE option. For example:

Combining both matrices
big _matrix <- rbind(dummy_matrix, dummy_matrix2)
rownames (big_matrix) <- 1:8

Making a dispRity object with both groups
grouped_matrix <- custom.subsets(big_matrix,
group = c(list(1:4), 1list(1:4)))

Calculating the mean difference between groups
(mean_differences <- dispRity(grouped_matrix,
metric = mean.difference,
between.groups = TRUE))

---- dispRity object ----
2 customised subsets for 8 elements in one matrix with 3 dimensions:
i 1, 2.

36 CHAPTER 4. DETAILS OF SPECIFIC FUNCTIONS

Disparity was calculated as: mean.difference between groups.

Summarising the object
summary (mean_differences)

#i# subsets n_1 n_2 obs
#it 1 1:2 4 4 O

Note how the summary table now indicates
the number of elements for each group

For dispRity objects generated by custom.subsets, the dispRity function will
by default apply the metric on the groups in a pairwise fashion. For example, if
the object contains multiple groups, all groups will be compared to each other:
A dispRity object with multiple groups

grouped_matrix <- custom.subsets(big_matrix,

group = c("A" = list(1:4),
"B" = list(1:4),
"C" = list(2:6),
"D" = 1list(1:8)))

Measuring disparity between all groups
summary (dispRity (grouped_matrix, metric = mean.difference,
between.groups = TRUE))

subsets n_1 n_2 obs
##t 1 A:B 4 4 0.000
#it 2 A:C 4 5 -0.269
3 A:D 4 8 -0.281
##t 4 B:C 4 5 -0.269
5 B:D 4 8 -0.281
6 c:D 5 8 -0.012

For dispRity objects generated by chrono.subsets (not shown here), the
dispRity function will by default apply the metric on the groups in a serial
way (group 1 vs. group 2, group 2 vs. group 3, group 3 vs. group 4, etc...). How-
ever, in both cases (for objects from custom.subsets or chrono.subsets) it is
possible to manually specific the list of pairs of comparisons through their ID
numbers:

Measuring disparity between specific groups
summary (dispRity(grouped_matrix, metric = mean.difference,
between.groups = list(c(1,3), c(3,1), c(4,1))))

#i subsets n_1 n_2 obs
##t 1 A:C 4 5 -0.269
2 C:A 5 4 0.269
3 D:A 8 4 0.281

4.4. DISPARITY METRICS 37

Note that in any case, the order of the comparison can matter. In our ex-
ample, it is obvious that mean(matrix) - mean(matrix2) is not the same as
mean (matrix2) - mean(matrix).

4.4.3 make.metric

Of course, functions can be more complex and involve multiple operations such
as the centroids function (see ?dispRity.metric) that calculates the Eu-
clidean distance between each element and the centroid of the ordinated space.
The make.metric function implemented in dispRity is designed to help test
and find the dimension-level of the functions. This function tests:

1. If your function can deal with a matrix or a vector as an input;

2. Your function’s dimension-level according to its output (dimension-level
1, 2 or 3, see above);

3. Whether the function can be implemented in the dispRity function (the
function is fed into a lapply loop).

For example, let’s see if the functions described above are the right dimension-
levels:

Which dimension-level is the mean function?
And can it be used in dispRity?
make.metric(mean)

mean outputs a single value.
mean is detected as being a dimension-level 1 function.

Which dimension-level is the prod.rows function?
And can it be used in dispRity?
make.metric(prod.rows)

prod.rows outputs a matrix object.
prod.rows is detected as being a dimension-level 2 function.

Which dimension-level is the var function?
And can it be used in dispRity?
make.metric(var)

var outputs a matrix object.
var is detected as being a dimension-level 3 function.
Additional dimension-level 2 and/or 1 function(s) will be needed.

A non verbose version of the function is also available. This can be done using
the option silent = TRUE and will simply output the dimension-level of the
metric.

Testing whether mean is dimension-level 1
if (make.metric(mean, silent = TRUE)$type != "levell") {
message("The metric is not dimension-level 1.")

38 CHAPTER 4. DETAILS OF SPECIFIC FUNCTIONS

b

Testing whether var is dimension-level 1

if (make.metric(var, silent = TRUE)$type != "levell") {
message("The metric is not dimension-level 1.")

X

The metric is not dimension-level 1.

4.4.4 Metrics in the dispRity function

Using this metric structure, we can easily use any disparity metric in the
dispRity function as follows:

Measuring disparity as the standard deviation
of all the values of the

ordinated matrix (dimension-level 1 function).
summary (dispRity (BeckLee_mat50, metric = sd))

subsets n obs
1 1 50 0.227

Measuring disparity as the standard deviation

of the variance of each axis of

the ordinated matrix (dimension-level 1 and 2 functions).
summary (dispRity (BeckLee_mat50, metric = c(sd, variances)))

subsets n obs
1 1 50 0.032

Measuring disparity as the standard deviation

of the variance of each axis of

the variance covariance matrix (dimension-level 1, 2 and 3 functions).
summary (dispRity (BeckLee_mat50, metric = c(sd, variances, var)), round = 10)

subsets n obs
#t 1 1 50 0

Note that the order of each function in the metric argument does not matter,
the dispRity function will automatically detect the function dimension-levels
(using make .metric) and apply them to the data in decreasing order (dimension-
level 3 > 2 > 1).

Disparity as the standard deviation of the variance of each axis of the
variance covariance matrix:
disparityl <- summary(dispRity(BeckLee_mat50,
metric = c(sd, variances, var)),
round = 10)

Same as above but using a different function order for the metric argument

4.4. DISPARITY METRICS

disparity2 <- summary(dispRity(BeckLee_mat50,
metric = c(variances, sd, var)),

round = 10)

Both ways output the same disparity values:
disparityl == disparity2

#it

[1,]

subsets n obs
TRUE TRUE TRUE

In these examples, we considered disparity to be a single value.
ple, in the previous example, we defined disparity as the standard deviation
of the variances of each column of the variance/covariance matrix (metric =
c(variances, sd, var)). It is, however, possible to calculate disparity as a
distribution.

4.4.5 Metrics implemented in dispRity

39

For exam-

Several disparity metrics are implemented in the dispRity package. The de-
tailed list can be found in ?dispRity.metric along with some description of
each metric.

Level Name Description Source

2 ancestrdlhdilsttance between an element and its ancestor =~ dispRity

2 angles The angle of main variation of each dimensions dispRity

2 centroiddie distance between each element and the dispRity
centroid of the ordinated space

1 convhul Illsmsifisfaee of the convex hull formed by all the geometry
elements

1 convhul e leheme of the convex hull formed by all the geometry
elements

2 count . ndilghbommiser of neighbhours to each element in a dispRity
specified radius

2 deviatidise minimal distance between each element and a dispRity
hyperplane

1 diagonaTlhe longest distance in the ordinated space (like dispRity
the diagonal in two dimensions)

1 disalighifemtejection of the centroid of a matrix from the dispRity
major axis of another (typically an "as.covar"
metric)

2 displac@tlemtstio between the distance from a reference dispRity
and the distance from the centroid

1 edge . lefigvhetdgedengths of the elements on a tree ape

1 ellipsoilbherodblmat of the ellipsoid of the space Donohue

et al.

(2013)

: :convhulln$area

: :convhulln$vol

https://cran.r-project.org/web/packages/geometry/index.html
https://cran.r-project.org/web/packages/geometry/index.html

40 CHAPTER 4. DETAILS OF SPECIFIC FUNCTIONS
Level Name Description Source
1 func.dilhe functional divergence (the ratio of deviation dispRity
from the centroid) (similar
to
FD: : dbFD$FDiv
but
without
abun-
dance)
1 func.ev&he functional evenness (the minimal spanning dispRity
tree distances evenness) (similar
to
FD: :dbFD$FEve
but
without
abun-
dance)
1 group.dildte distance between two groups dispRity
1 mode . vallhe modal value dispRity
1 n.ball.dHmhgper-spherical (n-ball) volume dispRity
2 neighbolllze distance to specific neighbours (e.g. the dispRity
nearest neighbours - by default)
2 pairwisdldd phirwise distances between elements vegan: :vegist
2 point.dildte distance between one group and the point of dispRity
another group
2 projectilmsdistance on (projection) or from (rejection) dispRity
an arbitrary vector
1 project pang dogtivaenmetric applied between groups dispRity
2 projectildms progections metric but where the vector can dispRity
be based on a tree
2 quantildghe nth quantile range per axis dispRity
2 radius The radius of each dimensions dispRity
2 ranges The range of each dimension dispRity
1 roundnedghe integral of the ranked scaled eigenvalues of a ~ dispRity
variance-covariance matrix
2 span. trdéhd emigiiinal spanning tree length vegan: :spantree
2 variancédshe variance of each dimension dispRity

1: Note that by default, the centroid is the centroid of the elements. It
can, however, be fixed to a different value by using the centroid argument

centroids(space, centroid = rep(0, ncol(space))), for

origin of the ordinated space.

example the

2: This function uses an estimation of the eigenvalue that only works for MDS
or PCoA ordinations (not PCA).

https://cran.r-project.org/web/packages/FD/index.html
https://cran.r-project.org/web/packages/FD/index.html
https://cran.r-project.org/web/packages/vegan/index.html
https://cran.r-project.org/web/packages/vegan/index.html

4.4. DISPARITY METRICS 41

You can find more informations on the vast variety of metrics that you can use
in your analysis in this paper.
4.4.6 Equations and implementations

Some of the functions described below are implemented in the dispRity package
and do not require any other packages to calculate (see implementation here).

ancestral.dist = \/Z (d,, — Ancestor,,)? (4.1)

=1

centroids = \/Z (d,, — Centroidy)? (4.2)

i=1

d
diagonal = \j Z |max(d;) — min(k,)]| (4.3)
=1
A B o+ N Int t
deviations = [Av+ By + ... + Nm Infercept] (4.4)
VA2 4+ B2+ .. 4+ N?
\/Z?:l (d,, — Referencey)?
displacements = (4.5)
\/Zzlzl (d,, — Centroidy,)?
2 0.5
ellipsoid.volume = —— A; 4.6
p NEESY g(i) (4.6)
/2 d
n.ball.volume = ———— H R (4.7)
F(§ + 1) i=1
projection,, = |i- b (4.8)
projection ., = i —7-0] (4.9)
",
radius = |% — f(vd)] (4.10)

ranges = |max(d;) — min(d,)| (4.11)

https://onlinelibrary.wiley.com/doi/10.1002/ece3.6452
https://github.com/TGuillerme/dispRity/blob/master/R/dispRity.metric.R

42 CHAPTER 4. DETAILS OF SPECIFIC FUNCTIONS

roundness = | m (4.12)
variances = o2d,; (4.13)
span.tree.length = branch length (4.14)

Where d is the number of dimensions, n the number of elements, I" is the Gamma

distribution,)\, is the eigenvalue of each dimensions, o2 is their variance and

Centroidy, is their mean, Ancestor,, is the coordinates of the ancestor of element

n, f(vk) is function to select one value from the vector v of the dimension

k (e.g. it’s maximum, minimum, mean, etc.), R is the radius of the sphere
k

or the product of the radii of each dimensions (H R, - for a hyper-ellipsoid),
i=1

Reference, is an arbitrary point’s coordinates (usually 0), b is the vector defined

by ((pointl, point2)), and 7 is the vector defined by ((pointl, i) where i

is any row of the matrix).

4.4.7 Using the different disparity metrics

Here is a brief demonstration of the main metrics implemented in dispRity.
First, we will create a dummy/simulated ordinated space using the space .maker
utility function (more about that here:

Creating a 10%5 normal space
set.seed (1)

dummy_space <- space.maker (10, 5, rnorm)
rownames (dummy_space) <- 1:10

We will use this simulated space to demonstrate the different metrics.

4.4.7.1 Volumes and surface metrics

The functions ellipsoid.volume, convhull.surface, convhull.volume and
n.ball.volume all measure the surface or the volume of the ordinated space
occupied:

Because there is only one subset (i.e. one matrix) in the dispRity object, the
operations below are the equivalent of metric (dummy_space) (with rounding).

Calculating the ellipsoid volume
summary (dispRity (dummy_space, metric = ellipsoid.volume))

subsets n obs
1 1 10 1.061

4.4. DISPARITY METRICS 43

WARNING: in such dummy space, this gives the estimation of the
ellipsoid volume, not the real ellipsoid volume! See the cautionary
note in ?ellipsoid.volume.

Calculating the convex hull surface
summary (dispRity (dummy_space, metric = convhull.surface))

#i# subsets n obs
1 1 10 11.91

Calculating the convex hull volume
summary (dispRity (dummy_space, metric = convhull.volume))

#i# subsets n obs
#t 1 1 10 1.031

Calculating the convex hull volume
summary (dispRity (dummy_space, metric = n.ball.volume))

#i# subsets n obs
#t 1 1 10 4.43

The convex hull based functions are a call to the geometry: : convhulln function
with the "FA" option (computes total area and volume). Also note that they
are really sensitive to the size of the dataset.

Cautionary note: measuring volumes in a high number of dimensions
can be strongly affected by the curse of dimensionality that often
results in near 0 disparity values. I strongly recommend reading
this really intuitive explanation from Toph Tucker.

4.4.7.2 Ranges, variances, quantiles, radius, pairwise distance,
neighbours (and counting them), modal value and diagonal

The functions ranges, variances radius, pairwise.dist, mode.val and
diagonal all measure properties of the ordinated space based on its dimensional
properties (they are also less affected by the “curse of dimensionality”):

ranges, variances quantiles and radius work on the same principle and
measure the range/variance/radius of each dimension:

Calculating the ranges of each dimension in the ordinated space
ranges (dummy_space)

[1] 2.430909 3.726481 2.908329 2.735739 1.588603

Calculating disparity as the distribution of these ranges
summary (dispRity (dummy_space, metric = ranges))

subsets n obs.median 2.5% 25% 75% 97.5%
#i# 1 1 10 2.736 1.673 2.431 2.908 3.645

https://en.wikipedia.org/wiki/Curse_of_dimensionality
https://beta.observablehq.com/@tophtucker/theres-plenty-of-room-in-the-corners
https://github.com/tophtucker

44 CHAPTER 4. DETAILS OF SPECIFIC FUNCTIONS

Calculating disparity as the sum and the product of these ranges
summary (dispRity (dummy_space, metric = c(sum, ranges)))

subsets n obs
#t 1 1 10 13.39

summary (dispRity (dummy_space, metric = c(prod, ranges)))

subsets n obs
1 1 10 114.5

Calculating the variances of each dimension in the
ordinated space
variances (dummy_space)

[1] 0.6093144 1.1438620 0.9131859 0.6537768 0.3549372

Calculating disparity as the distribution of these variances
summary (dispRity (dummy_space, metric = variances))

subsets n obs.median 2.5% 25% 75% 97.5Y%
1 1 10 0.654 0.38 0.609 0.913 1.121

Calculating disparity as the sum and
the product of these variances
summary (dispRity (dummy_space, metric = c(sum, variances)))

subsets n obs
#H# 1 1 10 3.675

summary (dispRity (dummy_space, metric = c(prod, variances)))

subsets n obs
1 1 10 0.148

Calculating the quantiles of each dimension
in the ordinated space
quantiles (dummy_space)

[1] 2.234683 3.280911 2.760855 2.461077 1.559057

Calculating disparity as the distribution of these variances
summary (dispRity (dummy_space, metric = quantiles))

subsets n obs.median 2.5% 25% 75% 97.5%
1 1 10 2.461 1.627 2.235 2.761 3.229

By default, the quantile calculated is the 95}

(i.e. 95J, of the data on each axis)

this can be changed using the option quantile:

summary (dispRity (dummy_space, metric = quantiles, quantile = 50))

4.4. DISPARITY METRICS 45

#Hit subsets n obs.median 2.5% 25% 75% 97.5%
1 1 10 0.967 0.899 0.951 0.991 1.089

Calculating the radius of each dimension in the ordinated space
radius (dummy_space)

[1] 1.4630780 2.4635449 1.8556785 1.4977898 0.8416318

By default the radius is the maximum distance from the centre of
the dimension. It can however be changed to any function:
radius (dummy_space, type = min)

[1] 0.05144054 0.14099827 0.02212226 0.17453525 0.23044528

radius (dummy_space, type = mean)

[1] 0.6233501 0.7784888 0.7118713 0.6253263 0.5194332

Calculating disparity as the mean average radius
summary (dispRity (dummy_space,

metric = c(mean, radius),

type = mean))

subsets n obs
#H# 1 1 10 0.652

The pairwise distances and the neighbours distances uses the function
vegan: :vegdist and can take the normal vegdist options:

The average pairwise euclidean distance
summary (dispRity (dummy_space, metric = c(mean, pairwise.dist)))

subsets n obs
#H# 1 1 10 2.539

The distribution of the Manhattan distances
summary (dispRity (dummy_space, metric = pairwise.dist,
method = "manhattan"))

subsets n obs.median 2.5% 25% 75% 97.5%
1 1 10 4.427 2.566 3.335 5.672 9.63

The average nearest neighbour distances
summary (dispRity (dummy_space, metric = neighbours))

#Hit subsets n obs.median 2.5% 25% 75% 97.5%
1 1 10 1.517 1.266 1.432 1.646 2.787

The average furthest neighbour manhattan distances
summary (dispRity (dummy_space, metric = neighbours,
which = max, method = "manhattan"))

46 CHAPTER 4. DETAILS OF SPECIFIC FUNCTIONS

#it subsets n obs.median 2.5% 25% 75% 97.5%
1 1 10 7.895 6.15 6.852 9.402 10.99

The overall number of neighbours per point
summary (dispRity (dummy_space, metric = count.neighbours,
relative = FALSE))

#it subsets n obs.median 2.5% 25% 75% 97.5%
1 1 10 6.5 0.675 4.25 7 7.775

The relative number of neigbhours

two standard deviations of each element

summary (dispRity (dummy_space, metric = count.neighbours,
radius = function(x) (sd(x)*2),
relative = TRUE))

subsets n obs.median 2.5% 25% 75% 97.5%
1 1 10 0.55 0.068 0.3 0.7 0.7

Note that this function is a direct call to vegan: :vegdist (matrix, method =
method, diag = FALSE, upper = FALSE, ...).

The diagonal function measures the multidimensional diagonal of the whole
space (i.e. in our case the longest Euclidean distance in our five dimensional
space). The mode.val function measures the modal value of the matrix:

Calculating the ordinated space's diagonal
summary (dispRity (dummy_space, metric = diagonal))

subsets n obs
1 1 10 3.659

Calculating the modal value of the matrix
summary (dispRity (dummy_space, metric = mode.val))

subsets n obs
1 1 10 -2.21

This metric is only a Euclidean diagonal (mathematically valid) if
the dimensions within the space are all orthogonal!

4.4.7.3 Centroids, displacements and ancestral distances metrics

The centroids metric allows users to measure the position of the different

elements compared to a fixed point in the ordinated space. By default, this

function measures the distance between each element and their centroid (centre

point):

The distribution of the distances between each element and their centroid
summary (dispRity (dummy_space, metric = centroids))

subsets n obs.median 2.5% 25% 75% 97.5%

4.4. DISPARITY METRICS 47

1 110 1.435 0.788 1.267 1.993 3.167

Disparity as the median value of these distances
summary (dispRity (dummy_space, metric = c(median, centroids)))

subsets n obs
#t 1 1 10 1.435

It is however possible to fix the coordinates of the centroid to a specific point
in the ordinated space, as long as it has the correct number of dimensions:

The distance between each element and the origin
of the ordinated space
summary (dispRity (dummy_space, metric = centroids, centroid = 0))

subsets n obs.median 2.5% 25% 75% 97.5%
1 1 10 1.487 0.785 1.2 2.044 3.176

Disparity as the distance between each element

and a specific point in space

summary (dispRity (dummy_space, metric = centroids,
centroid = ¢(0,1,2,3,4)))

#Hit subsets n obs.median 2.5Y% 25% 75% 97.5%
#i#t 1 1 10 5.489 4.293 5.032 6.155 6.957

If you have subsets in your dispRity object, you can also use the
matrix.dispRity (see utilities) and colMeans to get the centre of a spe-
cific subgroup. For example

Create a custom subsets object
dummy_groups <- custom.subsets(dummy_space,
group = list("groupl" = 1:5,
"group2" = 6:10))
summary (dispRity (dummy_groups, metric = centroids,
centroid = colMeans(get.matrix(dummy_groups, "groupl"))))

#Hit subsets n obs.median 2.5% 25% 75% 97.5%
1 groupl 5 2.011 0.902 1.389 2.284 3.320
2 group2 5 1.362 0.760 1.296 1.505 1.985

The displacements distance is the ratio between the centroids distance and
the centroids distance with centroid = 0. Note that it is possible to measure
a ratio from another point than O using the reference argument. It gives
indication of the relative displacement of elements in the multidimensional space:
a score >1 signifies a displacement away from the reference. A score of >1
signifies a displacement towards the reference.

The relative displacement of the group in space to the centre
summary (dispRity (dummy_space, metric = displacements))

48 CHAPTER 4. DETAILS OF SPECIFIC FUNCTIONS

#it subsets n obs.median 2.5% 25% 75% 97.5%
1 1 10 1.014 0.841 0.925 1.1 1.205

The relative displacement of the group to an arbitrary point
summary (dispRity (dummy_space, metric = displacements,
reference = ¢(0,1,2,3,4)))

subsets n obs.median 2.5% 25% 75% 97.5%
1 1 10 3.368 2.066 3.19 4.358 7.166

The ancestral.dist metric works on a similar principle as the centroids func-
tion but changes the centroid to be the coordinates of each element’s ancestor (if
to.root = FALSE; default) or to the root of the tree (to.root = TRUE). There-
fore this function needs a matrix that contains tips and nodes and a tree as
additional argument.

A generating a random tree with node labels

my_tree <- makeNodeLabel(rtree(5), prefix = "n")

Adding the tip and node names to the matrix

dummy_space2 <- dummy_space[-1,]

rownames (dummy_space2) <- c(my_tree$tip.label,
my_tree$node.label)

Calculating the distances from the ancestral nodes
ancestral_dist <- dispRity(dummy_space2, metric = ancestral.dist,
tree = my_tree)

The ancestral distances distributions
summary (ancestral_dist)

subsets n obs.median 2.5% 25% 75% 97.5Y%
1 109 2.193 0.343 1.729 2.595 3.585

Calculating disparity as the sum of the distances from all the ancestral nodes
summary (dispRity(ancestral_dist, metric = sum))

subsets n obs
1 1 9 18.93

4.4.7.4 Minimal spanning tree length

The span.tree.length uses the vegan: : spantree function to heuristically cal-
culate the minimum spanning tree (the shortest multidimensional tree connect-
ing each elements) and calculates its length as the sum of every branch lengths.

The length of the minimal spanning tree
summary (dispRity (dummy_space, metric = c(sum, span.tree.length)))

subsets n obs
1 1 10 15.4

4.4. DISPARITY METRICS 49

Note that because the solution is heuristic, this metric can take a long time to
compute for big matrices.

4.4.7.5 Functional divergence and evenness

The func.div and func.eve functions are based on the FD::dpFD
package. They are the equivalent to FD::dpFD(matrix)$FDiv and
FD: :dpFD(matrix)$FEve but a bit faster (since they don’t deal with
abundance data). They are pretty straightforward to use:

The ratio of deviation from the centroid
summary (dispRity (dummy_space, metric = func.div))

#it subsets n obs
#t 1 1 10 0.747

The minimal spanning tree distances evenness
summary (dispRity (dummy_space, metric = func.eve))

#i# subsets n obs
#t 1 1 10 0.898

The minimal spanning tree manhanttan distances evenness
summary (dispRity (dummy_space, metric = func.eve,
method = "manhattan"))

#i# subsets n obs
1 1 10 0.913

4.4.7.6 Orientation: angles and deviations

The angles performs a least square regression (via the lm function) and re-
turns slope of the main axis of variation for each dimension. This slope can be
converted into different units, "slope", "degree" (the default) and "radian".
This can be changed through the unit argument. By default, the angle is mea-
sured from the slope 0 (the horizontal line in a 2D plot) but this can be changed
through the base argument (using the defined unit):

The distribution of each angles in degrees for each
main axis in the matrix
summary (dispRity (dummy_space, metric = angles))

subsets n obs.median 2.5% 25% 75% 97.5%

1 110 21.26 -39.8 3.723 39.47 56

The distribution of slopes deviating from the 1:1 slope:

summary (dispRity (dummy_space, metric = angles, unit = "slope",
base = 1))

subsets n obs.median 2.5% 25% 75% 97.5%

50 CHAPTER 4. DETAILS OF SPECIFIC FUNCTIONS

1 1 10 1.389 0.118 1.065 1.823 2.514

The deviations function is based on a similar algorithm as above but measures
the deviation from the main axis (or hyperplane) of variation. In other words,
it finds the least square line (for a 2D dataset), plane (for a 3D dataset) or
hyperplane (for a >3D dataset) and measures the shortest distances between
every points and the line/plane/hyperplane. By default, the hyperplane is fitted
using the least square algorithm from stats::glm:

The distribution of the deviation of each point
from the least square hyperplane
summary (dispRity (dummy_space, metric = deviations))

#it subsets n obs.median 2.5% 25Y% 75% 97.5%
1 1 10 0.274 0.02 0.236 0.453 0.776

It is also possible to specify the hyperplane equation through the hyperplane

equation. The equation must contain the intercept first and then all the slopes

and is interpreted as intercept + Ax + By + ... + Nd = 0. For example, a 2 line

defined as beta + intercept (e.g. y = 2z + 1) should be defined as hyperplane

=c(1, 2, 1) 2z—y+1=0).

The distribution of the deviation of each point

from a slope (with only the two first dimensions)

summary (dispRity (dummy_spacel[, c(1:2)], metric = deviations,
hyperplane = c(1, 2, -1)))

#it subsets n obs.median 2.5% 25% 75% 97.5%
1 1 10 0.516 0.038 0.246 0.763 2.42

Since both the functions angles and deviations effectively run a 1m or glm to
estimate slopes or hyperplanes, it is possible to use the option significant =
TRUE to only consider slopes or intercepts that have a slope significantly differ-
ent than zero using an aov with a significant threshold of p = 0.05. Note that
depending on your dataset, using and aov could be completely inappropriate! In
doubt, it’s probably better to enter your base (for angles) or your hyperplane
(for deviations) manually so you're sure you know what the function is mea-
suring.

4.4.7.7 Projections and phylo projections: elaboration and explo-
ration

The projections metric calculates the geometric projection and corresponding
rejection of all the rows in a matrix on an arbitrary vector (respectively the dis-
tance on and the distance from that vector). The function is based on Aguilera
and Pérez-Aguila [2004]’s n-dimensional rotation algorithm to use linear algebra
in mutidimensional spaces. The projection or rejection can be seen as respec-
tively the elaboration and exploration scores on a trajectory (sensu Endler et al.
[2005]).

4.4. DISPARITY METRICS 51

By default, the vector (e.g. a trajectory, an axis), on which the data is projected
is the one going from the centre of the space (coordinates 0,0, ...) and the centroid
of the matrix. However, we advice you do define this axis to something more
meaningful using the pointl and point2 options, to create the vector (the
vector’s norm will be dist(pointl, point2) and its direction will be from
pointl towards point2).

The elaboration on the axis defined by the first and

second row in the dummy_space

summary (dispRity (dummy_space, metric = projections,
pointl = dummy_space[1,],
point2 = dummy_space[2,]))

#it subsets n obs.median 2.5% 25% 75% 97.5%
1 1 10 0.998 0.118 0.651 1.238 1.885

The exploration on the same axis

summary (dispRity (dummy_space, metric = projections,
pointl = dummy_space[1,],
point2 = dummy_space[2,],
measure = "distance"))

#Hit subsets n obs.median 2.5% 25% 75% 97.5%
1 1 10 0.719 0 0.568 0.912 1.65

By default, the vector (pointl, point2) is used as unit vector of the projec-
tions (i.e. the Euclidean distance between (pointl, point2) is set to 1) mean-
ing that a projection value ("distance" or "position") of X means X times
the distance between pointl and point2. If you want use the unit vector of the
input matrix or are using a space where Euclidean distances are non-sensical,
you can remove this option using scale = FALSE:

The elaboration on the same axis using the dummy_space's

unit vector

summary (dispRity (dummy_space, metric = projections,
pointl = dummy_space[1,],
point2 = dummy_space[2,],
scale = FALSE))

#Hit subsets n obs.median 2.5% 25% 75% 97.5%
1 1 10 4.068 0.481 2.655 5.05 7.685

The projections.tree is the same as the projections metric but allows to
determine the vector ((pointl, point2)) using a tree rather than manually
entering these points. The function intakes the exact same options as the
projections function described above at the exception of pointl and point2.
Instead it takes a the argument type that designates the type of vector to draw
from the data based on a phylogenetic tree phy. The argument type can be a
pair of any of the following inputs:

52 CHAPTER 4. DETAILS OF SPECIFIC FUNCTIONS

e "root": to automatically use the coordinates of the root of the tree (the
first element in phy$node.label);

e "ancestor": to automatically use the coordinates of the elements’ (i.e. any
row in the matrix) most recent ancestor;

e "tips": to automatically use the coordinates from the centroid of all tips;

e "nodes": to automatically use the coordinates from the centroid of all
nodes;

e "livings": to automatically use the coordinates from the centroid of all
“living” tips (i.e. the tips that are the furthest away from the root);

e "fossils": to automatically use the coordinates from the centroid of all
“fossil” tips and nodes (i.e. not the “living” ones);

e any numeric values that can be interpreted as pointl and point2 in
projections (e.g. 0, c(0, 1.2, 3/4), etc.);

o or a user defined function that with the inputs matrix and phy and row
(the element’s ID, i.e. the row number in matrix).

For example, if you want to measure the projection of each element in the matrix
(tips and nodes) on the axis from the root of the tree to each element’s most
recent ancestor, you can define the vector as type = c("root", "ancestor").

Adding a extra row to dummy matrix (to match dummy_tree)

tree_space <- rbind(dummy_space, root = rnorm(5))

Creating a random dummy tree (with labels matching the ones from tree_space)
dummy_tree <- rtree(6)

dummy_tree$tip.label <- rownames(tree_space) [1:6]

dummy_tree$node.label <- rownames(tree_space) [rev(7:11)]

Measuring the disparity as the projection of each element
on its root-ancestor vector
summary (dispRity(tree_space, metric = projections.tree,

tree = dummy_tree,

type = c("root", "ancestor")))

Warning in max(nchar(round(column)), na.rm = TRUE): no non-missing arguments to
max; returning -Inf
Warning in max(nchar (round(column)), na.rm

max; returning -Inf

TRUE) : no non-missing arguments to

subsets n obs.median 2.5 25% 75% 97.5%
1 1 11 NA -0.7 -0.196 0.908 1.774

Of course you can also use any other options from the projections function:

A user defined function that's returns the centroid of

the first three nodes

fun.root <- function(matrix, tree, row = NULL) {
return(colMeans (matrix[tree$node.label[1:3], 1))

3

4.4. DISPARITY METRICS 53

Measuring the unscaled rejection from the vector from the
centroid of the three first nodes
to the coordinates of the first tip

summary (dispRity(tree_space, metric = projections.tree,
tree = dummy_tree,
measure = "distance",

list(fun.root,
tree_spacell, 1)))

type

subsets n obs.median 2.5% 25% 75% 97.5Y%
1 111 0.763 0.07 0.459 0.873 1.371

4.4.7.8 Roundness

The roundness coefficient (or metric) ranges between 0 and 1 and expresses the
distribution of and ellipse’ major axis ranging from 1, a totally round ellipse
(i.e. a circle) to 0 a totally flat ellipse (i.e. a line). A value of 0.5 represents
a regular ellipse where each major axis is half the size of the previous major
axis. A value > 0.5 describes a pancake where the major axis distribution is
convex (values close to 1 can be pictured in 3D as a cr‘{e}pes with the first
two axis being rather big - a circle - and the third axis being particularly thin;
values closer to 0.5 can be pictured as flying saucers). Conversely, a value < 0.5
describes a cigar where the major axis distribution is concave (values close to 0
can be pictured in 3D as a spaghetti with the first axis rather big and the two
next ones being small; values closer to 0.5 can be pictured in 3D as a fat cigar).

This is what it looks for example for three simulated variance-covariance matri-
ces in 3D:

Warning in snapshot3d(scene = x, width = width, height = height): webshot =
TRUE requires the webshot2 package and Chrome browser; using rgl.snapshot()
instead

Warning in rgl.snapshot(filename, fmt, top): this build of rgl does not support
snapshots

54 CHAPTER 4. DETAILS OF SPECIFIC FUNCTIONS

Warning in snapshot3d(scene = x, width = width, height = height): webshot =
TRUE requires the webshot2 package and Chrome browser; using rgl.snapshot()
instead

Warning in rgl.snapshot(filename, fmt, top): this build of rgl does not support
snapshots

4.4. DISPARITY METRICS 55

Warning in snapshot3d(scene = x, width = width, height = height): webshot =
TRUE requires the webshot2 package and Chrome browser; using rgl.snapshot()
instead

Warning in rgl.snapshot(filename, fmt, top): this build of rgl does not support
snapshots

56 CHAPTER 4. DETAILS OF SPECIFIC FUNCTIONS

Sphere's roundness: 1

Pancal

e

4.4.7.9 Between group metrics

You can find detailed explanation on how between group metrics work here.

4.4.7.9.1 group.dist The group.dist metric allows to measure the dis-
tance between two groups in the multidimensional space. This function needs
to intake several groups and use the option between.groups = TRUE in the
dispRity function. It calculates the vector normal distance (euclidean) between
two groups and returns 0 if that distance is negative. Note that it is possible to
set up which quantiles to consider for calculating the distances between groups.
For example, one might be interested in only considering the 95% CI for each
group. This can be done through the option probs = ¢(0.025, 0.975) that is
passed to the quantile function. It is also possible to use this function to mea-
sure the distance between the groups centroids by calculating the 50% quantile
(probs = ¢(0.5)).

Creating a dispRity object with two groups
grouped_space <- custom.subsets(dummy_space,
group = list(c(1:5), c(6:10)))

Measuring the minimum distance between both groups

xis number (scaled)

4.4. DISPARITY METRICS o7

summary (dispRity (grouped_space, metric = group.dist,
between.groups = TRUE))

subsets n_1 n_2 obs
1 1:2 5 5 0

Measuring the centroid distance between both groups
summary (dispRity (grouped_space, metric = group.dist,
between.groups = TRUE, probs = 0.5))

#i# subsets n_1 n_2 obs
#it 1 1:2 5 5 0.708

Measuring the distance between both group's 757, CI
summary (dispRity (grouped_space, metric = group.dist,
between.groups = TRUE, probs = c(0.25, 0.75)))

#it subsets n_1 n_2 obs
1 1:2 5 5 0.059

4.4.7.9.2 point.dist The metric measures the distance between the ele-
ments in one group (matrix) and a point calculated from a second group
(matrix2). By default this point is the centroid but can be any point defined by
a function passed to the point argument. For example, the centroid of matrix2
is the mean of each column of that matrix so point = colMeans (default). This
function also takes the method argument like previous one described above to
measure either the "euclidean" (default) or the "manhattan" distances:

Measuring the distance between the elements of the first group

and the centroid of the second group

summary (dispRity(grouped_space, metric = point.dist,
between.groups = TRUE))

subsets n_1 n_2 obs.median 2.5% 25% 75% 97.5%
1 1:2 5 5 2.182 1.304 1.592 2.191 3.355

Measuring the distance between the elements of the second group

and the centroid of the first group

summary (dispRity (grouped_space, metric = point.dist,
between.groups = list(c(2,1))))

subsets n_1 n_2 obs.median 2.5% 25% 75% 97.5%
1 2:1 5 5 1.362 0.76 1.296 1.505 1.985

Measuring the distance between the elements of the first group
a point defined as the standard deviation of each column

in the second group

sd.point <- function(matrix2) {apply(matrix2, 2, sd)}

summary (dispRity (grouped_space, metric = point.dist,

58 CHAPTER 4. DETAILS OF SPECIFIC FUNCTIONS

point = sd.point, method = "manhattan",
between.groups = TRUE))

subsets n_1 n_2 obs.median 2.5% 25% 75% 97.5%
1 1:2 5 5 4.043 2.467 3.567 4.501 6.884

4.4.7.9.3 projections.between and disalignment These two metrics are
typically based on variance-covariance matrices from a dispRity object that
has a $covar component (see more about that here). Both are based on the
projections metric and can take the same optional arguments (more info here).
The examples and explanations below are based on the default arguments but
it is possible (and easy!) to change them.

We are going to use the charadriiformes example for both metrics (see more
about that here).

Loading the charadriiformes data
data(charadriiformes)

Creating the dispRity object (see the #covar section in the manual for more info)
my_covar <- MCMCglmm.subsets(n = 50,
data = charadriiformes$data,
posteriors = charadriiformes$posteriors,
group = MCMCglmm.levels(charadriiformes$posteriors) [1:4],
tree = charadriiformes$tree,
rename.groups = c(levels(charadriiformes$data$clade), "ph

The first metric, projections.between projects the major axis of one group
(matrix) onto the major axis of another one (matrix2). For example we might
want to know how some groups compare in terms of angle (orientation) to a
base group:

Creating the list of groups to compare

comparisons_list <- list(c("gulls", "phylogeny"),
c("plovers", "phylogeny"),
c("sandpipers", "phylogeny"))

Measuring the angles between each groups
(note that we set the metric as.covar, more on that in the #covar section below)
groups_angles <- dispRity(data = my_covar,
metric = as.covar(projections.between),
between.groups = comparisons_list,
measure = "degree')
And here are the angles in degrees:
summary (groups_angles)

#i#t subsets n_1 n_2 obs.median 2.5% 25% 75% 97.5%

4.4. DISPARITY METRICS 59

1 gulls:phylogeny 159 359 9.39 2.480 5.95 16.67 43.
.8
.0

2 plovers:phylogeny 98 359 20.42 4.500 12.36 51.31 129
3 sandpipers:phylogeny 102 359 10.82 1.777 7.60 13.89 43

The second metric, disalignment rejects the centroid of a group (matrix) onto
the major axis of another one (matrix2). This allows to measure wether the
center of a group is aligned with the major axis of another. A disalignement
value of 0 means that the groups are aligned. A higher disalignment value
means the groups are more and more disaligned. We can use the same set of
comparisons as in the projections.between examples to measure which group
is most aligned (less disaligned) with the phylogenetic major axis:

Measuring the disalignement of each group
groups_alignement <- dispRity(data = my_covar,
metric = as.covar(disalignment),
between.groups = comparisons_list)
And here are the groups alignment (0 = aligned)
summary (groups_alignement)

subsets n_1 n_2 obs.median 2.5% 25% 75% 97.5%

2

1 gulls:phylogeny 159 359 0.003 0.001 0.002 0.005 0.021
2 plovers:phylogeny 98 359 0.001 0.000 0.001 0.001 0.006
3 sandpipers:phylogeny 102 359 0.002 0.000 0.001 0.005 0.018

4.4.8 Which disparity metric to choose?

The disparity metric that gives the most consistent results is the following one:

best.metric <- function() return(42)

Joke aside, this is a legitimate question that has no simple answer: it depends
on the dataset and question at hand. Thoughts on which metric to choose
can be find in Guillerme et al. [2020b] and Guillerme et al. [2020a] but again,
will ultimately depend on the question and dataset. The question should help
figuring out which type of metric is desired: for example, in the question “does
the extinction released niches for mammals to evolve”, the metric in interest
should probably pick up a change in size in the trait space (the release could
result in some expansion of the mammalian morphospace); or if the question is
“does group X compete with group Y”, maybe the metric of interested should
pick up changes in position (group X can be displaced by group Y).

In order to visualise what signal different disparity metrics are picking, you can
use the moms that come with a detailed manual on how to use it.

Alternatively, you can use the test.metric function:

https://tguillerme.shinyapps.io/moms/
https://rawcdn.githack.com/TGuillerme/moms/master/inst/moms_vignette.html

60 CHAPTER 4. DETAILS OF SPECIFIC FUNCTIONS

4.4.8.1 test.metric

This function allows to test whether a metric picks different changes in disparity.
It intakes the space on which to test the metric, the disparity metric and the
type of changes to apply gradually to the space. Basically this is a type of biased
data rarefaction (or non-biased for "random") to see how the metric reacts to
specific changes in trait space.

Creating a 2D uniform space
example_space <- space.maker (300, 2, runif)

Testing the product of ranges metric on the example space
example_test <- test.metric(example_space, metric = c(prod, ranges),
shifts = c("random", "size"))

By default, the test runs three replicates of space reduction as described in
Guillerme et al. [2020b] by gradually removing 10% of the data points follow-
ing the different algorithms from Guillerme et al. [2020b] (here the "random"
reduction and the "size") reduction, resulting in a dispRity object that can
be summarised or plotted. The number of replicates can be changed using the
replicates option. Still by default, the function then runs a linear model on
the simulated data to measure some potential trend in the changes in disparity.
The model can be changed using the model option. Finally, the function runs
10 reductions by default from keeping 10% of the data (removing 90%) and way
up to keeping 100% of the data (removing 0%). This can be changed using the
steps option. A good disparity metric for your dataset will typically have no
trend in the "random" reduction (the metric is ideally not affected by sample
size) but should have a trend for the reduction of interest.

The results as a dispRity object
example_test

Metric testing:

The following metric was tested: c(prod, ranges).

The test was run on the random, size shifts for 3 replicates using the following mo
1m(disparity ~ reduction, data = data)

Use summary(x) or plot(x) for more details.

Summarising these results
summary (example_test)

10% 20% 30% 40% 50% 60% 70% 80% 90% 100% slope
random 0.94 0.97 0.94 0.97 0.98 0.98 0.99 0.99 0.99 0.99 6.389477e-04
size.increase 0.11 0.21 0.38 0.54 0.68 0.79 0.87 0.93 0.98 0.99 1.040938e-02
size.hollowness 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 1.880225e-05
#i#t p_value R72(adj)
random 5.891773e-06 0.5084747

size.increase 4.331947e-19 0.9422289

4.4. DISPARITY METRICS

size.hollowness 3.073793e-03 0.2467532

Or visualising them
plot(example_test)

61

62

c(prod, ranges)

c(prod, ranges)

1.0

0.8

0.6

0.4

0.2

1.0

0.8

0.6

0.4

0.2

CHAPTER 4. DETAILS OF SPECIFIC FUNCTIONS

random
- o J— s
b °
T T T T I
20 40 60 80 100
Amount of data considered (%)
size
Te L g L L g L g Bppe-0-01¢7-Adj-P2-0-94
—— Slope: 1.9e-05*%; Adj. R*2: 0.247
size.increase
® size.hollowness
T T T T T
20 40 60 80 100

Amount of data considered (%)

4.5. SUMMARISING DISPRITY DATA (PLOTS) 63

4.5 Summarising dispRity data (plots)

Because of its architecture, printing dispRity objects only summarises their
content but does not print the disparity value measured or associated analysis
(more about this here). To actually see what is in a dispRity object, one can
either use the summary function for visualising the data in a table or plot to
have a graphical representation of the results.

4.5.1 Summarising dispRity data

This function is an S3 function (summary.dispRity) allowing users to sum-
marise the content of dispRity objects that contain disparity calculations.

Example data from previous sections
crown_stem <- custom.subsets(BeckLee_mat50,
group = crown.stem(BeckLee_tree,
inc.nodes = FALSE))
Bootstrapping and rarefying these groups
boot_crown_stem <- boot.matrix(crown_stem, bootstraps = 100,
rarefaction = TRUE)
Calculate disparity
disparity_crown_stem <- dispRity(boot_crown_stem,
metric = c(sum, variances))

Creating time slice subsets
time_slices <- chrono.subsets(data

BeckLee_mat99,

tree = BeckLee_tree,
method = "continuous",
model = "proximity",

time = c(120, 80, 40, 0),
FADLAD = BeckLee_ages)
Bootstrapping the time slice subsets
boot_time_slices <- boot.matrix(time_slices, bootstraps = 100)
Calculate disparity
disparity_time_slices <- dispRity(boot_time_slices,
metric = c(sum, variances))

Creating time bin subsets

time_bins <- chrono.subsets(data = BeckLee_mat99,
tree = BeckLee_tree,
method = "discrete",
time = c(120, 80, 40, 0),
FADLAD = BeckLee_ages,
inc.nodes = TRUE)

Bootstrapping the time bin subsets

boot_time_bins <- boot.matrix(time_bins, bootstraps = 100)

64 CHAPTER 4. DETAILS OF SPECIFIC FUNCTIONS

Calculate disparity
disparity_time_bins <- dispRity(boot_time_bins,
metric = c(sum, variances))

These objects are easy to summarise as follows:

Default summary
summary (disparity_time_slices)

subsets n obs bs.median 2.5% 25% 75% 97.5%

1 120 5 3.126 2.556 1.446 2.365 2.799 2.975
2 80 19 3.351 3.188 3.019 3.137 3.235 3.291
3 40 15 3.538 3.346 3.052 3.226 3.402 3.538
4 0 10 3.934 3.601 3.219 3.446 3.681 3.819

Information about the number of elements in each subset and the observed
(i.e. non-bootstrapped) disparity are also calculated. This is specifically handy
when rarefying the data for example:

head (summary (disparity_crown_stem))

subsets n obs bs.median 2.5% 25% 75% 97.5%

1 crown 30 2.526 2.444 2.374 2.420 2.466 2.490
2 crown 29 NA 2.454 2.387 2.427 2.470 2.490
3 crown 28 NA 2.443 2.387 2.423 2.462 2.489
4 crown 27 NA 2.440 2.366 2.417 2.468 2.493
5 crown 26 NA 2.442 2.357 2.408 2.459 2.492
6 crown 25 NA 2.445 2.344 2.425 2.469 2.490

The summary functions can also take various options such as:

¢ quantiles values for the confidence interval levels (by default, the 50 and
95 quantiles are calculated)

e cent.tend for the central tendency to use for summarising the results
(default is median)

e digits option corresponding to the number of decimal places to print
(default is 2)

¢ recall option for printing the call of the dispRity object as well (default
is FALSE)

These options can easily be changed from the defaults as follows:

Same as above but using the 88th quantile and the standard deviation as the summary
summary (disparity_time_slices, quantiles = 88, cent.tend = sd)

subsets n obs bs.sd 6% 94

1 120 5 3.126 0.366 2.043 2.947
2 80 19 3.351 0.072 3.048 3.277
3 40 15 3.538 0.133 3.095 3.525

4 0 10 3.934 0.167 3.292 3.776

4.5. SUMMARISING DISPRITY DATA (PLOTS) 65

Printing the details of the object and digits the values to the 5th decimal place
summary(disparity_time_slices, recall = TRUE, digits = 5)

---- dispRity object ----

4 continuous (proximity) time subsets for 99 elements in one matrix with 97 dimensions with 1
##t 120, 80, 40, 0.

Rows were bootstrapped 100 times (method:"full").

Disparity was calculated as: c(sum, variances).

subsets n obs bs.median 2.5% 25% 75% 97.5%
1 120 5 3.12580 2.55631 1.44593 2.36454 2.79905 2.97520
2 80 19 3.35072 3.18751 3.01906 3.13720 3.23534 3.29113
3 40 15 3.53811 3.34647 3.05242 3.22616 3.40199 3.53793
4 0 10 3.93353 3.60071 3.21947 3.44555 3.68095 3.81856

Note that the summary table is a data.frame, hence it is as easy to modify
as any dataframe using dplyr. You can also export it in csv format using
write.csv or write_csv or even directly export into LaTeX format using the
following;

Loading the xtable package
require(xtable)

Converting the table in LaTeX
xtable (summary(disparity_time_slices))

4.5.2 Plotting dispRity data

An alternative (and more fun!) way to display the calculated disparity is to plot
the results using the S3 method plot.dispRity. This function takes the same
options as summary.dispRity along with various graphical options described in
the function help files (see ?plot.dispRity).

The plots can be of five different types:

e preview for a 2d preview of the trait-space.

e continuous for displaying continuous disparity curves

e box, lines, and polygons to display discrete disparity results in respec-
tively a boxplot, confidence interval lines, and confidence interval poly-
gons.

This argument can be left empty. In this case, the algorithm will
automatically detect the type of subsets from the dispRity object
and plot accordingly.

It is also possible to display the number of elements in each subset (as a hori-
zontal dotted line) using the option elements = TRUE. Additionally, when the
data is rarefied, one can indicate which level of rarefaction to display (i.e. only
display the results for a certain number of elements) by using the rarefaction
argument.

66 CHAPTER 4. DETAILS OF SPECIFIC FUNCTIONS

Graphical parameters
op <- par(mfrow = c(2, 2), bty = "n"

Plotting continuous disparity results
plot(disparity_time_slices, type = "continuous")

Plotting discrete disparity results
plot(disparity_crown_stem, type = "box")

As above but using lines for the rarefaction level of 20 elements only
plot(disparity_crown_stem, type = "line", rarefaction = 20)

As above but using polygons while also displaying the number of elements
plot(disparity_crown_stem, type = "polygon", elements = TRUE)

o _
<
. e
o~ I
9 ——
%) < T
w 7 o e
@ @)
e o | g ©
s @ 8 o7
= =
[[
7w Z N —_—
E o 7 g o .
: : s —
& & <
5] o | © |
~N _
o
~N
7o)]
- = o
r T T 1 Ll 1
120 80 40 0 crown stem
Time (Mya) Subsets
o
Q) o . P
N
! I:El:l
'
< n
— | ~ <]
0 o M - ~
3 g « I~
g g :
5 & 5 9- Lo
s S o TN
E o E ~
@ &L LW
5] ° 51 h m
= — 1
Y T '
'
o
L
o | o | o
N o~
1 1
crown stem crown stem

Subsets Subsets

4.5. SUMMARISING DISPRITY DATA (PLOTS) 67

Resetting graphical parameters
par (op)

Since plot.dispRity uses the arguments from the generic plot method, it
is of course possible to change pretty much everything using the regular plot
arguments:

Graphical options

op <- par(bty = "n"

Plotting the results with some classic options from plot

plot(disparity_time_slices, col = c("blue", "orange", "green"),
ylab = c("Some measurement"), xlab = "Some other measurement",
main = "Many options...", ylim = c(10, 0), xlim = c(4, 0))

Adding a legend
legend("topleft", legend = c("Central tendency",
"Confidence interval 1",
"Confidence interval 2"),
col = c("blue", "orange", "green"), pch = 19)

68 CHAPTER 4. DETAILS OF SPECIFIC FUNCTIONS

Many options...

o — @ Central tendency
Confidence interval 1
® Confidence interval 2
~ -
€
[<
€
<
>
%]
©
()
€
[}
E o -
]
© —
o _|
—

I T T 1
0 40 80 120

Some other measurement

Resetting graphical parameters
par (op)

In addition to the classic plot arguments, the function can also take arguments
that are specific to plot.dispRity like adding the number of elements or rar-
efaction level (as described above), and also changing the values of the quantiles
to plot as well as the central tendency.

Graphical options
op <- par(bty = "n")

Plotting the results with some plot.dispRity arguments
plot(disparity_time_slices,
quantiles = c(seq(from = 10, to = 100, by = 10)),
cent.tend = sd, type = "c", elements = TRUE,
col = c("black", rainbow(10)),
ylab = c("Disparity", "Diversity"),

4.5. SUMMARISING DISPRITY DATA (PLOTS) 69

xlab = "Time (in in units from past to present)",
observed = TRUE,
main = "Many more options...")

Many more options...

< 9 o
RS |
|
|
|
|
|
,

,
H
h
h
|
1
T}
™ [
oA
,
\
|
h
h
|
|
|
,
|
22 :
=
[
c 2 !
o o — - N
oz e
[a)al !
|
|
|
|
|
h
,
|
Lo

- - :co
|
|
h

. 1
’ 1
/ !
/ '
/ |
/ |
h |
/ |
/ Lo o
o -

[T T 1
120 80 40 0

Time (in in units from past to present)

Resetting graphical parameters
par (op)

Note that the argument observed = TRUE allows to plot the dispar-
ity values calculated from the non-bootstrapped data as crosses on
the plot.

For comparing results, it is also possible to add a plot to the existent plot by
using add = TRUE:

Graphical options
op <- par(bty = "n")

70 CHAPTER 4. DETAILS OF SPECIFIC FUNCTIONS

Plotting the continuous disparity with a fixed y axis

plot(disparity_time_slices, ylim = c(3, 9))

Adding the discrete data

plot(disparity_time_bins, type = "line", ylim = c(3, 9),
xlab = "", ylab = "", add = TRUE)

c(sum, variances)
6
|

120 80 40 0

Time (Mya)

Resetting graphical parameters
par (op)

Finally, if your data has been fully rarefied, it is also possible to easily look at
rarefaction curves by using the rarefaction = TRUE argument:

Graphical options
op <- par(bty = "n")

Plotting the rarefaction curves
plot(disparity_crown_stem, rarefaction = TRUE)

4.5. SUMMARISING DISPRITY DATA (PLOTS) 71

crown

2.8

2.4

c(sum, variances)
2.0
| |

1.6

[I I I I 1
5 10 15 20 25 30

Elements

stem

c(sum, variances)
14 16 18 2.0 22 24

Elements

Resetting graphical parameters
par (op)

4.5.3 type = preview

Note that all the options above are plotting disparity objects for which a dispar-
ity metric has been calculated. This makes totally sense for dispRity objects
but sometimes it might be interesting to look at what the trait-space looks like
before measuring the disparity. This can be done by plotting dispRity objects
with no calculated disparity!

For example, we might be interested in looking at how the distribution of el-
ements change as a function of the distributions of different sub-settings. For
example custom subsets vs. time subsets:

Making the different subsets
cust_subsets <- custom.subsets(BeckLee_mat99,

72 CHAPTER 4. DETAILS OF SPECIFIC FUNCTIONS

crown.stem(BeckLee_tree,
inc.nodes = TRUE))
time_subsets <- chrono.subsets(BeckLee_mat99,
tree = BeckLee_tree,
method = "discrete",
time = 5)

Note that no disparity has been calculated here:
is.null(cust_subsets$disparity)

[1] TRUE

is.null(time_subsets$disparity)

[1] TRUE

But we can still plot both spaces by using the default plot functions
par (mfrow = c(1,2))
Default plotting
plot(cust_subsets)
Plotting with more arguments
plot(time_subsets, specific.args = list(dimensions = c(1,2)),
main = "Some \"low\" dimensions")

Some "low" dimensions

o 13351 - 10681
® 106.81 - 80.11
L4 L4 © 80.11-534g
. ° s34-287
° ° 267-0
v v
° e L] =] *
L |] L
o & ° o .
) . LIy L) L]
—_ Y . L — L]
X S
3 ® L % 3 ® o
9 o | °e %,) ° [°
~ © ° ﬂ N © .
c o0 Cd o ° c X}
S >, s o S -
2 0 " w o of 2 . °
L]

o LY S o @ LY
£ ® S £
8 LY o 0 n]

2 ¢ ° D %

L]

o ° o

o o

1 1

-1.0 -0.5 0.0 0.5 -1.0 -0.5 0.0 0.5

Dimension 1 (5.55%) Dimension 1 (5.55%)

DISCLAIMER: This functionality can be handy for exploring the
data (e.g. to visually check whether the subset attribution worked)
but it might be misleading on how the data is actually distributed
in the multidimensional space! Groups that don’t overlap on two set
dimensions can totally overlap in all other dimensions!

For dispRity objects that do contain disparity data, the default option is to
plot your disparity data. However you can always force the preview option

4.5. SUMMARISING DISPRITY DATA (PLOTS)

using the following:

par(mfrow = c(2,1))
Default plotting

plot(disparity_time_slices, main = "Disparity through time")
Plotting with more arguments
plot(disparity_time_slices, type = "preview",

main = "Two first dimensions of the trait space")

74

c(sum, variances)

Dimension 2 (2.86%)

35 4.0

3.0

2.0 25

15

0.5

0.0

-0.5

-1.0

CHAPTER 4. DETAILS OF SPECIFIC FUNCTIONS

Disparity through time

120 80 40 0
Time (Mya)
Two first dimensions of the trait space
® 120
® 80
® 40
° 0
. ..
[]
[]
o o %
— ®oe ®e 00®
e o« % .
[] [)
(4
[]
[]
— []
[]
T T T T
-1.0 -0.5 0.0 0.5

Dimension 1 (5.55%)

4.5. SUMMARISING DISPRITY DATA (PLOTS) 75

4.5.4 Graphical options with ...

As mentioned above all the plots using plot.dispRity you can use the ...
options to add any type of graphical parameters recognised by plot. However,
sometimes, plotting more advanced "dispRity" objects also calls other generic
functions such as lines, points or legend. You can fine tune which specific
function should be affected by . .. by using the syntax <function>.<argument>
where <function> is usually the function to plot a specific element in the plot
(e.g. points) and the <argument> is the specific argument you want to change
for that function. For example, in a plot containing several elements, including
circles (plotted internally with points), you can decide to colour everything in
blue using the normal col = "blue" option. But you can also decide to only
colour the circles in blue using points.col = "blue"!

Here is an example with multiple elements (lines and points) taken from the
disparity with trees section below:

Loading some demo data:

An ordinated matrix with node and tip labels
data(BeckLee_mat99)

The corresponding tree with tip and node labels
data(BeckLee_tree)

A list of tips ages for the fossil data
data(BeckLee_ages)

Time slicing through the tree using the equal split algorithm

time_slices <- chrono.subsets(data = BeckLee_mat99,
tree = BeckLee_tree,
FADLAD = BeckLee_ages,
method = "continuous",
model = "acctran",
time = 15)

par (mfrow = ¢(2,2))
The preview plot with the tree using only defaults

plot(time_slices, type = "preview", specific.args = list(tree = TRUE))

The same plot but by applying general options

plot(time_slices, type = "preview", specific.args = list(tree = TRUE),
col = "blue", main = "General options")

The same plot but by applying the colour only to the lines

and change of shape only to the points

plot(time_slices, type = "preview", specific.args = list(tree = TRUE),
lines.col = "blue", points.pch = 15, main = "Specific options")

And now without the legend
plot(time_slices, type = "preview", specific.args = list(tree = TRUE),
lines.col = "blue", points.pch = 15, legend = FALSE)

76 CHAPTER 4. DETAILS OF SPECIFIC FUNCTIONS

General options

0.5
I

Dimension 2 (2.86%)
0.0
L
s
e
.
»
Dimension 2 (2.86%)

-05
I

-1.0
I

T T T T
-1.0 -0.5 0.0 0.5

Dimension 1 (5.55%)

Specific options

0.5

Dimension 2 (2.86%)
0.0
Dimension 2 (2.86%)

-0.5
I

-1.0 -0.5 0.0 0.5 -1.0 -0.5 0.0 05

Dimension 1 (5.55%) Dimension 1 (5.55%)

4.6 Testing disparity hypotheses

The dispRity package allows users to apply statistical tests to the calculated
disparity to test various hypotheses. The function test.dispRity works in a
similar way to the dispRity function: it takes a dispRity object, a test and
a comparisons argument.

The comparisons argument indicates the way the test should be applied to the
data:

o pairwise (default): to compare each subset in a pairwise manner

e referential: to compare each subset to the first subset

e sequential: to compare each subset to the following subset

e all: to compare all the subsets together (like in analysis of variance)

It is also possible to input a list of pairs of numeric values or characters
matching the subset names to create personalised tests. Some other tests im-

4.6. TESTING DISPARITY HYPOTHESES 7

plemented in dispRity such as the dispRity::null.test have a specific way
they are applied to the data and therefore ignore the comparisons argument.

The test argument can be any statistical or non-statistical test to ap-
ply to the disparity object. It can be a common statistical test func-
tion (e.g. stats::t.test), a function implemented in dispRity (e.g. see
?null.test) or any function defined by the user.

This function also allows users to correct for Type I error inflation (false pos-
itives) when using multiple comparisons via the correction argument. This
argument can be empty (no correction applied) or can contain one of the cor-
rections from the stats::p.adjust function (see ?p.adjust).

Note that the test.dispRity algorithm deals with some classical test outputs
(h.test, lm and numeric vector) and summarises the test output. It is, however,
possible to get the full detailed output by using the options details = TRUE.

Here we are using the variables generated in the section above:

T-test to test for a difference in disparity between crown and stem mammals
test.dispRity(disparity_crown_stem, test = t.test)

[[1]1]

#it statistic: t
crown : stem 54.10423
#i#

[[2]]

#it parameter: df
crown : stem 177.9857
##

[[3]1]

p.value
crown : stem 1.928983e-112
#it

[[4]1]

stderr
crown : stem 0.005649615

Performing the same test but with the detailed t.test output
test.dispRity(disparity_crown_stem, test = t.test, details = TRUE)

$ crown : stem”

$ crown : stem [[1]]

##

Welch Two Sample t-test

##

data: dots[[1L]]1[[1L]] and dots[[2L]1][[1L]]

t = 54.104, df = 177.99, p-value < 2.2e-16

alternative hypothesis: true difference in means is not equal to O

78 CHAPTER 4. DETAILS OF SPECIFIC FUNCTIONS

95 percent confidence interval:
0.2945193 0.3168170

sample estimates:

mean of x mean of y

2.440968 2.135299

Wilcoxon test applied to time sliced disparity with sequential comparisons,
with Bonferroni correction
test.dispRity(disparity_time_slices, test = wilcox.test,

comparisons = "sequential", correction = "bonferroni')

[[1]1]

#i# statistic: W

120 : 80 40

80 : 40 1812

40 : O 1463

##

[[2]]

p.value

120 : 80 2.534081e-33
80 : 40 2.037470e-14
40 : O 1.671038e-17

Measuring the overlap between distributions in the time bins (using the
implemented Bhattacharyya Coefficient function - see 7bhatt.coeff)
test.dispRity(disparity_time_bins, test = bhatt.coeff)

bhatt.coeff
120 - 80 : 80 - 40 0.000000
120 - 80 : 40 - O 0.000000
80 - 40 : 40 - O 0.450877

Because of the modular design of the package, tests can always be made by the
user (the same way disparity metrics can be user made). The only condition
is that the test can be applied to at least two distributions. In practice, the
test.dispRity function will pass the calculated disparity data (distributions)
to the provided function in either pairs of distributions (if the comparisons
argument is set to pairwise, referential or sequential) or a table containing
all the distributions (comparisons = all; this should be in the same format as
data passed to 1m-type functions for example).

4.6.1 NPMANOVA in dispRity

One often useful test to apply to multidimensional data is the permutational
multivariate analysis of variance based on distance matrices vegan: :adonis2.
This can be done on dispRity objects using the adonis.dispRity wrapper
function. Basically, this function takes the exact same arguments as adonis and
a dispRity object for data and performs a PERMANOVA based on the distance

4.6. TESTING DISPARITY HYPOTHESES 79

matrix of the multidimensional space (unless the multidimensional space was
already defined as a distance matrix). The adonis.dispRity function uses the
information from the dispRity object to generate default formulas:

o If the object contains customised subsets, it applies the default formula
matrix ~ group testing the effect of group as a predictor on matrix
(called from the dispRity object as data$matrix see dispRity object
details)

o If the object contains time subsets, it applies the default formula matrix
~ time testing the effect of time as a predictor (were the different levels
of time are the different time slices/bins)

set.seed (1)
Generating a random character matrix
character_matrix <- sim.morpho(rtree(20), 50,

rates = c(rnorm, 1, 0))

Calculating the distance matrix
distance_matrix <- as.matrix(dist(character_matrix))

Creating two groups
random_groups <- list("groupl" = 1:10, "group2" = 11:20)

Generating a dispRity object
random_disparity <- custom.subsets(distance_matrix, random_groups)

Warning: custom.subsets is applied on what seems to be a distance matrix.
The resulting matrices won't be distance matrices anymore!
You can use dist.data = TRUE, if you want to keep the data as a distance matrix.

Running a default NPMANOVA
adonis.dispRity(random_disparity)

Permutation test for adonis under reduced model
Permutation: free
Number of permutations: 999

#it

vegan::adonis2(formula = matrix ~ group, method = "euclidean")
Df SumOfSqgs R2 F Pr(OF)

Model 1 14.2 0.06443 1.2396 0.166

Residual 18 206.2 0.93557
Total 19 220.4 1.00000

Of course, it is possible to pass customised formulas if the disparity object
contains more more groups. In that case the predictors must correspond to the
names of the groups explained data must be set as matrix:

80

##

CHAPTER 4. DETAILS OF SPECIFIC FUNCTIONS

Creating two groups with two states each

groups <- as.data.frame(matrix(data = c(rep(1,10),

##

rep(2,10),
rep(c(1,2), 10)),
nrow = 20, ncol = 2,
dimnames = list(pasteO("t", 1:20),
C(llglll’ Hg2ll))))

Creating the dispRity object

multi_groups <- custom.subsets(distance_matrix, groups)

#i#
#i#
#it

#i#

Warning: custom.subsets is applied on what seems to be a distance matrix.
The resulting matrices won't be distance matrices anymore!
You can use dist.data = TRUE, if you want to keep the data as a distance matrix.

Running the NPMANOVA

adonis.dispRity(multi_groups, matrix ~ gl + g2)

#i#
#i#
#i#
#it
#i#
#i#
#i#
##
#it

Permutation test for adonis under reduced model

Permutation: free

Number of permutations: 999

vegan: :adonis2(formula = matrix ~ gl + g2, method = "euclidean")
Df Sum0fSgs R2 F Pr(>F)

Model 2 20.6 0.09347 0.8764 0.746

Residual 17 199.8 0.90653

Total 19 220.4 1.00000

Finally, it is possible to use objects generated by chrono.subsets. In this case,
adonis.dispRity will applied the matrix ~ time formula by default:

##

Creating time series

time_subsets <- chrono.subsets(BeckLee_mat50, BeckLee_tree,

method = "discrete",
inc.nodes = FALSE,

time = ¢(100, 85, 65, 0),
FADLAD = BeckLee_ages)

Running the NPMANOVA with time as a predictor
adonis.dispRity(time_subsets)

#i#
##
##

##
##
##

Warning in adonis.dispRity(time_subsets): The input data for adonis.dispRity was no
The results are thus based on the distance matrix for the input data (i.e. dist(dat:
Make sure that this is the desired methodological approach!

Permutation test for adonis under reduced model
Permutation: free
Number of permutations: 999

4.6. TESTING DISPARITY HYPOTHESES 81

#i#

vegan::adonis2(formula = dist(matrix) ~ time, method = "euclidean")
Df SumOfSqgs R2 F Pr(>F)

Model 2 9.593 0.07769 1.9796 0.001 *x*x*

Residual 47 113.884 0.92231

Total 49 123.477 1.00000

-—-

Signif. codes: O '#*x' 0.001 '*x' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Note that the function warns you that the input data was transformed into a
distance matrix. This is reflected in the Call part of the output (formula
dist(matrix) ~ time).

To use each time subset as a separate predictor, you can use the matrix ~
chrono.subsets formula; this is equivalent to matrix ~ first_time_subset
+ second_time_subset + ...:

Running the NPMANOVA with each time bin as a predictor
adonis.dispRity(time_subsets, matrix ~ chrono.subsets)

Warning in adonis.dispRity(time_subsets, matrix ~ chrono.subsets): The input data for adonis.c
The results are thus based on the distance matrix for the input data (i.e. dist(data$matrix[[1
Make sure that this is the desired methodological approach!

Permutation test for adonis under reduced model
Permutation: free
Number of permutations: 999

##

vegan::adonis2(formula = dist(matrix) ~ chrono.subsets, method = "euclidean")
Df SumO£fSqgs R2 F Pr(>F)

Model 2 9.593 0.07769 1.9796 0.001 x*x*x*

Residual 47 113.884 0.92231

Total 49 123.477 1.00000

——-

Signif. codes: O '#¥x' 0.001 '*xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

4.6.2 geiger::dtt model fitting in dispRity

The dtt function from the geiger package is also often used to compare a trait’s
disparity observed in living taxa to the disparity of a simulated trait based
on a given phylogeny. The dispRity package proposes a wrapper function
for geiger::dtt, dtt.dispRity that allows the use of any disparity metric.
Unfortunately, this implementation is slower that geiger::dtt (so if you're
using the metrics implemented in geiger prefer the original version) and, as
the original function, is limited to ultrametric trees (only living taxal)...

require(geiger)

Loading required package: geiger

82 CHAPTER 4. DETAILS OF SPECIFIC FUNCTIONS

geiger_data <- get(data(geospiza))

Calculate the disparity of the dataset using the sum of variance
dispRity_dtt <- dtt.dispRity(data = geiger_data$dat,

metric = c(sum, variances),

tree = geiger_data$phy,

nsim = 100)

Warning in dtt.dispRity(data = geiger_data$dat, metric = c(sum, variances),
The following tip(s) was not present in the data: olivacea.

Plotting the results
plot(dispRity_dtt)

N
N
o
8 S
(8]
C
© © _|
£ 3
>
e © |
> o
w
R S
g o
©
b g!—
o _|
e T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
scaled time

Note that, like in the original dtt function, it is possible to change the evolu-
tionary model (see 7geiger: :sim.char documentation).

4.6.3 null morphospace testing with null.test

This test is equivalent to the test performed in Diaz et al. [2016]. It compares
the disparity measured in the observed space to the disparity measured in a
set of simulated spaces. These simulated spaces can be built with based on the
hypothesis assumptions: for example, we can test whether our space is normal.

set.seed(123)
A "normal" multidimensional space with 50 dimensions and 10 elements

4.6. TESTING DISPARITY HYPOTHESES 83

normal_space <- matrix(rnorm(1000), ncol = 50)

Calculating the disparity as the average pairwise distances
obs_disparity <- dispRity(normal_space,
metric = c(mean, pairwise.dist))

Warning in check.data(data, match_call): Row names have been automatically
added to data.

Testing against 100 randomly generated normal spaces
(results <- null.test(obs_disparity, replicates = 100,
null.distrib = rnorm))

Monte-Carlo test

Call: [1] "dispRity::null.test"

##

Observation: 9.910536

##

Based on 100 replicates

Simulated p-value: 0.8712871

Alternative hypothesis: two-sided
##

#it Std.Obs Expectation Variance
-0.18217227 9.95101000 0.04936221

Here the results show that disparity measured in our observed space is not
significantly different than the one measured in a normal space. We can then
propose that our observed space is normal!

These results have an attributed dispRity and randtest class and can be
plotted as randtest objects using the dispRity S3 plot method:

Plotting the results
plot(results, main = "Is this space normal?")

84 CHAPTER 4. DETAILS OF SPECIFIC FUNCTIONS

Is this space normal?

p-value

087129
o _
=
> o _|
3 4
8
S
2 »
@
o
T
o -
o ’—‘ —‘

[I I I I I I 1
9.2 9.4 9.6 9.8 10.0 10.2 104 10.6

sim
For more details on generating spaces see the space.maker function tutorial.

4.7 Fitting modes of evolution to disparity data

The code used for these models is based on those developed by Gene Hunt
[Hunt, 2006, 2012, Hunt et al., 2015]. So we acknowledge and thank Gene
Hunt for developing these models and writing the original R code that served
as inspiration for these models.

DISCLAIMER: this method of analysing disparity has not been pub-
lished yet and has not been peer reviewed. Caution should be used
in interpreting these results: it is unclear what “a disparity curve
fitting a Brownian motion” actually means biologically.

As Malcolm said in Jurassic Park: “although the examples within this chapter
all work and produce solid tested results (from an algorithm point of view), that
doesn’t mean you should use it” (or something along those lines).

4.7. FITTING MODES OF EVOLUTION TO DISPARITY DATA 85

4.7.1 Simple modes of disparity change through time
4.7.1.1 model.test

Changes in disparity-through-time can follow a range of models, such as random
walks, stasis, constrained evolution, trends, or an early burst model of evolution.
We will start with by fitting the simplest modes of evolution to our data. For
example we may have a null expectation of time-invariant change in disparity
in which values fluctuate with a variance around the mean - this would be best
describe by a Stasis model:

Loading premade disparity data
data(BeckLee_disparity)
disp_time <- model.test(data = BeckLee_disparity, model = "Stasis")

Evidence of equal variance (Bartlett's test of equal variances p = 0).
Variance is not pooled.
Running Stasis model...Done. Log-likelihood = -15.562

We can see the standard output from model.test. The first output message tells
us it has tested for equal variances in each sample. The model uses Bartlett’s
test of equal variances to assess if variances are equal, so if p > 0.05 then variance
is treated as the same for all samples, but if (p < 0.05) then each bin variance
is unique. Here we have p < 0.05, so variance is not pooled between samples.

By default model.test will use Bartlett’s test to assess for homogeneity of
variances, and then use this to decide to pool variances or not. This is ignored if
the argument pool.variance in model.test is changed from the default NULL
to TRUE or FALSE. For example, to ignore Bartlett’s test and pool variances
manually we would do the following:

disp_time_pooled <- model.test(data = BeckLee_disparity,
model = "Stasis",
pool.variance = TRUE)

Running Stasis model...Done. Log-likelihood = -13.682
However, unless you have good reason to choose otherwise it is recommended
to use the default of pool.variance = NULL:

disp_time <- model.test(data = BeckLee_disparity,
model = "Stasis",
pool.variance = NULL)

Evidence of equal variance (Bartlett's test of equal variances p = 0).
Variance is not pooled.
Running Stasis model...Done. Log-likelihood = -15.562

disp_time

Disparity evolution model fitting:

86 CHAPTER 4. DETAILS OF SPECIFIC FUNCTIONS

Call: model.test(data = BeckLee_disparity, model = "Stasis", pool.variance = NULL)
##

aicc delta_aicc weight_aicc
Stasis 35.22653 0 1
##

Use x$full.details for displaying the models details
or summary(x) for summarising them.

The remaining output gives us the log-likelihood of the Stasis model of -15.6
(you may notice this change when we pooled variances above). The output also
gives us the small sample Akaike Information Criterion (AICc), the delta AICc
(the distance from the best fitting model), and the AICc weights (~the relative
support of this model compared to all models, scaled to one).

These are all metrics of relative fit, so when we test a single model they are not
useful. By using the function summary in dispRity we can see the maximum
likelihood estimates of the model parameters:

summary (disp_time)

#i# aicc delta_aicc weight_aicc log.lik param theta.l omega
Stasis 35.2 0 1 -15.6 2 3.5 0.1

So we again see the AICc, delta AICc, AICc weight, and the log-likelihood we
saw previously. We now also see the number of parameters from the model (2:
theta and omega), and their estimates so the variance (omega = 0.1) and the
mean (theta.l = 3.5).

The model.test function is designed to test relative model fit, so we need to
test more than one model to make relative comparisons. So let’s compare to
the fit of the Stasis model to another model with two parameters: the Brownian
motion. Brownian motion assumes a constant mean that is equal to the ancestral
estimate of the sequence, and the variance around this mean increases linearly
with time. The easier way to compare these models is to simply add "BM" to
the models vector argument:

disp_time <- model.test(data = BeckLee_disparity,
model = c("Stasis", "BM"))

Evidence of equal variance (Bartlett's test of equal variances p = 0).
Variance is not pooled.

Running Stasis model...Done. Log-likelihood = -15.562

Running BM model...Done. Log-likelihood = 151.637

disp_time

Disparity evolution model fitting:

Call: model.test(data = BeckLee_disparity, model = c("Stasis", "BM"))
##

aicc delta_aicc weight_aicc

4.7. FITTING MODES OF EVOLUTION TO DISPARITY DATA 87

Stasis 35.226563 334.3978 2.434618e-73

BM -299.17132 0.0000 1.000000e+00

##

Use x$full.details for displaying the models details
or summary(x) for summarising them.

Et voila! Here we can see by the log-likelihood, AICc, delta AICc, and AICc
weight Brownian motion has a much better relative fit to these data than the
Stasis model. Brownian motion has a relative AICc fit334.4 units better than
Stasis, and has a AICc weight of 1.

We can also all the information about the relative fit of models alongside the
maximum likelihood estimates of model parameters using the summary function

summary (disp_time)

#Hit aicc delta_aicc weight_aicc log.lik param theta.l omega ancestral state
Stasis 35 334.4 0 -15.6 2 3.486 0.07 NA
BM -299 0.0 1 151.6 2 NA NA 3.132
#i#t sigma squared
Stasis NA
BM 0.001

Not that because the parameters per models differ, the summary includes NA
for inapplicable parameters per models (e.g. the theta and omega parameters
from the Stasis models are inapplicable for a Brownian motion model).

We can plot the relative fit of our models using the plot function

plot(disp_time)

Here we see and overwhelming support for the Brownian motion model.

Alternatively, we could test all available models single modes: Stasis, Brown-
ian motion, Ornstein-Uhlenbeck (evolution constrained to an optima), Trend
(increasing or decreasing mean through time), and Early Burst (exponentially
decreasing rate through time)

disp_time <- model.test(data = BeckLee_disparity,
model = c("Stasis", "BM", "OU", "Trend", "EB"))

Evidence of equal variance (Bartlett's test of equal variances p = 0).

Variance is not pooled.

Running Stasis model...Done. Log-likelihood = -15.562
Running BM model...Done. Log-likelihood = 151.637

Running OU model...Done. Log-likelihood = 154.512

Running Trend model...Done. Log-likelihood = 154.508
Running EB model...Done. Log-likelihood = 128.008

summary (disp_time)

88 CHAPTER 4. DETAILS OF SPECIFIC FUNCTIONS

1.0

weighted AIC
0.6 0.8

0.4

0.2

BM Stasis

Figure 4.2: relative fit (AICc weight) of Stasis and Brownian models of disparity
through time

4.7. FITTING MODES OF EVOLUTION TO DISPARITY DATA 89

#i# aicc delta_aicc weight_aicc log.lik param theta.l omega ancestral state
Stasis 35 338.0 0.000 -15.6 2 3.486 0.07 NA
BM -299 3.6 0.108 151.6 2 NA NA 3.132
0U -301 2.1 0.229 154.5 4 NA NA 3.118
Trend -303 0.0 0.664 154.5 3 NA NA 3.119
EB -250 53.0 0.000 128.0 3 NA NA 3.934
#it sigma squared alpha optima.l trend eb
Stasis NA NA NA NA NA
BM 0.001 NA NA NA NA
0U 0.001 0.001 10.18 NA NA
Trend 0.001 NA NA 0.007 NA
EB 0.000 NA NA NA -0.034
These models indicate support for a Trend model, and we can plot the relative
support of all model AICc weights.
plot(disp_time)

Note that although AIC values are indicator of model best fit, it is

also important to look at the parameters themselves. For example

OU can be really well supported but with an alpha parameter really

close to 0, making it effectively a BM model [Cooper et al., 2016].
Is this a trend of increasing or decreasing disparity through time? One way to
find out is to look at the summary function for the Trend model:
summary (disp_time) ["Trend",]
#i# aicc delta_aicc weight_aicc log.1lik param
-303.000 0.000 0.664 154.500 3.000
#it theta.l omega ancestral state sigma squared alpha
NA NA 3.119 0.001 NA
#it optima.1 trend eb
NA 0.007 NA

This show a positive trend (0.007) of increasing disparity through time.

4.7.2 Plot and run simulation tests in a single step
4.7.2.1 model.test.wrapper

Patterns of evolution can be fit using model.test, but the model.test.wrapper
fits the same models as model. test as well as running predictive tests and plots.

The predictive tests use the maximum likelihood estimates of model parameters
to simulate a number of datasets (default = 1000), and analyse whether this
is significantly different to the empirical input data using the Rank Envelope
test [Murrell, 2018]. Finally we can plot the empirical data, simulated data,
and the Rank Envelope test p values. This can all be done using the function

90

weighted AIC

CHAPTER 4. DETAILS OF SPECIFIC FUNCTIONS

0.6
|

0.5
|

0.4

0.3

0.2

0.1

Trend ou BM EB Stasis

Figure 4.3: relative fit (AICc weight) of various modes of evolution

4.7. FITTING MODES OF EVOLUTION TO DISPARITY DATA 91

model.test.wrapper, and we will set the argument show.p = TRUE so p values
from the Rank Envelope test are printed on the plot:

disp_time <- model.test.wrapper(data = BeckLee_disparity,
model = c("Stasis", "BM", "0OU", "Trend", "EB"),
show.p = TRUE)

Evidence of equal variance (Bartlett's test of equal variances p = 0).

Variance is not pooled.

Running Stasis model...Done. Log-likelihood = -15.562
Running BM model...Done. Log-likelihood = 151.637

Running OU model...Done. Log-likelihood = 154.512

Running Trend model...Done. Log-likelihood = 154.508
Running EB model...Done. Log-likelihood = 128.008

disp_time

#Hit aicc delta_aicc weight_aicc log.lik param theta.l omega ancestral state
Trend -303 0.0 0.664 154.5 3 NA NA 3.119
0U -301 2.1 0.229 154.5 4 NA NA 3.118
BM -299 3.6 0.108 151.6 2 NA NA 3.132
EB -250 53.0 0.000 128.0 3 NA NA 3.934
Stasis 35 338.0 0.000 -15.6 2 3.486 0.07 NA
#it sigma squared alpha optima.l trend eb median p value lower p value

Trend 0.001 NA NA 0.007 NA 0.986013986 0.9850150

0U 0.001 0.001 10.18 NA NA 0.979020979 0.9770230

BM 0.001 NA NA NA NA 0.107892108 0.0969031

EB 0.000 NA NA NA -0.034 0.000999001 0.0000000

Stasis NA NA NA NA NA 1.000000000 0.9990010

#it upper p value

Trend 0.9860140

0U 0.9800200

BM 0.1388611

EB 0.1378621

Stasis 1.0000000

From this plot we can see the empirical estimates of disparity through time
(pink) compared to the predictive data based upon the simulations using the es-
timated parameters from each model. There is no significant differences between
the empirical data and simulated data, except for the Early Burst model.

Trend is the best-fitting model but the plot suggests the OU model also follows
a trend-like pattern. This is because the optima for the OU model (10.18) is
different to the ancestral state (3.118) and outside the observed value. This is
potentially unrealistic, and one way to alleviate this issue is to set the optima
of the OU model to equal the ancestral estimate - this is the normal practice for
OU models in comparative phylogenetics. To set the optima to the ancestral
value we change the argument fixed.optima = TRUE:

92

Disparity

Disparity

Disparity

CHAPTER 4. DETAILS OF SPECIFIC FUNCTIONS

Trend model
AlCc: -303; log.lik: 154.5

OU model
AlCc: -301; log.lik: 154.5

7 RankEnv. Test, p = 0.986:0.985

Disparity

——

—

 —

q RankEnv. Test, p =0979:0977

120 113 106 99 93 87 81 75 69 63 57 51 45 39 33 27 21 15 9 5 1

Time

M model
AlCc: -299; log.lik: 151.6

120 113 106 99 93 87 81 75 69 63 57 51 45 39 33 27 21 15 9 5 1

Time

EB model
AlCc: -250; log.lik: 128

- RankEnv. Test, p = 0.108:0.097

Disparity

Rank Env. Test, p = 0.001:0

120 113 106 99 93 87 81 75 69 63 57 51 45 39 33 27 21 15 9 5 1

Time

Stasis model
AlCc: 35; log lik: -15.6

- RankEnv. Test, p = 1:0.999

120 113 106 99 93 87 81 75 69 63 57 51 45 39 33 27 21 15 9 5 1

Time

120 113 106 99 93 87 81 75 69 63 57 51 45 39 33 27 21 15 9 5 1

Time

Figure 4.4: Empirical disparity through time (pink), simulate data based on
estimated model parameters (grey), delta AICc, and range of p values from the
Rank Envelope test for Trend, OU, BM, EB, and Stasis models

4.7. FITTING MODES OF EVOLUTION TO DISPARITY DATA 93

disp_time <- model.test.wrapper(data = BeckLee_disparity,
model = c("Stasis", "BM", "OU", "Trend", "EB"),
show.p = TRUE, fixed.optima = TRUE)

Evidence of equal variance (Bartlett's test of equal variances p = 0).
Variance is not pooled.

Running Stasis model...Done. Log-likelihood = -15.562

Running BM model...Done. Log-likelihood = 151.637

Running 0OU model...Done. Log-likelihood = 151.637

Running Trend model...Done. Log-likelihood = 154.508

Running EB model...Done. Log-likelihood = 128.008

disp_time

#it aicc delta_aicc weight_aicc log.lik param theta.l omega ancestral state
Trend -303 0.0 0.821 154.5 3 NA NA 3.119
BM -299 3.6 0.133 151.6 2 NA NA 3.132
0U -297 5.7 0.046 151.6 3 NA NA 3.132
EB -250 53.0 0.000 128.0 3 NA NA 3.934
Stasis 35 338.0 0.000 -15.6 2 3.486 0.07 NA
#it sigma squared alpha trend eb median p value lower p value

Trend 0.001 NA 0.007 NA 0.989010989 0.9880120

BM 0.001 NA NA NA 0.224775225 0.2117882

0U 0.001 0 NA NA 0.264735265 0.2637363

EB 0.000 NA NA -0.034 0.000999001 0.0000000

Stasis NA NA NA NA 0.999000999 0.9980020

#it upper p value

Trend 0.9890110

BM 0.2507493

0U 0.2967033

EB 0.1378621

Stasis 0.9990010

The relative fit of the OU model is decreased by constraining the fit of the
optima to equal the ancestral state value. In fact as the OU attraction parameter
(alpha) is zero, the model is equal to a Brownian motion model but is penalised
by having an extra parameter. Note that indeed, the plots of the BM model
and the OU model look nearly identical.

4.7.3 Multiple modes of evolution (time shifts)

As well as fitting a single model to a sequence of disparity values we can also
allow for the mode of evolution to shift at a single or multiple points in time.
The timing of a shift in mode can be based on an a prior expectation, such as
a mass extinction event, or the model can test multiple points to allow to find
time shift point with the highest likelihood.

94 CHAPTER 4. DETAILS OF SPECIFIC FUNCTIONS

Trend model BM model
AlCc: -303; log.lik: 154.5 AICc: -299; log.lik: 151.6
<«
- - }
[——
/ S N EE———————

/ o

Disparity
Disparity

© 7 RankEnv. Test, p = 0.989:0.988 © o RankEnv. Test, p = 02250212

120 113 106 99 93 87 81 75 69 63 57 51 45 39 33 27 21 15 9 5 1 120 113 106 99 93 87 81 75 69 63 57 51 45 39 33 27 21 15 9 5 1
Time Time
U model EB model
AlCc: -297; log.lik: 151.6 AICc: -250; log.lik: 128
1 P

Disparity
Disparity
3
L

© o RankEnv. Test, p = 0.265:0.264 © 9 RankEnv. Test, p = 00010

120 113 106 99 93 87 81 75 69 63 57 51 45 39 33 27 21 15 9 5 1 120 113 106 99 93 87 81 75 69 63 57 51 45 39 33 27 21 15 9 5 1
Time Time
Stasis model

AlCc: 35; log lik: -15.6

Disparity

© o RankEnv. Test, p = 0.999:0.998

120 113 106 99 93 87 81 75 69 63 57 51 45 39 33 27 21 15 9 5 1

Time

Figure 4.5: Empirical disparity through time (pink), simulate data based on
estimated model parameters (grey), delta AICc, and range of p values from the
Rank Envelope test for Trend, OU, BM, EB, and Stasis models with the optima
of the OU model set to equal the ancestral value

4.7. FITTING MODES OF EVOLUTION TO DISPARITY DATA 95

Models can be fit using model.test but it can be more convenient to use
model.test.wrapper. Here we will compare the relative fit of Brownian mo-
tion, Trend, Ornstein-Uhlenbeck and a multi-mode Ornstein Uhlenbck model in
which the optima changes at 66 million years ago, the Cretaceous-Palacogene
boundary.

For example, we could be testing the hypothesis that the extinction of non-
avian dinosaurs allowed mammals to go from scurrying in the undergrowth (low
optima/low disparity) to dominating all habitats (high optima/high disparity).
We will constrain the optima of OU model in the first time begin (i.e, pre-66
Mya) to equal the ancestral value:

disp_time <- model.test.wrapper(data = BeckLee_disparity,
model = c("BM", "Trend", "OU", "multi.OU")
time.split = 66,
pool.variance = NULL,
show.p = TRUE,
fixed.optima = TRUE)

B

Evidence of equal variance (Bartlett's test of equal variances p = 0).

Variance is not pooled.

Running BM model...Done. Log-likelihood = 151.637

Running Trend model...Done. Log-likelihood = 154.508

Running OU model...Done. Log-likelihood = 151.637

Running multi.0U model...Done. Log-likelihood = 154.492

disp_time

##t aicc delta_aicc weight_aicc log.lik param ancestral st
Trend -303 0.000 0.642 154.5 3 3.
multi.0U -301 2.170 0.217 154.5 4 3.
BM -299 3.639 0.104 151.6 2 3.
0U -297 5.742 0.036 151.6 3 3.
#it sigma squared trend alpha optima.2 median p value lowe
Trend 0.001 0.007 NA NA 0.9870130

multi.OU 0.001 NA 0.003 5.582 0.9620380

BM 0.001 NA NA NA 0.1848152

0U 0.001 NA 0.000 NA 0.2787213

##t upper p value

Trend 0.9870130

multi.OU 0.9620380

BM 0.2217782

0U 0.3046953

The multi-OU model shows an increase an optima at the Cretaceous-Palacogene
boundary, indicating a shift in disparity. However, this model does not fit as
well as a model in which there is an increasing trend through time. We can also
fit a model in which the we specify a heterogeneous model but we do not give

ate
119
117
132
132
r p value
0.9860140
0.9610390
0.1838162
0.2757243

96 CHAPTER 4. DETAILS OF SPECIFIC FUNCTIONS

Trend model
AlCc: -303; log.lik: 154.5

multi.OU model
AlCc: -301; log.lik: 154.5

Disparity

© - RankEnv. Test, p = 0.987:0.986

Disparity

— Rank Env. Test, p = 0.962:0.961

120 110 100 91 83 75 67 59 51 43 35 27 19 11 4

120 110 100 91 83 75 67 59 51 43 35 27 19 11 4

Time

OU model
AlCc: -297; log.lik: 151.6

Time
BM model
AlCc: -299; log.lik: 151.6
<
o

Disparity

o - RankEnv. Test, p = 0.185:0.184

Disparity

Rank Env. Test, p = 0.279:0.276

120 110 100 91 83 75 67 59 51 43 35 27 19 11 4

Time

120 110 100 91 83 75 67 59 51 43 35 27 19 11 4

Time

Figure 4.6: Empirical disparity through time (pink), simulate data based on
estimated model parameters (grey), delta AICc, and range of p values from the
Rank Envelope test for BM, Trend, OU, and multi OU models with a shift in

optima allowed at 66 Ma

4.7. FITTING MODES OF EVOLUTION TO DISPARITY DATA 97

a time.split. In this instance the model will test all splits that have at least
10 time slices on either side of the split. That’s 102 potential time shifts in this
example dataset so be warned, the following code will estimate 105 models!

An example of a time split model in which all potential splits are tested
WARNING: this will take between 20 minutes and half and hour to run!
disp_time <- model.test.wrapper(data = BeckLee_disparity,
model = c("BM", "Trend", "OU", "multi.OU"),
show.p = TRUE, fixed.optima = TRUE)

As well as specifying a multi-OU model we can run any combination of models.
For example we could fit a model at the Cretaceous-Palaeogene boundary that
goes from an OU to a BM model, a Trend to an OU model, a Stasis to a Trend
model or any combination you want to use. The only model that can’t be used
in combination is a multi-OU model.

These can be introduced by changing the input for the models into a list, and
supplying a vector with the two models. This is easier to see with an example:

The models to test

my_models <- list(c("BM", "OU"),
c("Stasis", "0OU"),
c("BM", "Stasis"),
c("0U", "Trend"),
c("Stasis", "BM"))

Testing the models

disp_time <- model.test.wrapper(data = BeckLee_disparity,
model = my_models, time.split = 66,
show.p = TRUE, fixed.optima = TRUE)

Evidence of equal variance (Bartlett's test of equal variances p = 0).
Variance is not pooled.

Running BM:0U model...Done. Log-likelihood = 146.472

Running Stasis:0U model...Done. Log-likelihood = 127.707

Running BM:Stasis model...Done. Log-likelihood = 72.456

Running 0U:Trend model...Done. Log-likelihood = 150.208

Running Stasis:BM model...Done. Log-likelihood = 127.707

disp_time

#it aicc delta_aicc weight_aicc log.lik param ancestral state
0U:Trend -292 0.0 0.977 1560.2 4 3.218
BM:0U -285 7.5 0.023 146.5 4 3.216
Stasis:BM -249 42.9 0.000 127.7 3 NA
Stasis:0U -245 47.2 0.000 127.7 5 NA
BM:Stasis -137 155.5 0.000 72.5 4 3.132

#H# sigma squared alpha optima.l theta.l omega trend median p value

98 CHAPTER 4. DETAILS OF SPECIFIC FUNCTIONS

OU:Trend model BM:OU model
AlCc: -292; log.lik: 150.2 AICc: -285; log.lik: 146.5

Disparity
Disparity

© 7 RankEnv. Test, p = 0.307:0.303 © 7 RankEnv. Test, p = 0.499:0.495

120 113 106 99 93 87 81 75 69 63 57 51 45 39 3 27 21 15 9 5 1 120 113 106 99 93 87 81 75 69 63 57 51 45 39 3 27 21 15 9 5 1
Time Time
Stasis:BM model Stasis:OU model
AICc: ~249; log lik: 127.7 AICc: ~245; log.lik: 127.7
<4 <4
8 o~ o g o

© 7 RankEnv. Test, p = 0.996:0.995 © 7 RankEnv. Test, p = 0.999:0.998

120 113 106 99 93 87 81 75 69 63 57 51 45 39 33 27 21 15 9 5 1 120 113 106 99 93 87 81 75 69 63 57 51 45 39 33 27 21 15 9 5 1

Time Time

BM:Stasis model
AlCc: -137; log.lik: 72.5

Disparity

© o RankEnv. Test, p = 1:0.999

120 113 106 99 93 87 81 75 69 63 57 51 45 39 33 27 21 15 9 5 1

Time

Figure 4.7: Empirical disparity through time (pink), simulate data based on
estimated model parameters (grey), delta AICc, and range of p values from the
Rank Envelope test for a variety of models with a shift in optima allowed at 66
Ma

4.7. FITTING MODES OF EVOLUTION TO DISPARITY DATA 99

0U:Trend 0.001 0.042 NA NA NA 0.011 0.3066933
BM:0U 0.001 0.000 3.934 NA NA NA 0.4985015
Stasis:BM 0.002 NA NA 3.25 0.004 NA 0.9960040
Stasis:0U 0.002 0.000 3.934 3.25 0.004 NA 0.9990010
BM:Stasis 0.000 NA NA 3.66 0.053 NA 1.0000000
#i#t lower p value upper p value
0U:Trend 0.3026973 0.3626374
BM:0U 0.4945055 0.5184815
Stasis:BM 0.9950050 0.9960040
Stasis:0U 0.9980020 1.0000000
BM:Stasis 0.9990010 1.0000000

4.7.4 model.test.sim

Note that all the models above where run using the model. test.wrapper func-
tion that is a.. wrapping function! In practice, this function runs two main
functions from the dispRity package and then plots the results:

e model.test and
e model.test.sim

The model.test.sim allows to simulate disparity evolution given a dispRity
object input (as in model.test.wrapper) or given a model and its specification.
For example, it is possible to simulate a simple Brownian motion model (or any
of the other models or models combination described above):

A simple BM model
model_simulation <- model.test.sim(sim = 1000, model = "BM",
time.span = 50, variance = 0.1,
sample.size = 100,
parameters = list(ancestral.state = 0))
model_simulation

Disparity evolution model simulation:

Call: model.test.sim(sim = 1000, model = "BM", time.span = 50, variance = 0.1, sample.size = !
##

Model simulated (1000 times):

[1] "BM"

This will simulate 1000 Brownian motions for 50 units of time with 100 sampled
elements, a variance of 0.1 and an ancestral state of 0. We can also pass multiple
models in the same way we did it for model.test This model can then be
summarised and plotted as most dispRity objects:

Displaying the 5 first rows of the summary
head (summary (model_simulation))

subsets n var median 2.5% 25% 75% 97.5%
1 50 100 0.1 -0.06195918 -1.963569 -0.7361336 0.5556715 1.806730

100

2
3
4
5
6

49
48
47
46
45

CHAPTER 4. DETAILS OF SPECIFIC FUNCTIONS

100 0.1
100 0.1
100 0.1
100 0.1
100 0.1

-0.09905061 -2.799025 -1.0670018 0.8836605 2.693583
-0.06215828 -3.594213 -1.3070097 1.1349712 3.272569
-0.10602238 -3.949521 -1.4363010 1.2234625 3.931000
-0.09016928 -4.277897 -1.5791755 1.3889584 4.507491
-0.13183180 -5.115647 -1.7791878 1.6270527 5.144023

Plotting the simulations
plot(model_simulation)

Disparity

10

-10

-15

BM

TTTTTTTTTIT T T T T I T T T I I T T T T I T T T I T I I T T TTI T T
50 46 42 38 34 30 26 22 18 14 10 6 3

Time

Figure 4.8: A simulated Brownian motion

Note that these functions can take all the arguments that can be passed to plot,
summary, plot.dispRity and summary.dispRity.

4.7. FITTING MODES OF EVOLUTION TO DISPARITY DATA 101

4.7.4.1 Simulating tested models

Maybe more interestingly though, it is possible to pass the output of model .test
directly to model.test.sim to simulate the models that fits the data the best
and calculate the Rank Envelope test p value. Let’s see that using the simple
example from the start:

Fitting multiple models on the data set
disp_time <- model.test(data = BeckLee_disparity,
model = c("Stasis", "BM", "OU", "Trend", "EB"))

Evidence of equal variance (Bartlett's test of equal variances p = 0).
Variance is not pooled.

Running Stasis model...Done. Log-likelihood = -15.562

Running BM model...Done. Log-likelihood = 151.637

Running OU model...Done. Log-likelihood = 154.512

Running Trend model...Done. Log-likelihood = 154.508

Running EB model...Done. Log-likelihood = 128.008

summary (disp_time)

#it aicc delta_aicc weight_aicc log.lik param theta.l omega ancestral state
Stasis 35 338.0 0.000 -15.6 2 3.486 0.07 NA
BM -299 3.6 0.108 151.6 2 NA NA 3.132
0U -301 2.1 0.229 154.5 4 NA NA 3.118
Trend -303 0.0 0.664 154.5 3 NA NA 3.119
EB -250 53.0 0.000 128.0 3 NA NA 3.934
#i#t sigma squared alpha optima.l trend eb
Stasis NA NA NA NA NA
BM 0.001 NA NA NA NA
0U 0.001 0.001 10.18 NA NA
Trend 0.001 NA NA 0.007 NA
EB 0.000 NA NA NA -0.034

As seen before, the Trend model fitted this dataset the best. To simulate what
1000 Trend models would look like using the same parameters as the ones
estimated with model.test (here the ancestral state being 3.119, the sigma
squared being 0.001 and the trend of 0.007), we can simply pass this model to
model.test.sim:

Simulating 1000 Trend model with the observed parameters
sim_trend <- model.test.sim(sim = 1000, model = disp_time)
sim_trend

Disparity evolution model simulation:

Call: model.test.sim(sim = 1000, model = disp_time)

##

Model simulated (1000 times):

#H# aicc log.lik param ancestral state sigma squared trend

102

Trend -303

##

CHAPTER 4. DETAILS OF SPECIFIC FUNCTIONS

154.5

Rank envelope test:
p-value of the global test: 0.992008 (ties method: erl)
(0.991009, 0.992008)

p-interval

3

3.119

0.001 0.007

By default, the model simulated is the one with the lowest AICc (model.rank
= 1) but it is possible to choose any ranked model, for example, the OU (second
one):

Simulating 1000 OU model with the observed parameters
sim_0U <- model.test.sim(sim = 1000, model

sim_0U

##
#i#
##
##
##
##
#i#
##
##
##

model.rank = 2)

Disparity evolution model simulation:
= 1000, model = disp_time, model.rank = 2)

Call: model.test.sim(sim

Model simulated (1000 times):
aicc log.lik param ancestral state sigma squared alpha optima.l
0.001 0.001

0

U -301

154.5 4

Rank envelope test:
p-value of the global test: 0.991009 (ties method: erl)
(0.989011, 0.991009)

p-interval

3.

118

disp_time,

10.18

And as the example above, the simulated data can be plotted or summarised:

head (summary (sim_trend))

##
##
##
##
#i#
##
##

(S =GV O R o

subsets
120
119
118
117
116
115

~N~No oo B

var
0.01791717
0.03522253
0.03783622
0.03214472
0.03214472
0.03214472

head (summary (sim_0U))

##
#i#
#i#
##
##
##
#i#

DO WN =

subsets
120
119
118
117
116
115

N ~N~No oo B

var
0.01791717
0.03522253
0.03783622
0.03214472
0.03214472
0.03214472

W wWwwwwow

median

.119216
.129400
.133125
.143511
.147732
.157588

median

.116975
.126662
.126408
.136145
.144302
.1510567

NN NDNNDDN

2.5%

.996786
.958681
.957150
.978352
.981253
.969189

2.5Y%

.002874
.948491
.966988
.970973
L967779
.961801

W wwwwow

W wwwww

25Y%

.082536
.064908
.076447
.089036
.087695
.094733

25Y%

.074977
.061492
.068517
.079345
.083789
.086444

W wwwww

W wwwww

75%

.158256
.186889
.192556
.199075
.210136
.216221

75%

.158164
.187414
.195251
.192427
.205035
.216077

W wwwww

97.5%

.241577
.303168
.304469
.307842
.321990
.335341

97.5%

.237559
.302442
.301177
.301722
.336560
.336897

4.8. DISPARITY AS A DISTRIBUTION 103

The trend model with some graphical options
plot(sim_trend, xlab = "Time (Mya)", ylab = "sum of variances",
col = c("#F65205", "#F38336", "#F7B27E"))

Adding the observed disparity through time
plot(BeckLee_disparity, add = TRUE, col = c("#3E9CBA", "#98D4CF90", "#BFE4E390"))

Trend model
AICc: —303; log.lik: 154.5

q_
e o™ -
(&]
C
©
f—
g
>
2
o ~ 4
e
>S5
wn
H_
o_

LU
120 108 97 88 79 70 61 52 43 34 25 16 8 1

Time (Mya)

Figure 4.9: The best fitted model (Trend) and the observed disparity through
time

4.8 Disparity as a distribution
Disparity is often regarded as a summary value of the position of the all elements

in the ordinated space. For example, the sum of variances, the product of ranges
or the median distance between the elements and their centroid will summarise

104 CHAPTER 4. DETAILS OF SPECIFIC FUNCTIONS

disparity as a single value. This value can be pseudo-replicated (bootstrapped)
to obtain a distribution of the summary metric with estimated error. However,
another way to perform disparity analysis is to use the whole distribution rather
than just a summary metric (e.g. the variances or the ranges).

This is possible in the dispRity package by calculating disparity as a dimension-
level 2 metric only! Let’s have a look using our previous example of bootstrapped
time slices but by measuring the distances between each taxon and their centroid
as disparity.
Measuring disparity as a whole distribution
disparity_centroids <- dispRity(boot_time_slices,

metric = centroids)

The resulting disparity object is of dimension-level 2, so it can easily be trans-
formed into a dimension-level 1 object by, for example, measuring the median
distance of all these distributions:

Measuring median disparity in each time slice
disparity_centroids_median <- dispRity(disparity_centroids,
metric = median)

And we can now compare the differences between these methods:

Summarising both disparity measurements:
The distributions:
summary (disparity_centroids)

#it subsets n obs.median bs.median 2.5% 25% 75% 97.5%

1 120 5 1.569 1.338 0.834 1.230 1.650 1.894
2 80 19 1.796 1.739 1.498 1.652 1.812 1.928
3 40 15 1.767 1.764 1.427 1.654 1.859 2.052
4 0 10 1.873 1.779 1.361 1.685 1.934 2.058

The summary of the distributions (as median)
summary (disparity_centroids_median)

#it subsets n obs bs.median 2.5 25% 75% 97.5%

1 120 5 1.569 1.351 0.648 1.282 1.596 1.641
2 80 19 1.796 1.739 1.655 1.721 1.756 1.787
3 40 15 1.767 1.757 1.623 1.721 1.793 1.837
4 0 10 1.873 1.781 1.564 1.756 1.834 1.900

We can see that the summary message for the distribution is slightly different
than before. Here summary also displays the observed central tendency (i.e. the
central tendency of the measured distributions). Note that, as expected, this
central tendency is the same in both metrics!

Another, maybe more intuitive way, to compare both approaches for measuring
disparity is to plot the distributions:

4.8. DISPARITY AS A DISTRIBUTION 105

Graphical parameters
op <- par(bty = "n", mfrow = c(1, 2))

Plotting both disparity measurements
plot(disparity_centroids,

ylab = "Distribution of all the distances")
plot(disparity_centroids_median,

ylab = "Distribution of the medians of all the distances")

2.0
1.8

1.2
1.0

0.8
|

Distribution of all the distances
1.6
[
Distribution of the medians of all the distances
1.4
[

0.6

[I I 1
120 80 40 0

I 1
120 80 40 0

Time (Mya) Time (Mya)

par (op)

We can then test for differences in the resulting distributions using
test.dispRity and the bhatt.coeff test as described above.

Probability of overlap in the distribution of medians
test.dispRity(disparity_centroids_median, test = bhatt.coeff)

bhatt.coeff
120 : 80 0.08831761
120 : 40 0.10583005
120 : O 0.15297059
80 : 40 0.83840952
80 : O 0.63913150
40 : O 0.78405839

In this case, we are looking at the probability of overlap of the distribution
of median distances from centroids among each pair of time slices. In other
words, we are measuring whether the medians from each bootstrap pseudo-
replicate for each time slice overlap. But of course, we might be interested in the
actual distribution of the distances from the centroid rather than simply their
central tendencies. This can be problematic depending on the research question
asked since we are effectively comparing non-independent medians distributions

106 CHAPTER 4. DETAILS OF SPECIFIC FUNCTIONS
(because of the pseudo-replication).
One solution, therefore, is to look at the full distribution:

Probability of overlap for the full distributions
test.dispRity(disparity_centroids, test = bhatt.coeff)

#i# bhatt.coeff
120 : 80 0.6163631
120 : 40 0.6351473
120 : O 0.6315225
80 : 40 0.9416508
80 : O 0.8551990
40 : O 0.9568684

These results show the actual overlap among all the measured distances from
centroids concatenated across all the bootstraps. For example, when comparing
the slices 120 and 80, we are effectively comparing the 5 x 100 distances (the
distances of the five elements in slice 120 bootstrapped 100 times) to the 19
x 100 distances from slice 80. However, this can also be problematic for some
specific tests since the n x 100 distances are also pseudo-replicates and thus are
still not independent.

A second solution is to compare the distributions to each other for each replicate:

Boostrapped probability of overlap for the full distributions
test.dispRity(disparity_centroids, test = bhatt.coeff,
concatenate = FALSE)

bhatt.coeff 2.5% 25% 75% 97.5%
120 : 80 0.2671081 0.00000000 0.1450953 0.3964076 0.6084459
120 : 40 0.2864771 0.00000000 0.1632993 0.4238587 0.6444474
120 : O 0.2864716 0.00000000 0.2000000 0.4000000 0.5837006
80 : 40 0.6187295 0.24391229 0.5284793 0.7440196 0.8961621
80 : O 0.4790692 0.04873397 0.3754429 0.5946595 0.7797225
40 : O 0.5513580 0.19542869 0.4207790 0.6870177 0.9066824

These results show the median overlap among pairs of distributions in the first
column (bhatt.coeff) and then the distribution of these overlaps among each
pair of bootstraps. In other words, when two distributions are compared, they
are now compared for each bootstrap pseudo-replicate, thus effectively creating a
distribution of probabilities of overlap. For example, when comparing the slices
120 and 80, we have a mean probability of overlap of 0.28 and a probability
between 0.18 and 0.43 in 50% of the pseudo-replicates. Note that the quantiles
and central tendencies can be modified via the conc.quantiles option.

4.9. DISPARITY FROM OTHER MATRICES 107

4.9 Disparity from other matrices

In the example so far, disparity was measured from an ordinated multidimen-
sional space (i.e. a PCO of the distances between taxa based on discrete morpho-
logical characters). This is a common approach in palaeobiology, morphometrics
or ecology but ordinated matrices are not mandatory for the dispRity package!
It is totally possible to perform the same analysis detailed above using other
types of matrices as long as your elements are rows in your matrix.

For example, we can use the data set eurodist, an R inbuilt dataset that con-
tains the distances (in km) between European cities. We can check for example,
if Northern European cities are closer to each other than Southern ones:

Making the eurodist data set into a matrix (rather than "dist" object)
eurodist <- as.matrix(eurodist)
eurodist[1:5, 1:5]

#it Athens Barcelona Brussels Calais Cherbourg

Athens 0 3313 2963 3175 3339

Barcelona 3313 0 1318 1326 1294

Brussels 2963 1318 0 204 583

Calais 3175 1326 204 0 460

Cherbourg 3339 1294 583 460 0

The two groups of cities

Northern <- c("Brussels", "Calais", "Cherbourg", "Cologne", "Copenhagen",
"Hamburg", "Hook of Holland", "Paris", "Stockholm")

Southern <- c("Athens", "Barcelona", "Geneva", "Gibraltar", "Lisbon", "Lyons",
"Madrid", "Marseilles", "Milan", "Munich", "Rome", "Vienna")

Creating the subset dispRity object
eurodist_subsets <- custom.subsets(eurodist, group = list("Northern" = Northern,
"Southern" = Southern))

Warning: custom.subsets is applied on what seems to be a distance matrix.
The resulting matrices won't be distance matrices anymore!
You can use dist.data = TRUE, if you want to keep the data as a distance matrix.

Bootstrapping and rarefying to 9 elements (the number of Northern cities)
eurodist_bs <- boot.matrix(eurodist_subsets, rarefaction = 9)

Measuring disparity as the median distance from group's centroid
euro_disp <- dispRity(eurodist_bs, metric = c(median, centroids))

Testing the differences using a simple wilcox.test
euro_diff <- test.dispRity(euro_disp, test = wilcox.test)

euro_diff_rar <- test.dispRity(euro_disp, test = wilcox.test, rarefaction = 9)

We can compare this approach to an ordination one:

108 CHAPTER 4. DETAILS OF SPECIFIC FUNCTIONS

Ordinating the eurodist matrix (with 11 dimensions)
euro_ord <- cmdscale(eurodist, k = 11)

Calculating disparity on the bootstrapped and rarefied subset data

euro_ord_disp <- dispRity(boot.matrix(custom.subsets(euro_ord, group =
list("Northern" = Northern, "Southern" = Southern)), rarefaction = 9),
metric = c(median, centroids))

Testing the differences using a simple wilcox.test
euro_ord_diff <- test.dispRity(euro_ord_disp, test = wilcox.test)
euro_ord_diff_rar <- test.dispRity(euro_ord_disp, test = wilcox.test, rarefaction = 9)

And visualise the differences:

Plotting the differences

par(mfrow = c(2,2), bty = "n"

Plotting the normal disparity

plot(euro_disp, main = "Distance differences")

Adding the p-value

text (1.5, 4000, pasteO("p=",round(euro_diff[[2]]1[[1]], digit = 5)))

Plotting the rarefied disparity

plot(euro_disp, rarefaction = 9, main = "Distance differences (rarefied)")
Adding the p-value

text (1.5, 4000, pasteO("p=",round(euro_diff_rar[[2]][[1]], digit = 5)))
Plotting the ordinated disparity

plot(euro_ord_disp, main = "Ordinated differences")

Adding the p-value

text (1.5, 1400, pasteO("p=",round(euro_ord_diff[[2]]1[[1]], digit = 5)))

Plotting the rarefied disparity

plot(euro_ord_disp, rarefaction = 9, main = "Ordinated differences (rarefied)")
Adding the p-value

text (1.5, 1400, pasteO("p=",round(euro_ord_diff_rar[[2]][[1]], digit = 5)))

4.10. DISPARITY FROM MULTIPLE MATRICES (AND MULTIPLE TREES!)109

Distance differences Distance differences (rarefied)
° _
8
g - p=0 _ 3
= H 8 4 p=0
: g
3 &4 7 s
R o 3 87 o
2 I H —_—
§ : 3 ;
] | 5 ° |
=] < :
s ! s
k=1 B k=1
2 o : 3 1
E 84 j E 8] :
z & : T 8 :
o o H
8 8
El S
Northern Southern Northern Southern
Subsets Subsets
Ordinated differences Ordinated differences (rarefied)
) _ -
8 _ ;
3 ;
g ; °
p=0 2
p=0

1000

c(median, centroids)
1000
1
c(median, centroids)
o

500

= ——

Northern Southern Northern Southern

Subsets Subsets

As expected, the results are pretty similar in pattern but different in terms of
scale. The median centroids distance is expressed in km in the “Distance differ-
ences” plots and in Euclidean units of variation in the “Ordinated differences”
plots.

4.10 Disparity from multiple matrices (and mul-
tiple trees!)

Since the version 1.4 of this package, it is possible to use multiple trees and
multiple matrices in dispRity objects. To use multiple matrices, this is rather
easy: just supply a list of matrices to any of the dispRity functions and, as
long as they have the same size and the same rownames they will be handled
as a distribution of matrices.

110 CHAPTER 4. DETAILS OF SPECIFIC FUNCTIONS

set.seed(1)

Creating 3 matrices with 4 dimensions and 10 elements each (called t1, t2, t3, etc.

matrix_list <- replicate(3, matrix(rnorm(40), 10, 4, dimnames = list(pasteO("t", 1:10)
simplify = FALSE)

class(matrix_list) # This is a list of matrices

[1] "list"

Measuring some disparity metric on one of the matrices
summary (dispRity(matrix_list[[1]], metric = c(sum, variances)))

subsets n obs
1 1 10 3.32

Measuring the same disparity metric on the three matrices
summary (dispRity(matrix_list, metric = c(sum, variances)))

subsets n obs.median 2.5% 25% 75% 97.5%
1 1 10 3.32 3.044 3.175 3.381 3.435

As you can see, when measuring the sum of variances on multiple matrices, we
now have a distribution of sum of variances rather than a single observed value.

Similarly as running disparity analysis using multiple matrices, you can run the
chrono.subsets function using multiple trees. This can be useful if you want
to use a tree posterior distribution rather than a single consensus tree. These
trees can be passed to chrono.subsets as a "multiPhylo" object (with the
same node and tip labels in each tree). First let’s define a function to generate
multiple trees with the same labels and root ages:

set.seed(1)

Matches the trees and the matrices

A bunch of trees

make.tree <- function(n, fun = rtree) {
Make the tree
tree <- fun(n)
tree <- chronos(tree, quiet = TRUE,

calibration = makeChronosCalib(tree, age.min = 10, age.max = 10))

class(tree) <- "phylo"
Add the node labels
tree$node.label <- pasteO("n", 1:Nnode(tree))
Add the root time
tree$root.time <- max(tree.age(tree)$ages)
return(tree)

3

trees <- replicate(3, make.tree(10), simplify = FALSE)
class(trees) <- "multiPhylo"

trees

4.10. DISPARITY FROM MULTIPLE MATRICES (AND MULTIPLE TREES!)111

3 phylogenetic trees

We can now simulate some ancestral states for the matrices in the example
above to have multiple matrices associated with the multiple trees.

A function for running the ancestral states estimations
do.ace <- function(tree, matrix) {
Run one ace
fun.ace <- function(character, tree) {
results <- ace(character, phy = tree)$ace
names (results) <- pasteO("n", 1:Nnode(tree))

return(results)
}
Run all ace
return(rbind(matrix, apply(matrix, 2, fun.ace, tree = tree)))
}
All matrices
matrices <- mapply(do.ace, trees, matrix_list, SIMPLIFY = FALSE)

Let’s first see an example of time-slicing with one matrix and multiple trees.
This assumes that your tip values (observed) and node values (estimated) are
fixed with no error on them. It also assumes that the nodes in the matrix
always corresponds to the node in the trees (in other words, the tree topologies
are fixed):

Making three "proximity" time slices across one tree
one_tree <- chrono.subsets(matrices[[1]], trees[[1]],
method = "continuous",
model = "proximity", time = 3)
Making three "proximity" time slices across the three trees
three_tree <- chrono.subsets(matrices[[1]], trees,
method = "continuous",
model = "proximity", time = 3)
Measuring disparity as the sum of variances and summarising it
summary (dispRity(one_tree, metric = c(sum, variances)))

subsets n obs

1 8.3 3 0.079
2 4.15 5 2.905
3 0 10 3.320

summary (dispRity(three_tree, metric = c(sum, variances)))

subsets n obs.median 2.5% 25% 75% 97.5%
1 7.9 3 0.253 0.088 0.166 0.309 0.360
2 3.95 b5 0.257 0.133 0.192 1.581 2.773
3 0 10 3.320 3.320 3.320 3.320 3.320

112 CHAPTER 4. DETAILS OF SPECIFIC FUNCTIONS

This results show the effect of considering a tree distribution: in the first case
(one_tree) the time slice at 3.95 Mya has a sum of variances of 2.9 but this
values goes down to 0.256 in the second case (three_tree) which is due to the
differences in branch lengths distributions:

par (mfrow = c(3,1))
slices <- c(7.9, 3.95, 0)
fun.plot <- function(tree) {

plot(tree)
nodelabels (tree$node.label, cex = 0.8)
axisPhylo()
abline(v = tree$root.time - slices)
}

silent <- lapply(trees, fun.plot)

4.10. DISPARITY FROM MULTIPLE MATRICES (AND MULTIPLE TREES!)113

I
il

10

©
o
IS
N
o

|
s
L

10 8 6 4 2 0
1
)
i
i) ——
i o
T T T T

10

©
o
IS
N
o

114 CHAPTER 4. DETAILS OF SPECIFIC FUNCTIONS

Note that in this example, the nodes are actually even different in each tree! The
node n4 for example, is not direct descendent of t4 and t6 in all trees! To fix
that, it is possible to input a list of trees and a list of matrices that correspond
to each tree in chrono.subsets by using the bind.data = TRUE option. In this
case, the matrices need to all have the same row names and the trees all need
the same labels as before:

Making three "proximity" time slices across three trees and three bound matrices
bound_data <- chrono.subsets(matrices, trees,

method = "continuous",
model = "proximity",
time = 3,

bind.data = TRUE)
Making three "proximity" time slices across three trees and three matrices
unbound_data <- chrono.subsets(matrices, trees,

method = "continuous",
model = "proximity",
time = 3,

bind.data = FALSE)

Measuring disparity as the sum of variances and summarising it
summary (dispRity(bound_data, metric = c(sum, variances)))

subsets n obs.median 2.5% 25% 75% 97.5%

1 7.9 3 0.079 0.076 0.077 0.273 0.447
2 3.95 b 1.790 0.354 1.034 2.348 2.850
3 0 10 3.320 3.044 3.175 3.381 3.435

summary (dispRity (unbound_data, metric = c(sum, variances)))

#it subsets n obs.median 2.5% 25% 75% 97.5%

1 7.9 3 0.79 0.48 0.63 0.83 0.85
2 3.95 5 3.25 1.36 2.25 3.94 4.56
3 0 10 9.79 9.79 9.79 9.79 9.79

Note here that the results are again rather different: with the bound data, the
slices are done across the three trees and each of their corresponding matrix
(resulting in three observation) which is more accurate than the previous results
from three_trees above. With the unbound data, the slices are done across
the three trees and applied to the three matrices (resulting in 9 observations).
As we’ve seen before, this is incorrect in this case since the trees don’t have
the same topology (so the nodes selected by a slice through the second tree
are not equivalent to the nodes in the first matrix) but it can be useful if the
topology is fixed to integrate both uncertainty in branch length (slicing through
different trees) and uncertainty from, say, ancestral states estimations (applying
the slices on different matrices).

Note that since the version 1.8 the trees and the matrices don’t have to match

4.11. DISPARITY WITH TREES: DISPRITREE! 115

allowing to run disparity analyses with variable matrices and trees. This can be
useful when running ancestral states estimations from a tree distribution where
not all trees have the same topology.

4.11 Disparity with trees: dispRitree!

Since the package’s version 1.5.10, trees can be directly attached to dispRity
objects. This allows any function in the package that has an input argument
called “tree” to automatically intake the tree from the dispRity object. This
is especially useful for disparity metrics that requires calculations based on a
phylogenetic tree (e.g. ancestral.dist or projections.tree) and if phylogeny
(or phylogenie*s*) are going to be an important part of your analyses.

Trees are attached to dispRity object as soon as they are called in any function
of the package (e.g. as an argument in chrono.subsets or in dispRity) and
are stored in my_dispRity_object$tree. You can always manually attach,
detach or modify the tree parts of a dispRity object using the utility functions
get.tree (to access the trees), remove.tree (to remove it) and add.tree (to..
add trees!). The only requirement for this to work is that the labels in the tree
must match the ones in the data. If the tree has node labels, their node labels
must also match the data. Similarly if the data has entries for node labels, they
must be present in the tree.

Here is a quick demo on how attaching trees to dispRity objects can work and
make your life easy: for example here we will measure how the sum of branch
length changes through time when time slicing through some demo data with a
acctran split time slice model (see more info here).

Loading some demo data:

An ordinated matrix with node and tip labels
data(BeckLee_mat99)

The corresponding tree with tip and node labels
data(BeckLee_tree)

A list of tips ages for the fossil data
data(BeckLee_ages)

Time slicing through the tree using the equal split algorithm

time_slices <- chrono.subsets(data = BeckLee_mat99,
tree = BeckLee_tree,
FADLAD = BeckLee_ages,
method = "continuous",
model = "acctran",
time = 15)

We can visualise the resulting trait space with the phylogeny
(using the specific argument as follows)

116 CHAPTER 4. DETAILS OF SPECIFIC FUNCTIONS

plot(time_slices, type = "preview",
specific.args = list(tree = TRUE))

® 13351
e ® 123.97
™ LN ® 114.44
— ® 104.9
s © ° °d' ®/9537
IS PY ..
© ° 98583
g e® () o% o /e 76.29
8 S ° o 2, 66.76
~ S ° A ® % 57.22
I oo o [=% 47.68
o o LN N 38.15
2] 28.61
d 0 ° ¥ 19.07
E o - 9.54
a | 0
©
o -
! T T T T
-1.0 -0.5 0.0 0.5

Dimension 1 (5.55%)

Note that some nodes are never selected thus explaining the branches not reaching t.

And we can then measure disparity as the sum of the edge length at each time

slice on the bootstrapped data:

Measuring the sum of the edge length per slice

sum_edge_length <- dispRity(boot.matrix(time_slices), metric = c(sum, edge.length.tree
Summarising and plotting

summary (sum_edge_length)

#it subsets n obs bs.median 2.5% 25% 75% 97.5%

1 133.561 3 51 51 36 40 61 69
2 123.97 6 163 166 141 158 172 188
3 114.44 9 332 331 287 317 354 383
4 104.9 12 558 565 489 540 587 620
5 95.37 156 762 763 723 745 782 815
6 85.83 20 1303 1305 1218 1271 1342 1415
7 76.29 19 1565 1559 1408 1491 1620 1802
8 66.76 23 2055 2040 1865 1965 2095 2262
9 57.22 20 2029 2031 1842 1949 2091 2190
10 47.68 16 1908 1892 1727 1840 1945 2057
11 38.15 16 2017 2016 1910 1975 2081 2152

12 28.61 10 1391 1391 1391 1391 1391 1391

4.12. DISPARITY OF VARIANCE-COVARIANCE MATRICES (COVAR)117

13 19.07 10 1391 1391 1391 1391 1391 1391
14 9.54 10 1391 1391 1391 1391 1391 1391
15 0 10 1391 1391 1391 1391 1391 1391

plot (sum_edge_length)

o
~— 8 -
g «
e o
5 &
I i
$ 8.
e 3
£
> o
0 o
S b
o 4
T T T T T T T T T T T T T T T
134 114 95 86 76 67 57 48 38 29 19 10 O
Time (Mya)

Of course this can be done with multiple trees and be combined with an approach
using multiple matrices (see here)!

4.12 Disparity of variance-covariance matrices
(covar)

Variance-covariance matrices are sometimes a useful way to summarise multidi-
mensional data. In fact, you can express the variation in your multidimensional
dataset directly in terms of how your trait covary rather than simply the posi-
tions of your elements in the trait space. Furthermore, variance-covariance ma-
trices can be estimated from multidimensional in sometimes more useful ways
that simply looking at the the data in your trait space. This can be done
by describing your data as hierarchical models like generalised linear mixed ef-
fect models (glmm). For example, you might have a multidimensional dataset
where your observations have a nested structure (e.g. they are part of the same
phylogeny). You can then analyse this data using a glmm with something
like my_data ~ observations + phylogeny + redisduals. For more info on
these models start here. For more details on running these models, I suggest
using the MCMCglmm package (Hadfield [2010a]) from Hadfield [2010b] (but see

https://en.wikipedia.org/wiki/Generalized_linear_mixed_model

118 CHAPTER 4. DETAILS OF SPECIFIC FUNCTIONS

also Guillerme and Healy [2014]). For an example use of this code, see Guillerme
et al. [2023].

4.12.1 Creating a dispRity object with a $covar compo-
nent

Once you have a trait space and variance-covariance matrices output from
the MCMCglmm model, you can use the function MCMCglmm.subsets to create
a "dispRity" object that contains the classic "dispRity" data (the matrix,
the subsets, etc...) but also a the new $covar element:

Loading the charadriiformes data
data(charadriiformes)

Here we using precaculated variance-covariance matrices from the charadri-
iformes dataset that contains a set of posteriors from a MCMCglmm model. The
model here was data ~ traits + clade specific phylogenetic effect +
global phylogenetic effect + residuals. We can retrieve the model infor-
mation using the MCMCglmm utilities tools, namely the MCMCglmm.levels func-
tion to directly extract the terms names as used in the model and then build our
"dispRity" object with the correct data, the posteriors and the correct term
names:

The term names
model_terms <- MCMCglmm.levels(charadriiformes$posteriors) [1:4]
Note that we're ignoring the 5th term of the model that's just the normal residuals

The dispRity object

MCMCglmm.subsets(data = charadriiformes$data,
posteriors = charadriiformes$posteriors,
group = model_terms)

—---- dispRity object ---—-
4 covar subsets for 359 elements in one matrix with 3 dimensions:
animal:clade_1, animal:clade_2, animal:clade_3, animal.

Data is based on 1000 posterior samples.

As you can see this creates a normal dispRity object with the information you
are now familiar with. However, we can be more fancy and provide more un-
derstandable names for the groups and provide the underlying phylogenetic
structure used:

A fancier dispRity object
my_covar <- MCMCglmm.subsets(data = charadriiformes$data,
posteriors = charadriiformes$posteriors,
group = model_terms,
tree = charadriiformes$tree,
rename.groups = c(levels(charadriiformes$data$clade), "ph

4.12. DISPARITY OF VARIANCE-COVARIANCE MATRICES (COVAR)119

Note that the group names is contained in the clade column of the charadriiformes dataset as 1

4.12.2 Visualising covar objects

One useful thing to do with these objects is then to visualise them in 2D. Here
we can use the covar.plot function (that has many different options that just
plot.dispRity for plotting covar objects) to plot the trait space, the 95% con-
fidence interval ellipses of the variance-covariance matrices and the major axes
from these ellipses. See the 7covar.plot help page for all the options available:

par (mfrow = c(2,2))
The traitspace

covar.plot(my_covar, col = c("orange", "darkgreen", "blue"), main = "Trait space")
The traitspace's variance-covariance mean ellipses
covar.plot(my_covar, col = c("orange", "darkgreen", "blue", "grey"), main = "Mean VCV ellipses",

points = FALSE, ellipses = mean)

The traitspace's variance-covariance mean ellipses

covar.plot(my_covar, col = c("orange", "darkgreen", "blue", "grey"), main = "Mean major axes",
points = FALSE, major.axes = mean)

A bit of everything

covar.plot(my_covar, col = c("orange", "darkgreen", "blue", "grey"), main = "Ten random VCV matri
points = TRUE, major.axes = TRUE, points.cex = 1/3, n = 10, ellipses = TRUE, legend =

120 CHAPTER 4. DETAILS OF SPECIFIC FUNCTIONS

Trait space Mean VCV ellipses

15

1.0

1.0

0.0
PC2 (6.87%)

:

PC2 (6.87%)

e .gi;-. - '.". .
Te o yaﬁ‘&ua.Aialiasué?f;
w

-0.5
I
-05
I

-1.0

-1.0

-15

T T T T T T T T T T T
-15 -1.0 -05 0.0 05 1.0 -1.0 -05 0.0 05 1.0

PC1 (90.52%) PC1 (90.52%)
Mean major axes Ten random VCV matrices
qulls
@ {-e— plovers
o | —e— sandpipers
- phylogeny
o
=
0
@
0
= = <
8 8
g g
& &
e o e
Bl °
g ° /A’ g s
g g

-0.5
I
-0.5

-1.0

-1.0
I

T T T T T T T T T T T
-1.0 -0.5 0.0 05 1.0 -15 -1.0 -05 0.0 05 1.0

PC1 (90.52%) PC1 (90.52%)

4.12.3 Disparity analyses with a $covar component

You can then calculate disparity on the "dispRity" object like shown previously.
For example, you can get the variances of the groups that where used in the
model by using the normal dispRity function:

summary (dispRity(my_covar, metric = variances))

subsets n obs.median 2.5% 25% 75% 97.5%
1 gulls 159 0.009 0.009 0.009 0.129 0.238
2 plovers 98 0.008 0.003 0.005 0.173 0.321
3 sandpipers 102 0.007 0.003 0.005 0.177 0.331
4 phylogeny 359 0.023 0.007 0.015 0.166 0.294

However this is not applied on the variance-covariance matrices from the posteri-
ors of the MCMCglmm. To do that, you need to modify the metric to be recognised
as a “covar” metric using the as.covar function. This function transforms any

4.13. DISPARITY AND DISTANCES 121

disparity metric (or disparity metric style function) to be applied to the $covar
part of a "dispRity" object. Basically this $covar part is a list containing,
for each posterior sample $VCV, the variance-covariance matrix and $loc, it’s
optional location in the traitspace.

The first variance covariance matrix for the "gulls" group
my_covar$covar[["gulls"]1][[1]]

$VCV

[,1] [,2] [,3]
[1,] 0.23258067 -2.180519e-02 -2.837630e-02
[2,] -0.02180519 3.137106e-02 -8.711996e-05
[3,] -0.02837630 -8.711996e-05 1.943929e-02
#i#t

$loc

[1] 0.0007118691 0.1338917465 -0.0145412698

And this is how as.covar modifies the disparity metric:

Using the variances function on a VCV matrix
variances(my_covar$covar [["gulls"]] [[1]1]$VCV)

[1] 0.0221423147 0.0007148342 0.0005779815

The same but using it as a covar metric
as.covar(variances) (my_covar$covar [["gulls"]][[11])

[1] 0.0221423147 0.0007148342 0.0005779815

The same but applied to the dispRity function
summary (dispRity(my_covar, metric = as.covar(variances)))

#it subsets n obs.median 2.5% 25% 75} 97.5%
1 gulls 159 0.001 0 00.012 0.068
2 plovers 98 0.000 0 0 0.000 0.002
3 sandpipers 102 0.000 0 0 0.000 0.016
4 phylogeny 359 0.000 0 0 0.006 0.020

4.13 Disparity and distances

There are two ways to use distances in dispRity, either with your input data
being directly a distance matrix or with your disparity metric involving some
kind of distance calculations.

4.13.1 Disparity data is a distance

If your disparity data is a distance matrix, you can use the option dist.data
= TRUE in dispRity to make sure that all the operations done on your data
take into account the fact that your disparity data has distance properties. For

122 CHAPTER 4. DETAILS OF SPECIFIC FUNCTIONS

example, if you bootstrap the data, this will automatically bootstrap both rows
AND columns (i.e. so that the bootstrapped matrices are still distances). This
also improves speed on some calculations if you use disparity metrics directly
implemented in the package by avoiding recalculating distances (the full list can
be seen in ?7dispRity.metric - they are usually the metrics with dist in their
name).

4.13.1.1 Swubsets

By default, the dispRity package does not treat any matrix as a distance matrix.
It will however try to guess whether your input data is a distance matrix or
not. This means that if you input a distance matrix, you might get a warning
letting you know the input matrix might not be treated correctly (e.g. when
bootstrapping or subsetting). For the functions dispRity, custom.subsets
and chrono.subsets you can simply toggle the option dist.data = TRUE to
make sure you treat your input data as a distance matrix throughout your
analysis.

Creating a distance matrix

distance_data <- as.matrix(dist(BeckLee_mat50))

Measuring the diagonal of the distance matrix
dispRity(distance_data, metric = diag, dist.data = TRUE)

---- dispRity object ----
50 elements in one matrix with 50 dimensions.
Disparity was calculated as: diag.

If you use a pipeline of any of these functions, you only need to specify it once
and the data will be treated as a distance matrix throughout.

Creating a distance matrix
distance_data <- as.matrix(dist(BeckLee_mat50))

Creating two subsets specifying that the data is a distance matrix

subsets <- custom.subsets(distance_data, group = list(c(1:5), c(6:10)), dist.data = TRI
Measuring disparity treating the data as distance matrices

dispRity(subsets, metric = diag)

---- dispRity object ---—-

2 customised subsets for 50 elements in one matrix with 50 dimensions:
#i# 1, 2.

Disparity was calculated as: diag.

Measuring disparity treating the data as a normal matrix (toggling the option to FA.
dispRity(subsets, metric = diag, dist.data = FALSE)

Warning in dispRity(subsets, metric = diag, dist.data = FALSE): data.dist is
set to FALSE (the data will not be treated as a distance matrix) even though

4.13. DISPARITY AND DISTANCES 123

subsets contains distance treated data.

---- dispRity object ----
2 customised subsets for 50 elements in one matrix with 50 dimensions:
i 1, 2.

Disparity was calculated as: diag.

Note that a warning appears but the function still runs

4.13.1.2 Bootstrapping

The function boot.matrix also can deal with distance matrices by bootstrap-
ping both rows and columns in a linked way (e.g. if a bootstrap pseudo-replicate
draws the values 1, 2, and 5, it will select both columns 1, 2, and 5 and rows
1, 2, and 5 - keeping the distance structure of the data). You can do that by
using the boot.by = "dist" function that will bootstrap the data in a distance
matrix fashion:

Measuring the diagonal of a bootstrapped matrix
boot.matrix(distance_data, boot.by = "dist")

---- dispRity object ----
50 elements in one matrix with 50 dimensions.
Rows and columns were bootstrapped 100 times (method:"full").

Similarly to the dispRity, custom.subsets and chrono.subsets function
above, the option to treat the input data as a distance matrix is recorded and
recycled so there is no need to specify it each time.

4.13.2 Disparity metric is a distance

On the other hand if your data is not a distance matrix but you are using a
metric that uses some kind of distance calculations, you can use the option
dist.helper to greatly speed up calculations. dist.helper can be either a
pre-calculated distance matrix (or a list of distance matrices) or, better yet, a
function to calculate distance matrices, like stats::dist or vegan: :vegdist.
This option directly stores the distance matrix separately in the RAM and allows
the disparity metric to directly access it at every disparity calculation iteration,
making it much faster. Note that if you provide a function for dist.helper,
you can also provide any un-ambiguous optional argument to that function, for
example method = "euclidean".

If you use a disparity metric implemented in dispRity, the dist.helper option
is correctly loaded onto the RAM regardless of the argument you provide (a
matrix, a list of matrix or any function to calculate a distance matrix). On the
other hand, if you use your own function for the disparity metric, make sure
that dist.helper exactly matches the internal distance calculation function.
For example if you use the already implemented pairwise.dist metric all the
following options will be using dist.helper optimally:

124 CHAPTER 4. DETAILS OF SPECIFIC FUNCTIONS

Using the dist function from stats (specifying it comes from stats)
dispRity(my_data, metric = pairwise.dist, dist.helper = stats::dist)

Using the dist function from vegdist function (without specifying its origin)
dispRity(my_data, metric = pairwise.dist, dist.helper = vegdist)

Using some pre-calculated distance with a generic function
my_distance_matrix <- dist(my_distance_data)
dispRity(my_data, metric = pairwise.dist, dist.helper = my_distance_matrix)

Using some pre-calculated distance with a user function defined elsewhere
my_distance_matrix <- my.personalised.function(my_distance_data)
dispRity(my_data, metric = pairwise.dist, dist.helper = my_distance_matrix)

However, if you use a homemade metric for calculating distances like this:

a personalised distance function
my.sum.of .dist <- function(matrix) {
return(sum(dist (matrix)))

}

The dist.helper will only work if you specify the function using the same
syntax as in the user function:

The following uses the helper correctly (as in saves a lot of calculation time)

dispRity(my_data, metric = my.sum.of.dist, dist.helper = dist)

These ones however, work but don't use the dist.helper (don't save time)
The dist.helper is not a function

dispRity(my_data, metric = my.sum.of.dist, dist.helper = dist(my_data))

The dist.helper is not the correct function (should be dist)
dispRity(my_data, metric = my.sum.of.dist, dist.helper = vegdist)

The dist.helper is not the correct function (should be just dist)
dispRity(my_data, metric = my.sum.of.dist, dist.helper = stats::dist)

expect_equal (summary (test) $obs.median, 0)

Chapter 5

Making stuff up!

The dispRity package also offers some advanced data simulation features to
allow to test hypothesis, explore ordinate-spaces or metrics properties or simply
playing around with data! All the following functions are based on the same
modular architecture of the package and therefore can be used with most of the
functions of the package.

5.1 Simulating discrete morphological data

The function sim.morpho allows to simulate discrete morphological data matri-
ces (sometimes referred to as “cladistic” matrices). It allows to evolve multiple
discrete characters on a given phylogenetic trees, given different models, rates,
and states. It even allows to include “proper” inapplicable data to make datasets
as messy as in real life!

In brief, the function sim.morpho takes a phylogenetic tree, the number of re-
quired characters, the evolutionary model, and a function from which to draw
the rates. The package also contains a function for quickly checking the ma-
trix’s phylogenetic signal (as defined in systematics not phylogenetic compara-
tive methods) using parsimony. The methods are described in details below

set.seed(3)
Simulating a starting tree with 15 taxa as a random coalescent tree
my_tree <- rcoal(15)

Generating a matrix with 100 characters (85], binary and 15J, three state) and

an equal rates model with a gamma rate distribution (0.5, 1) with no

invariant characters.

my_matrix <- sim.morpho(tree my_tree, characters = 100, states = c(0.85,
0.15), rates = c(rgamma, 0.5, 1), invariant = FALSE)

125

126

##
my_

##
##
##
##
##
#i#

##
che

#i#
##
##
##
##

CHAPTER 5. MAKING STUFF UP!

The first few lines of the matrix
matrix[1:5, 1:10]

(,11 [,21 [,3] (.41 [,51 [,e] [,7]1 [,81 [,9]1 [,10]
tlo I|1l| ||0l| ||1l| |IOIl |11Il lloll lloll II1II lloll IIOII
tl IIOII IIOII lllll IIO" IIO" lIOIl IIOII ll1ll IIOII IIOII
tg ||0’| ||0’| ||1’| IIOII IIOII lIOIl IIOII l|1|l IIOII lloll
t14 |I1l| |I0l| |I1ll IIOII IIOII lloll lIoIl lllll lloll lloll
t13 Illll |I0ll lllll lloll lloll lloll lloll lllll IIOII IIOII

Checking the matrix properties with a quick Maximum Parsimony tree search

ck.morpho(my_matrix, my_tree)

Maximum parsimony 144.0000000
Consistency index 0.7430556
Retention index 0.9160998
Robinson-Foulds distance 2.0000000

Note that this example produces a tree with a great consistency index and an
identical topology to the random coalescent tree! Nearly too good to be true...

5.1.1 A more detailed description

The protocol implemented here to generate discrete morphological matrices is
based on the ones developed in [Guillerme and Cooper, 2016, O’Reilly et al.,
2016, Puttick et al., 2017, E. et al.].

e The first tree argument will be the tree on which to “evolve” the char-

acters and therefore requires branch length. You can generate quick and
easy random Yule trees using ape: :rtree(number_of_taxa) but I would
advise to use more realistic trees for more realistic simulations based on
more realistic models (really realistic then) using the function tree.bd
from the diversitree package [FitzJohn, 2012].

e The second argument, character is the number of characters. Pretty

straight forward.

e The third, states is the proportion of characters states above two (yes,

the minimum number of states is two). This argument intakes the propor-
tion of n-states characters, for example states = ¢(0.5,0.3,0.2) will
generate 50% of binary-state characters, 30% of three-state characters and
20% of four-state characters. There is no limit in the number of state char-
acters proportion as long as the total makes up 100%.

e The forth, model is the evolutionary model for generating the character(s).

More about this below.

e The fifth and sixth, rates and substitution are the model parameters

described below as well.

e Finally, the two logical arguments, are self explanatory: invariant

http://www.zoology.ubc.ca/prog/diversitree/

5.1. SIMULATING DISCRETE MORPHOLOGICAL DATA 127

whether to allow invariant characters (i.e. characters that don’t change)
and verbose whether to print the simulation progress on your console.

5.1.1.1 Awvailable evolutionary models

There are currently three evolutionary models implemented in sim.morpho but
more will come in the future. Note also that they allow fine tuning parameters
making them pretty plastic!

e "ER": this model allows any number of character states and is based on
the Mk model [Lewis, 2001]. It assumes a unique overall evolutionary rate
equal substitution rate between character states. This model is based on
the ape: :rTraitDisc function.

e "HKY": this is binary state character model based on the molecular HKY
model [Hasegawa et al., 1985]. It uses the four molecular states (A,C,G,T)
with a unique overall evolutionary rate and a biased substitution rate
towards transitions (A <-> G or C <-> T) against transvertions (A <->
C and G <-> T). After evolving the nucleotide, this model transforms
them into binary states by converting the purines (A and G) into state
0 and the pyrimidines (C and T) into state 1. This method is based on
the phyclust: :seq.gen.HKY function and was first proposed by O’Reilly
et al. [2016].

e "MIXED": this model uses a random (uniform) mix between both the "ER"
and the "HKY" models.

The models can take the following parameters: (1) rates is the evolutionary
rate (i.e. the rate of changes along a branch: the evolutionary speed) and (2)
substitution is the frequency of changes between one state or another. For
example if a character can have high probability of changing (the evolutionary
rate) with, each time a change occurs a probability of changing from state X to
state Y (the substitution rate). Note that in the "ER" model, the substitution
rate is ignore because... by definition this (substitution) rate is equal!

The parameters arguments rates and substitution takes a distributions
from which to draw the parameters values for each character. For example, if
you want an "HKY" model with an evolutionary rate (i.e. speed) drawn from
a uniform distribution bounded between 0.001 and 0.005, you can define it as
rates = c(runif, min = 0.001, max = 0.005), runif being the function
for random draws from a uniform distribution and max and min being the
distribution parameters. These distributions should always be passed in the
format c(random_distribution_function, distribution_parameters)
with the names of the distribution parameters arguments.

5.1.1.2 Checking the results

An additional function, check.morpho runs a quick Maximum Parsimony tree
search using the phangorn parsimony algorithm. It quickly calculates the par-
simony score, the consistency and retention indices and, if a tree is provided

128 CHAPTER 5. MAKING STUFF UP!

(e.g. the tree used to generate the matrix) it calculates the Robinson-Foulds dis-
tance between the most parsimonious tree and the provided tree to determine
how different they are.

5.1.1.3 Adding inapplicable characters

Once a matrix is generated, it is possible to apply inapplicable characters to it
for increasing realism! Inapplicable characters are commonly designated as NA
or simply -. They differ from missing characters ? in their nature by being
inapplicable rather than unknown|[see Brazeau et al., 2018, for more details].
For example, considering a binary character defined as “colour of the tail” with
the following states “blue” and “red”; on a taxa with no tail, the character
should be coded as inapplicable (“~”) since the state of the character “colour
of tail” is known: it’s neither “blue” or “red”, it’s just not there! It contrasts
with coding it as missing (“?” - also called as ambiguous) where the state is
unknown, for example, the taxon of interest is a fossil where the tail has no
colour preserved or is not present at all due to bad conservation!

This type of characters can be added to the simulated matrices using the
apply.NA function/ It takes, as arguments, the matrix, the source of inappli-
cability (NAs - more below), the tree used to generate the matrix and the two
same invariant and verbose arguments as defined above. The NAs argument
allows two types of sources of inapplicability:

e "character" where the inapplicability is due to the character (e.g. cod-
ing a character tail for species with no tail). In practice, the algorithm
chooses a character X as the underlying character (e.g. “presence and ab-
sence of tail”), arbitrarily chooses one of the states as “absent” (e.g. 0 =
absent) and changes in the next character Y any state next to character X
state 0 into an inapplicable token (“~”). This simulates the inapplicability
induced by coding the characters (i.e. not always biological).

e "clade" where the inapplicability is due to evolutionary history (e.g. a
clade loosing its tail). In practice, the algorithm chooses a random clade
in the tree and a random character Z and replaces the state of the taxa
present in the clade by the inapplicable token (“~”). This simulates the
inapplicability induced by evolutionary biology (e.g. the lose of a feature
in a clade).

To apply these sources of inapplicability, simply repeat the number of inappli-
cable sources for the desired number of characters with inapplicable data.

Generating 5 "character" NAs and 10 "clade" NAs

my_matrix_NA <- apply.NA(my_matrix, tree = my_tree,
NAs = c(rep('"character", 5),

rep("clade", 10)))

The first few lines of the resulting matrix
my_matrix_NA[1:10, 90:100]

5.2. SIMULATING MULTIDIMENSIONAL SPACES 129

(,11 [,21 [,3] [,41 C,5] [,6]1 [,71 [,8] [,9]1 [,10]1 [,11]

£10 "-" "L MgvooMQnoowgnoowQno wQn o mQM o nin vwQU QM
tl n_n ||1Il IIOII IIOII lllll IIOII llOIl "O" n_n IIOII IlOlI
€9 =" Mg mgvoomQMo vgn o mQM o mQM QM MM vQ" MO
t14 "-" "1" "0" 0" LM Q" UO" UO" "-" Q" Q"
£13 "-" "1" "0" "O" LM UQ" UO" UO" "-" Q" Q"
t5 "-" "' "™ MM "L" UM UM Q" "-" Q" Q"
t2 ||1|l lllll lloll lloll lllll lloll lloll IIO" "O" "O" Iloll
t8 |12ll lllll lIOIl lloll lllll IIOII IIOII llOll IIOII llOH IlOlI
£6 "-" "L MgvoomQno MO MgM o vqno veo wono ngn g
£15 "-" "L MgvooMQM o MO MgM o vqn o vQeo wQno ngn o g

5.1.2 Parameters for a realistic(ish) matrix

There are many parameters that can create a “realistic” matrix (i.e. not too
different from the input tree with a consistency and retention index close to
what is seen in the literature) but because of the randomness of the matrix
generation not all parameters combination end up creating “good” matrices.
The following parameters however, seem to generate fairly “realist” matrices
with a starting coalescent tree, equal rates model with 0.85 binary characters
and 0.15 three state characters, a gamma distribution with a shape parameter
() of 5 and no scaling (8 = 1) with a rate of 100.

set.seed(0)
tree
my_tree <- rcoal(15)
matrix
morpho_mat <- sim.morpho(my_tree,
characters = 100,
model = "ER",
rates = c(rgamma, rate = 100, shape = 5),
invariant = FALSE)
check.morpho (morpho_mat, my_tree)

#it

Maximum parsimony 103.0000000
Consistency index 0.9708738
Retention index 0.9919571

Robinson-Foulds distance 4.0000000

5.2 Simulating multidimensional spaces

Another way to simulate data is to directly simulate an ordinated space with the
space.maker function. This function allows users to simulate multidimensional
spaces with a certain number of properties. For example, it is possible to design
a multidimensional space with a specific distribution on each axis, a correlation

130 CHAPTER 5. MAKING STUFF UP!

between the axes and a specific cumulative variance per axis. This can be useful
for creating ordinated spaces for null hypothesis, for example if you're using the
function null.test [Diaz et al., 2016].

This function takes as arguments the number of elements (data points -
elements argument) and dimensions (dimensions argument) to create the
space and the distribution functions to be used for each axis. The distributions
are passed through the distribution argument as.. modular functions! You
can either pass a single distribution function for all the axes (for example
distribution = runif for all the axis being uniform) or a specific distribution
function for each specific axis (for example distribution = c(runif, rnorm,
rgamma)) for the first axis being uniform, the second normal and the third
gamma). You can of course use your very own functions or use the ones
implemented in dispRity for more complex ones (see below). Specific optional
arguments for each of these distributions can be passed as a list via the
arguments argument.

Furthermore, it is possible to add a correlation matrix to add a correlation
between the axis via the cor.matrix argument or even a vector of proportion
of variance to be bear by each axis via the scree argument to simulate realistic
ordinated spaces.

Here is a simple two dimensional example:

Graphical options
op <- par(bty = "n")

A square space
square_space <- space.maker(100, 2, runif)

The resulting 2D matrix
head (square_space)

#it [,1] [,2]
[1,] 0.2878797 0.82110157
[2,] 0.5989886 0.72890558
[3,] 0.8401571 0.53042419
[4,] 0.3663870 0.75545936
[5,]1 0.2122375 0.98768804
[6,] 0.9612441 0.07285561

Visualising the space
plot(square_space, pch = 20, xlab = "", ylab = "",
main = "Uniform 2D space")

5.2. SIMULATING MULTIDIMENSIONAL SPACES 131

Uniform 2D space

1.0

.)
)
. *e o
. . R .
.
. .
) * * *
@ | *
o . .
.
. ° .
°)
. °)
. * g
© _] . .
o)
* ... * * L4
° .
.
< L4 .
<2 . * .
) . .
.
. .
. * * . hd °
g— . ° .
. .
.
* . .
. o ° i °
L ° * . °q ® o
o | * « & °
o
[I I I I 1
0.0 0.2 0.4 0.6 0.8 1.0

Of course, more complex spaces can be created by changing the distributions,
their arguments or adding a correlation matrix or a cumulative variance vector:

A plane space: uniform with one dimensions equal to 0

plane_space <- space.maker (2500, 3, c(runif, runif, runif),
arguments = list(list(min = 0, max = 0),
NULL, NULL))

Correlation matrix for a 3D space
(cor_matrix <- matrix(cbind(1, 0.8, 0.2, 0.8, 1, 0.7, 0.2, 0.7, 1), nrow = 3))

[,11 [,2] [,3]
[1,] 1.0 0.8 0.2
[2,] 0.8 1.0 0.7
[3,] 0.2 0.7 1.0

132 CHAPTER 5. MAKING STUFF UP!

An ellipsoid space (normal space with correlation)
ellipse_space <- space.maker (2500, 3, rnorm,
cor.matrix = cor_matrix)

A cylindrical space with decreasing axes variance
cylindrical_space <- space.maker (2500, 3, c(rnorm, rnorm, runif),
scree = c(0.7, 0.2, 0.1))

5.2.1 Personalised dimensions distributions

Following the modular architecture of the package, it is of course possible to pass
home made distribution functions to the distribution argument. For example,
the random.circle function is a personalised one implemented in dispRity.
This function allows to create circles based on basic trigonometry allowing to
axis to covary to produce circle coordinates. By default, this function generates
two sets of coordinates with a distribution argument and a minimum and
maximum boundary (inner and outer respectively) to create nice sharp edges
to the circle. The maximum boundary is equivalent to the radius of the circle
(it removes coordinates beyond the circle radius) and the minimum is equivalent
to the radius of a smaller circle with no data (it removes coordinates below this
inner circle radius).

Graphical options
op <- par(bty = "n")

Generating coordinates for a normal circle with a upper boundary of 1
circle <- random.circle(1000, rnorm, inner = 0, outer = 1)

Plotting the circle
plot(circle, xlab = "x", ylab = "y", main = "A normal circle")

5.2. SIMULATING MULTIDIMENSIONAL SPACES 133

A normal circle

1.0

1.0

-1.0 -0.5 0.0 0.5 1.0

Creating doughnut space (a spherical space with a hole)
doughnut_space <- space.maker(5000, 3, c(rnorm, random.circle),
arguments = list(list(mean = 0),
list(runif, inner = 0.5, outer = 1)))

5.2.2 Visualising the space

I suggest using the excellent scatterplot3d package to play around and visu-
alise the simulated spaces:

Graphical options

op <- par(mfrow = (c(2, 2)), bty = "n"

Visualising 3D spaces

require(scatterplot3d)

Loading required package: scatterplot3d

134 CHAPTER 5. MAKING STUFF UP!

The plane space
scatterplot3d(plane_space, pch = 20, xlab = "", ylab = "", zlab = "",
xlim = ¢(-0.5, 0.5), main = "Plane space")

The ellipsoid space
scatterplot3d(ellipse_space, pch = 20, xlab = "", ylab = "", zlab = "",
main = "Normal ellipsoid space")

A cylindrical space with a decreasing variance per axis

scatterplot3d(cylindrical_space, pch = 20, xlab = "", ylab = "", zlab = "",
main = "Normal cylindrical space")

Axes have different orders of magnitude

Plotting the doughnut space
scatterplot3d(doughnut_space[,c(2,1,3)], pch = 20, xlab = "", ylab = "",
zlab = "", main = "Doughnut space")

5.2. SIMULATING MULTIDIMENSIONAL SPACES 135

Plane space

1.0

@
S
o
o
< 1.0
© 0.8
N 06
S 0.4
0.2
2 0.0
-0.8-0.6-0.4-0.2 0.0 0.2 0.4 0.6 0.8
Normal cylindrical space
o
S
S
2 .
o
©
o
S
3
o
o
=3
S
8
©-3 -2 -1 0 1 2
par (op)

-4-3-2-10 1 2 3 4

Normal ellipsoid space

L B
o ..,ii .
R
& 5
.« 8 “oY % 4

ow Do o 3

N

e >
(SIS Ea 1
o

-4 -3-2-10 1 2 3 4

0.0 0.5 1.0

-0.5

5.2.3 Generating realistic spaces

Doughnut space

1.0

It is possible to generate “realistic” spaces by simply extracting the parameters
of an existing space and scaling it up to the simulated space. For example, we
can extract the parameters of the BeckLee_mat50 ordinated space and simulate

a similar space.

Loading the data
data(BeckLee_mat50)

Number of dimensions
obs_dim <- ncol(BeckLee_mat50)

Observed correlation between the dimensions

136 CHAPTER 5. MAKING STUFF UP!

obs_correlations <- cor(BeckLee_mat50)

Observed mean and standard deviation per axis

obs_mu_sd_axis <- mapply(function(x,y) list("mean" = x, "sd" = y),
as.list (apply(BeckLee_mat50, 2, mean)),
as.list(apply(BeckLee_mat50, 2, sd)), SIMPLIFY = FALSE)

Observed overall mean and standard deviation
obs_mu_sd_glob <- list("mean" = mean(BeckLee_mat50), "sd" = sd(BeckLee_mat50))

Scaled observed variance per axis (scree plot)
obs_scree <- variances(BeckLee_mat50)/sum(variances(BeckLee_mat50))

Generating our simulated space

simulated_space <- space.maker(1000, dimensions = obs_dim,
distribution = rep(list(rnorm), obs_dim),
arguments = obs_mu_sd_axis,
cor.matrix = obs_correlations)

Visualising the fit of our data in the space (in the two first dimensions)
plot(simulated_space[,1:2], xlab = "PC1", ylab = "PC2")
points(BeckLee_mat50[,1:2], col = "red", pch = 20)
legend("topleft", legend = c("observed", "simulated"),

pch = c(20,21), col = c("red", "black"))

5.2. SIMULATING MULTIDIMENSIONAL SPACES 137

e observed o
o _| © simulated o o
~ o
O
o
o
(e}
O
oN
g o
o
OO
0
S 4
]
o (o)
S
o

-2.0 -15 -1.0 -0.5 0.0 0.5 1.0 15

PC1

It is now possible to simulate a space using these observed arguments to test
several hypothesis:

e Is the space uniform or normal?
o If the space is normal, is the mean and variance global or specific for each
axis?

Measuring disparity as the sum of variance
observed_disp <- dispRity(BeckLee_mat50, metric = c(median, centroids))

Is the space uniform?
test_unif <- null.test(observed_disp, null.distrib = runif)

Is the space normal with a mean of O and a sd of 17
test_norml <- null.test(observed_disp, null.distrib = rnorm)

Is the space normal with the observed mean and sd and cumulative variance

138 CHAPTER 5. MAKING STUFF UP!

test_norm2 <- null.test(observed_disp, null.distrib = rep(list(rnorm), obs_dim),
null.args = rep(list(obs_mu_sd_glob), obs_dim),
null.scree = obs_scree)

Is the space multiple normal with multiple means and sds and a correlation?
test_norm3 <- null.test(observed_disp, null.distrib = rep(list(rnorm), obs_dim),
null.args = obs_mu_sd_axis, null.cor = obs_correlations)

Graphical options

op <- par(mfrow = (c(2, 2)), bty = "n"

Plotting the results

plot(test_unif, main = "Uniform (0,1)")

plot(test_norml, main = "Normal (0,1)")

plot(test_norm2, main = pasteO("Normal (", round(obs_mu_sd_glob[[1]], digit = 3),
",", round(obs_mu_sd_glob[[2]], digit = 3), ")"))

plot(test_norm3, main = "Normal (variable + correlation)")

5.2. SIMULATING MULTIDIMENSIONAL SPACES 139

Uniform (0,1) Normal (0,1)
p-value n p-value
0.0099 & — 0009
9 - £ -
2 g 87
“g)_ S ag;_ wn |
o e -
w w
o |
o 4 -
o 4
o i o dlll]:
I T T T 1 I T T T T 1
1.6 1.7 1.8 1.9 2.0 2 3 4 5 6 7
sim sim
Normal (0,0.227) Normal (variable + correlation)
8 1 pvale p-value —
.0099 0.44554
w
0 N
0
o |
o _| N
> o >
2 2 5
O n o g
z =] =
(g (g
w 9‘] w 8 -]
0 - w -
o -~ o -~
I T T 1 I T T T 1
0.0 0.5 1.0 15 1.45 1.50 1.55 1.60 1.65
sim sim

If we measure disparity as the median distance from the morphospace centroid,
we can explain the distribution of the data as normal with the variable observed
mean and standard deviation and with a correlation between the dimensions.

140 CHAPTER 5. MAKING STUFF UP!

Chapter 6

Other functionalities

The dispRity package also contains several other functions that are not spe-
cific to multidimensional analysis but that are often used by dispRity internal
functions. However, we decided to make these functions also available at a user
level since they can be handy for certain specific operations! You’ll find a brief
description of each of them (alphabetically) here:

6.1 char.diff

This is yet another function for calculating distance matrices. There are

many functions for calculating pairwise distance matrices in R (stats::dist,

vegan: :vegdist, cluster: :daisy or Claddis: :calculate_morphological_distances)
but this one is the dispRity one. It is slightly different to the ones mentioned

above (though not that dissimilar from Claddis: :calculate_morphological_distances)
in the fact that it focuses on comparing discrete morphological characters

and tries to solve all the problems linked to these kind of matrices (especially

dealing with special tokens).

The function intakes a matrix with either numeric or integer (NA included) or
matrices with character that are indeed integers (e.g."0" and "1"). It then
uses a bitwise operations architecture implemented in C that renders the function
pretty fast and pretty modular. This bitwise operations translates the character
states into binary values. This way, 0 becomes 1, 1 becomes 2, 2 becomes 4, 3
becomes 8, etc... Specifically it can handle any rules specific to special tokens
(i.e. symbols) for discrete morphological characters. For example, should you
treat missing values "?" as NA (ignoring them) or as any possible character
state (e.g. c("0", "1")?7)? And how to treat characters with a ampersand
("&")? char.diff can answer to all these questions!

Let’s start by a basic binary matrix 4*3 with random integer:

141

https://en.wikipedia.org/wiki/Bitwise_operations_in_C

142 CHAPTER 6. OTHER FUNCTIONALITIES

A random binary matrix
matrix_binary <- matrix(sample(c(0,1), 12, replace = TRUE), ncol = 4,
dimnames = list(letters[1:3], LETTERS[1:4]))

By default, char.diff measures the hamming distance between characters:

The hamming distance between characters
(differences <- char.diff (matrix_binary))

D 1 1
attr(,"class")
[1] "matrix" "char.diff"

Note that the results is just a pairwise distance (dissimilarity) matrix with some
special dual class matrix and char.diff. This means it can easily be plotted
via the disparity package:

Visualising the matrix
plot(differences)

Character differences matrix

Difference

1
e 0

You can check all the numerous plotting options in the ?plot.char.diff man-
ual (it won’t be developed here).

6.1. CHAR.DIFF 143

The char.diff function has much more options however (see all of them in the
?char.diff manual) for example to measure different differences (via method)
or making the comparison work per row (for a distance matrix between the
rows):

Euclidean distance between rows
char.diff (matrix_binary, by.col = FALSE, method = "euclidean")

#i# a b c
a 0.000000 1.414214 1.414214
b 1.414214 0.000000 0.000000
c 1.414214 0.000000 0.000000
attr(,"class")

[1] "matrix" "char.diff"

We can however make it more interesting by playing with the different rules
to play with different tokens. First let’s create a matrix with morphological
characters as numeric characters:

A random character matrix
(matrix_character <- matrix(sample(c("0","1","2"), 30, replace = TRUE), ncol = 5,
dimnames = list(letters[1:6], LETTERS[1:5])))

A B C D E

Il1|| Illll lllll lllll Iloll
IIOH "2" IIOII ll2|l lloll
I12|l ll2|l lllll l|2ll IIOII

Il2l| Il2|| l|1|l lllll |I2ll
IIOII Il2|| lloll II2II IIOII

The hamming difference between columns
char.diff (matrix_character)

a
b
c
4 "1m n2m "o" "O" "1M
e
£

A B C D E

A 0.0 0.6 0.6 0.6 0.8

B 0.6 0.0 0.4 0.4 0.8

C 0.6 0.4 0.0 0.4 0.6

D 0.6 0.4 0.4 0.0 1.0

E 0.8 0.8 0.6 1.0 0.0

attr(,"class")

[1] "matrix" "char.diff"

Here the characters are automatically converted into bitwise integers to be com-
pared efficiently. We can now add some more special tokens like "?" or "0/1"
for uncertainties between state "0" and "1" but not "2":

Adding uncertain characters
matrix_character[sample(1:30, 8)] <- "0/1"

144 CHAPTER 6. OTHER FUNCTIONALITIES

Adding missing data
matrix_character[sample(1:30, 5)] <- "?7"

This is what it looks like now
matrix_character

A B c D E
a "7v vev o nqn o wge o egn
b IIOII "0/1" IlO/l" "0/1" |Ioll
c "2" "2" v7v o nO/1M MO
##.d "1" "2" "O" "0/1" "1
e "7U QU vgn wge e
£ "O" "2" vO" "?v v0/1"

The hamming difference between columns including the special characters
char.diff (matrix_character)

A B C D E
A 0.0000000 0.6666667 1.00 0.50 0.6666667
B 0.6666667 0.0000000 1.00 1.00 0.7500000
C 1.0000000 1.0000000 0.00 0.00 0.2500000
D 0.5000000 1.0000000 0.00 0.00 0.2500000
E 0.6666667 0.7500000 0.25 0.25 0.0000000

attr(,"class")
[1] "matrix" "char.diff"

Note here that it detected the default behaviours for the special tokens "7"
and "/": "?" are treated as NA (not compared) and "/" are treated as both
states (e.g. "0/1" is treated as "0" and as "1"). We can specify both the
special tokens and the special behaviours to consider via special.tokens
and special.behaviours. The special.tokens are missing = "?",
inapplicable = "-"| uncertainty = "\" and polymorphism = "&" mean-
ing we don’t have to modify them for now. However, say we want to change the
behaviour for "?" and treat them as all possible characters and treat "/" as
only the character "0" (as an integer) we can specify them giving a behaviour
function:

Specifying some special behaviours
my_special_behaviours <- list(missing = function(x,y) return(y),
uncertainty = function(x,y) return(as.integer(0)))

Passing these special behaviours to the char.diff function
char.diff (matrix_character, special.behaviour = my_special_behaviours)

A B C D E
A 0.0 0.6 0.6 0.6 0.6
B 0.6 0.0 0.8 0.8 0.8

6.2. CLEAN.DATA 145

#i#
##
##
##
#it

C 0.6 0.8 0.0 0.4 0.6

D 0.6 0.80.40.01.0

E 0.6 0.8 0.6 1.0 0.0
attr(,"class")

[1] "matrix" "char.diff"

The results are quiet different as before! Note that you can also specify some
really specific behaviours for any type of special token.

Adding weird tokens to the matrix
matrix_character[sample(1:30, 8)] <- "J"

Specify the new token and the new behaviour

char.diff (matrix_character, special.tokens = c(weird_one = ")"),

#it
#i#t
#it
#it
#i#t
#it
#it
#it

special.behaviours = list(
weird_one = function(x,y) return(as.integer(42)))

)
A BCD E
A 0 1 1 0 NaN
B 1 0 1 1 NaN
c 1 100 O
D 0O 100 O
E NaN NaN 0 O 0
attr(,"class")
[1] "matrix" "char.diff"

Of course the results can be quiet surprising then... But that’s the essence of the
modularity. You can see more options in the function manual ?char.diff!

6.2 clean.data

This is a rather useful function that allows matching a matrix or a data.frame
to a tree (phylo) or a distribution of trees (multiPhylo). This function outputs
the cleaned data and trees (if cleaning was needed) and a list of dropped rows
and tips.

Generating a trees with labels from a to e
dummy_tree <- rtree(5, tip.label = LETTERS[1:5])

Generating a matrix with rows from b to f
dummy_data <- matrix(1l, 5, 2, dimnames = 1list(LETTERS[2:6], c("varl", "var2")))

##Cleaning the trees and the data
(cleaned <- clean.data(data = dummy_data, tree = dummy_tree))

##
##

$tree

CHAPTER 6. OTHER FUNCTIONALITIES

Phylogenetic tree with 4 tips and 3 internal nodes.

146

#i

##

Tip labels:
D, B, E, C
##

Rooted; includes branch lengths.
#it

$data

#i#t varl var?2
B 1 1
C 1 1
D 1 1
E 1 1
##

$dropped_tips
[1] "A"

#i#

$dropped_rows
it [1] "F"

6.3 crown.stem

This function quiet handily separates tips from a phylogeny between crown
members (the living taxa and their descendants) and their stem members (the
fossil taxa without any living relatives).

data(BeckLee_tree)
Diving both crow and stem species
(crown.stem(BeckLee_tree, inc.nodes = FALSE))

$crown

#i#
#i#
##
##
##
##
#i#
##
##
##
##
#i#
##
##
##

[1] "Dasypodidae" "Bradypus" "Myrmecophagidae" "Todralestes"
[5] "Potamogalinae" "Dilambdogale" "Widanelfarasia" "Rhynchocyon"
[9] "Procavia" "Moeritherium" "Pezosiren" "Trichechus"
[13] "Tribosphenomys" "Paramys" "Rhombomylus" "Gomphos"
[17] "Mimotona" "Cynocephalus" "Purgatorius" "Plesiadapis"
[21] "Notharctus" "Adapis" "Patriomanis" "Protictis"
[256] "Vulpavus" "Miacis" "Icaronycteris" "Soricidae"
[29] "Solenodon" "Eoryctes"
$stem
[1] "Daulestes" "Bulaklestes" "Uchkudukodon"
[4] "Kennalestes" "Asioryctes" "Ukhaatherium"
[7] "Cimolestes" "unnamed_cimolestid" "Maelestes"
[10] "Batodon" "Kulbeckia" "Zhangolestes"
[13] "unnamed_zalambdalestid" "Zalambdalestes" "Barunlestes"

6.4. GET.BIN.AGES

147

[16] "Gypsonictops" "Leptictis" "Oxyclaenus"

[19] "Protungulatum" "Oxyprimus"

Note that it is possible to include or exclude nodes from the output. To see a
more applied example: this function is used in chapter 03: specific tutorials.

6.4 get.bin.ages

This function is similar than the crown.stem one as it is based on a tree but
this one outputs the stratigraphic bins ages that the tree is covering. This can

be useful to generate precise bin ages for the chrono.subsets function:

get.bin.ages(BeckLee_tree)

[1] 132.9000 129.4000 125.0000 113.0000 100.5000 93.9000
[9] 83.6000 72.1000 66.0000 61.6000 59.2000 56.0000
[17] 37.8000 33.9000 28.1000 23.0300 20.4400 15.9700
[25] 7.2460 5.3330 3.6000 2.5800 1.8000 0.7810

89.8000
47.8000
13.8200

0.1260

[33] 0.0000

Note that this function outputs the stratigraphic age limits by default but this

can be customisable by specifying the type of data (e.g. type = "Eon" for eons).

The function also intakes several optional arguments such as whether to output
the startm end, range or midpoint of the stratigraphy or the year of reference of
the International Commission of Stratigraphy. To see a more applied example:
this function is used in chapter 03: specific tutorials.

6.5 match.tip.edge

This function matches a vector of discreet tip values with the edges connecting
these tips in the "phylo" structure. This can be used to pull the branches of
interest for some specific trait of some group of species or for colouring tree tips
based on clades.

For example, with the charadriiformes dataset, you can plot the tree with
the branches coloured by clade. To work properly, the function requires the
characteristics of the tip labels (e.g. the clade colour) to match the order of the
tips in the tree:

Loading the charadriiformes data

data(charadriiformes)

Extracting the tree

my_tree <- charadriiformes$tree

Extracting the data column that contains the clade assignments
my_data <- charadriiformes$datal, "clade"]

Changing the levels names (the clade names) to colours
levels(my_data) <- c("orange", "blue", "darkgreen")

86.3000
41.2000
11.6300

0.0117

148 CHAPTER 6. OTHER FUNCTIONALITIES

my_data <- as.character(my_data)
Matching the data rownames to the tip order in the tree
my_data <- my_data[match(ladderize(my_tree)$tip.label, rownames(charadriiformes$data)).

We can then match this tip data to their common descending edges. We will
also colour the edges that is not descendant directly from a common coloured
tip in grey using "replace.na = "grey". Note that these edges are usually the
edges at the root of the tree that are the descendant edges from multiple clades.

Matching the tip colours (labels) to their descending edges in the tree
(and making the non-match edges grey)
clade_edges <- match.tip.edge(my_data, my_tree, replace.na = "grey")

Plotting the results
plot(ladderize(my_tree), show.tip.label = FALSE, edge.color = clade_edges)

But you can also use this option to only select some specific edges and modify
them (for example making them all equal to one):

Adding a fixed edge length to the green clade

my_tree_modif <- my_tree

green_clade <- which(clade_edges == "darkgreen")

my_tree_modif$edge.length[green_clade] <- 1

plot(ladderize(my_tree_modif), show.tip.label = FALSE,
edge.color = clade_edges)

6.6. MCMCGLMM UTILITIES 149

6.6 MCMCglmm utilities

Since version 1.7, the dispRity package contains several utility functions
for manipulating "MCMCglmm" (that is, objects returned by the function
MCMCglmm: :MCMCglmm). These objects are a modification of the mcmc object
(from the package coda) and can be sometimes cumbersome to manipu-
late because of the huge amount of data in it. You can use the functions
MCMCglmm.traits for extracting the number of traits, MCMCglmm.levels for
extracting the level names, MCMCglmm.sample for sampling posterior IDs and
MCMCglmm. covars for extracting variance-covariance matrices. You can also
quickly calculate the variance (or relative variance) for each terms in the
model using MCMCglmm.variance (the variance is calculated as the sum of the
diagonal of each variance-covariance matrix for each term).

Loading the charadriiformes data that contains a MCMCglmm object
data(charadriiformes)
my_MCMCglmm <- charadriiformes$posteriors

Which traits where used in this model?
MCMCglmm. traits (my_MCMCglmm)

[1] "pCi" "pC2" "pC3"

Which levels where used for the model's random terms and/or residuals?
MCMCglmm.levels (my_MCMCglmm)

150 CHAPTER 6. OTHER FUNCTIONALITIES

#i random random random random
"animal:clade_1" "animal:clade_ 2" "animal:clade_ 3" "animal"
residual
#i# "units"

The level names are converted for clarity but you can get them unconverted
(i.e. as they appear in the model)
MCMCglmm.levels (my_MCMCglmm, convert = FALSE)

#i random random
"us(at.level(clade, 1):trait):animal" "us(at.level(clade, 2):trait):animal"
random random
"us(at.level(clade, 3):trait):animal" "us(trait) :animal"
residual
"us(trait) :units"

Sampling 2 random posteriors samples IDs
(random_samples <- MCMCglmm.sample(my_MCMCglmm, n = 2))

[1] 749 901

Extracting these two random samples
my_covars <- MCMCglmm.covars(my_MCMCglmm, sample = random_samples)

Plotting the variance for each term in the model

boxplot (MCMCglmm.variance (my_MCMCglmm), horizontal = TRUE, las = 1,
xlab = "Relative variance",
main = "Variance explained by each term")

6.7. PAIR.PLOT 151

Variance explained by each term

units - H||-4wo

animal - f----meemeeeeecf lo
clade 3 4 f----1 | feeeoooeeeee- y
:clade_2 —
cclade 1 4 O CUEOGE|--------------{ | |----------- 1

Relative variance

See more in the $covar section on what to do with these "MCMCglmm" objects.

6.7 pair.plot

This utility function allows to plot a matrix image of pairwise comparisons. This
can be useful when getting pairwise comparisons and if you'd like to see at a
glance which pairs of comparisons have high or low values.

Random data
data <- matrix(data = runif(42), ncol = 2)

Plotting the first column as a pairwise comparisons
pair.plot(data, what = 1, col = c("orange", "blue"), legend = TRUE,
diag = 1)

152 CHAPTER 6. OTHER FUNCTIONALITIES

min = 0.0819645491428673
B max=1

Here blue squares are ones that have a high value and orange ones the ones that
have low values. Note that the values plotted correspond the first column of the
data as designated by what = 1.

It is also possible to add some tokens or symbols to quickly highlight to specific
cells, for example which elements in the data are below a certain value:

The same plot as before without the diagonal being

the maximal observed value

pair.plot(data, what = 1, col = c("orange", "blue"), legend = TRUE,
diag = "max"

Highlighting with an asterisk which squares have a value

below 0.2

pair.plot(data, what = 1, binary = 0.2, add = "*", cex = 2)

6.7. PAIR.PLOT 153

min = 0.0819645491428673
® max = 0.966446085600182

This function can also be used as a binary display when running a series of
pairwise t-tests. For example, the following script runs a wilcoxon test between
the time-slices from the disparity example dataset and displays in black which
pairs of slices have a p-value below 0.05:

Loading disparity data
data(disparity)

Testing the pairwise difference between slices
tests <- test.dispRity(disparity, test = wilcox.test, correction = "bonferroni")

Plotting the significance
pair.plot(as.data.frame(tests), what = "p.value", binary = 0.05)

154 CHAPTER 6. OTHER FUNCTIONALITIES

30

50 —

70 —

80 —

90 -~

6.8 reduce.matrix

This function allows to reduce columns or rows of a matrix to make sure that
there is enough overlap for further analysis. This is particularly useful if you
are going to use distance matrices since it uses the vegan: : vegdist function to
test whether distances can be calculated or not.

For example, if we have a patchy matrix like so (where the black squares repre-
sent available data):

set.seed (1)

A 10%5 matrix

na_matrix <- matrix(rnorm(50), 10, 5)
Making sure some rows don't overlap
na_matrix[1, 1:2] <- NA

na_matrix[2, 3:5] <- NA

Adding 507 NAs
na_matrix[sample(1:50, 25)] <- NA

Illustrating the gappy matrix

image (t(na_matrix), col = "black")

6.8. REDUCE.MATRIX 155

We can use the reduce.matrix to double check whether any rows cannot be
compared. The functions needs as an input the type of distance that will be
used, say a "gower" distance:

Reducing the matrix by row
(reduction <- reduce.matrix(na_matrix, distance = "gower"))

$rows.to.remove
[1] ngn onqn

#i#

$cols.to.remove
NULL

We can not remove the rows 1 and 9 and see if that improved the overlap:

image (t(na_matrix[-as.numeric(reduction$rows.to.remove), 1),
col = "black")

156 CHAPTER 6. OTHER FUNCTIONALITIES

1.0

0.8

0.6

0.4

00 0.2

6.9 select.axes

This function allows you to select which axes (or how many of them) are relevant
in your trait space analyses. Usually, when the trait space is an ordination,
workers select a certain number of axes to reduce the dimensionality of the
dataset by removing axes that contain relatively little information. This is
often done by selecting the axes from which the cumulative individual variance
is lower than an arbitrary threshold. For example, all the axes that contain
together 0.95 of the variance:

The USArrest example in R
ordination <- princomp(USArrests, cor = TRUE)

The loading of each variable
loadings(ordination)

##

Loadings:

#it Comp.1 Comp.2 Comp.3 Comp.4

Murder 0.536 0.418 0.341 0.649

Assault 0.583 0.188 0.268 -0.743

UrbanPop 0.278 -0.873 0.378 0.134

Rape 0.543 -0.167 -0.818

#i

Comp.1 Comp.2 Comp.3 Comp.4

6.9. SELECT.AXES 157

SS loadings 1.00 1.00 1.00 1.00
Proportion Var 0.25 0.25 0.25 0.25
Cumulative Var 0.25 0.50 0.75 1.00

Or the same operation but manually

variances <- apply(ordination$scores, 2, var)
scaled_variances <- variances/sum(variances)

sumed_variances <- cumsum(scaled_variances)

round (rbind(variances, scaled_variances, sumed_variances), 3)

#it Comp.1 Comp.2 Comp.3 Comp.4
variances 2.531 1.010 0.364 0.177
scaled_variances 0.620 0.247 0.089 0.043
sumed_variances 0.620 0.868 0.957 1.000

In this example, you can see that the three first axes are required to have at
least 0.95 of the variance. You can do that automatically in dispRity using the
select.axes function.

Same operation automatised
(selected <- select.axes(ordination))

The first 3 dimensions are needed to express at least 95, of the variance in the whole trait s
You can use x$dimensions to select them or use plot(x) and summary(x) to summarise them.

This function does basically what the script above does and allows the results
to be plotted or summarised into a table.

Summarising this info

summary (selected)

#it Comp.1l.var Comp.1l.sum Comp.2.var Comp.2.sum Comp.3.var Comp.3.sum
whole_space 0.62 0.62 0.247 0.868 0.089 0.957
#it Comp.4.var Comp.4.sum

whole_space 0.043 1

Plotting it
plot(selected)

158 CHAPTER 6. OTHER FUNCTIONALITIES

whole_space

o _
‘—| 1
_______________________________________ — U
i
1
0
® _| 0
=} i
© 0
8 '
(‘D 1
& S 7 :
m 1
> 1
0
8 = :
© o !
o 0
(n 1
o 0
=} i
i
1
o 1
o

Comp.1 Comp.2 Comp.3 Comp.4

Extracting the dimensions
(for the dispRity function for example)
selected$dimensions

[11 1 2 3

However, it might be interesting to not only consider the variance within the
whole trait space but also among groups of specific interest. E.g. if the 95% of
the variance is concentrated in the two first axes for the whole trait space, that
does not automatically mean that it is the case for each subset in this space.
Some subset might require more than the two first axes to express 95% of their
variance! You can thus use the select.axes function to look at the results per
group as well as through the whole trait space.

Note that you can always change the threshold value (default is 0.95).
Here for example we set it to 0.9 (we arbitrarily decide that explain
90% of the variance is enough).

Creating some groups of stats
states_groups <- list("Groupl" = c("Mississippi","North Carolina",
"South Carolina", "Georgia", "Alabama",
"Alaska", "Tennessee", "Louisiana"),
"Group2" = c("Florida", "New Mexico", "Michigan",
"Indiana", "Virginia", "Wyoming", "Montana",
"Maine", "Idaho", "New Hampshire", "Iowa"),
"Group3" = c("Rhode Island", "New Jersey", "Hawaii", "Massachuse
Running the same analyses but per groups

6.9. SELECT.AXES 159

selected <- select.axes(ordination, group = states_groups, threshold = 0.9)
Plotting the results

plot(selected)
Groupl Group2

() [)
(5] [}
8 g cttttommtoooooqes T 3 =1 P11 -
= © ' = © '
g S : g o :
2 . ° '
T o — : T o :
n © n ©

Comp.1 Comp.3 Comp.1 Comp.3

Group3 whole_space

Q Q
e T — :
= © ' = © 1
T S : g o g
3 : B :
g 3 ' R '
n © n ©

Comp.1 Comp.3 Comp.1 Comp.3

As you can see here, the whole space requires the three first axes to explain at
least 90% of the variance (in fact, 95% as seen before). However, different groups
have a different story! The Group 1 and 3 requires 4 dimensions whereas Group
2 requires only 1 dimensions (note how for Group 3, there is actually nearly no
variance explained on the second axes)! Using this method, you can safely use
the four axes returned by the function (selected$dimensions) so that every
group has at least 90% of their variance explained in the trait space.

If you’ve used the function if you’ve already done some grouping in your disparity
analyses (e.g. using the function custom.subsets or chrono.subsets), you can
use the generated dispRity to automatise this analyses:

Loading the dispRity package demo data
data(demo_data)

A dispRity object with two groups
demo_data$hopkins

---- dispRity object ----
2 customised subsets for 46 elements in one matrix:
#Hit adult, juvenile.

160 CHAPTER 6. OTHER FUNCTIONALITIES

Selecting axes on a dispRity object
selected <- select.axes(demo_data$hopkins)

plot(selected)

adult juvenile
Q Q
O e e e m e m e = O e e mmme—o
g ! g :
5 © ! 5 o -
S o© 0 S o '
° : 2 :
g o ' g o '
n ° » ©

PC1 PC6 PCl12 PC18 PC24 PC1 PC6 PCl2 PC18 PC24

whole_space

ﬂ

PC1 PC6 PCl12 PC18 PC24

0.6

Scaled variance
0.0

Displaying which axes are necessary for which group
selected$dim.list

$adult

[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
##

$juvenile

[1] 1 2 3 4 5 6 7 8 910 11 12 13 14 15 16 17 18 19 20 21 22 23
##

$whole_space

[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Note how the whole space needs only 16 axes
but both groups need 22 and 23 axes

6.10 set.root.time

This function can be used to easily add a $root.time element to "phylo" or
"multiPhylo" objects. This $root.time element is used by dispRity and
several packages (e.g. Claddis and paleotree) to scale the branch length units
of a tree allowing them to be usually expressed in million of years (Mya).

6.11. SLICE.TREE 161

For example, on a standard random tree, no $root.time exist so the edge
lengths are not expressed in any specific unit:

A random tree with no root.time
my_tree <- rtree(10)
my_tree$root.time # is NULL

NULL

You can add a root time by either manually setting it:

Adding an arbitrary root time
my_tree_arbitrary <- my_tree

Setting the age of the root to 42
my_tree_arbitrary$root.time <- 42

Or by calculating it automatically from the cumulated branch length informa-
tion (making the youngest tip age 0 and the oldest the total age/depth of the
tree)

Calculating the root time from the present
my_tree_aged <- my_tree
my_tree_aged <- set.root.time(my_tree)

If you want the youngest tip to not be of age 0, you can define an arbitrary age
for it and recalculate the age of the root from there using the present argument
(say the youngest tip is 42 Mya old):

Caculating the root time from 42 Mya

my_tree_age <- set.root.time(my_tree, present = 42)

This function also works with a distribution of trees ("multiPhylo").

6.11 slice.tree

This function is a modification of the paleotree::timeSliceTree func-
tion that allows to make slices through a phylogenetic tree. Compared
to the paleotree::timeSliceTree, this function allows a model to de-
cide which tip or node to use when slicing through a branch (whereas
paleotree::timeSliceTree always choose the first available tip alphabeti-
cally). The models for choosing which tip or node are the same as the ones
used in the chrono.subsets and are described in chapter 03: specific tutorials.

The function works by using at least a tree, a slice age and a model:

set.seed(1)

Generate a random ultrametric tree
tree <- rcoal(20)

Add some node labels
tree$node.label <- letters[1:19]

162 CHAPTER 6. OTHER FUNCTIONALITIES

Add its root time
tree$root.time <- max(tree.age(tree)$ages)

Slicing the tree at age 0.75
tree_75 <- slice.tree(tree, age = 0.75, "acctran")

Showing both trees

par(mfrow = c(1,2))

plot(tree, main = "original tree")

axisPhylo() ; nodelabels(tree$node.label, cex = 0.8)
abline(v = (max(tree.age(tree)$ages) - 0.75), col = "red")
plot(tree_75, main = "sliced tree")

original tree sliced tree

..
ONRPRRERNORRRE IR ERRORWN
PN WO U1oom RON

6.12 slide.nodes and remove.zero.brlen

This function allows to slide nodes along a tree! In other words it allows to
change the branch length leading to a node without modifying the overall tree
shape. This can be useful to add some value to 0 branch lengths for example.

The function works by taking a node (or a list of nodes), a tree and a sliding
value. The node will be moved “up” (towards the tips) for the given sliding
value. You can move the node “down” (towards the roots) using a negative
value.

6.12. SLIDE.NODES AND REMOVE.ZERO.BRLEN 163

set.seed(42)
Generating simple coalescent tree
tree <- rcoal(b)

Sliding node 8 up and down
tree_slide_up <- slide.nodes(8, tree, slide = 0.075)
tree_slide_down <- slide.nodes(8, tree, slide = -0.075)

Display the results

par (mfrow = c(3,1))

plot(tree, main = "original tree") ; axisPhylo() ; nodelabels()
plot(tree_slide_up, main = "slide up!") ; axisPhylo() ; nodelabels()
plot(tree_slide_down, main = "slide down!") ; axisPhylo() ; nodelabels()

164 CHAPTER 6. OTHER FUNCTIONALITIES

original tree
E
—
5
{
2
T T T T T 1
0.25 0.2 0.15 0.1 0.05 0
slide up!
E
—
5
E
2
T T T T T 1
0.25 0.2 0.15 0.1 0.05 0
slide down!

0.25 0.2 0.15 0.1 0.05 0

6.12. SLIDE.NODES AND REMOVE.ZERO.BRLEN 165

The remove.zero.brlen is a “clever” wrapping function that uses the
slide.nodes function to stochastically remove zero branch lengths across a
whole tree. This function will slide nodes up or down in successive postorder
traversals (i.e. going down the tree clade by clade) in order to minimise the
number of nodes to slide while making sure there are no silly negative branch
lengths produced! By default it is trying to slide the nodes using 1% of the
minimum branch length to avoid changing the topology too much.

set.seed(42)
Generating a tree
tree <- rtree(20)

Adding some zero branch lengths (5)
tree$edge.length[sample(1:Nedge(tree), 5)] <- 0

And now removing these zero branch lengths!
tree_no_zero <- remove.zero.brlen(tree)

Exaggerating the removal (to make it visible)
tree_exaggerated <- remove.zero.brlen(tree, slide = 1)

Check the differences
any(tree$edge.length == 0)

[1] TRUE
any(tree_no_zero$edge.length == 0)

[1] FALSE
any(tree_exaggerated$edge.length == 0)

[1] FALSE

Display the results

par (mfrow = c(3,1))

plot(tree, main = "with zero edges")
plot(tree_no_zero, main = "without zero edges!")
plot(tree_exaggerated, main = "with longer edges")

166 CHAPTER 6. OTHER FUNCTIONALITIES

with zero edges

without zero edges!

with longer edges

6.13. TREE.AGE 167

6.13 tree.age

This function allows to quickly calculate the ages of each tips and nodes present
in a tree.

set.seed(1)

tree <- rtree(10)

The tree age from a 10 tip tree
tree.age(tree)

#it ages elements
1 0.7068 t7
2 0.1417 t2
3 0.0000 t3
4 1.4675 t8
5 1.3656 t1
6 1.8949 t5
7 1.5360 t6
8 1.4558 t9
9 0.8147 t10
10 2.3426 t4
11 3.0111 11
12 2.6310 12
13 1.8536 13
14 0.9189 14
15 0.2672 15
16 2.6177 16
17 2.2353 17
18 2.1356 18
19 1.6420 19

It also allows to set the age of the root of the tree:

The ages starting from -100 units
tree.age(tree, age = 100)

#it ages elements
1 23.4717 t7
2 4.7048 t2
3 0.0000 t3
4 48.7362 t8
5 45.3517 t1
6 62.9315 t5
7 51.0119 t6
8 48.3486 t9
9 27.0554 t10
10 77.7998 t4

11 100.0000 11

168 CHAPTER 6. OTHER FUNCTIONALITIES

12 87.3788 12
13 61.5593 13
14 30.5171 14
15 8.8746 15
16 86.9341 16
17 74.2347 17
18 70.9239 18
19 54.5330 19

Usually tree age is calculated from the present to the past (e.g. in million years
ago) but it is possible to reverse it using the order = present option:

The ages in terms of tip/mode height

tree.age(tree, order = "present")
#Hit ages elements
1 2.3043 t7
2 2.8694 t2
3 3.0111 t3
4 1.5436 t8
5 1.6455 t1
6 1.1162 t5
7 1.4751 t6
8 1.5553 t9
9 2.1964 t10
10 0.6685 t4
11 0.0000 11
12 0.3800 12
13 1.1575 13
14 2.0922 14
15 2.7439 15
16 0.3934 16
17 0.7758 17
18 0.8755 18
19 1.3690 19

6.14 multi.ace

This function allows to run ancestral characters estimations on multiple trees.
In it’s most basic structure (e.g. using all default arguments) this function is
using a mix of ape::ace and castor::asr_mk_model depending on the data
and the situation and is generally faster than both functions when applied to a
list of trees. However, this function provides also some more complex and mod-
ular functionalities, especially appropriate when using discrete morphological
character data.

6.14. MULTI.ACE 169

6.14.1 Using different character tokens in different situa-
tions

This data can be often coded in non-standard way with different character tokens
having different meanings. For example, in some datasets the token - can mean
“the trait is inapplicable” but this can be also coded by the more conventional
NA or can mean “this trait is missing” (often coded ?). This makes the meaning
of specific tokens idiosyncratic to different matrices. For example we can have
the following discrete morphological matrix with all the data encoded:

set.seed(42)

A random tree with 10 tips

tree <- rcoal(10)

Setting up the parameters

my_rates = c(rgamma, rate = 10, shape = 5)

Generating a bunch of trees
multiple_trees <- rmtree(5, 10)

A random Mk matrix (10%50)

matrix_simple <- sim.morpho(tree, characters = 50, model = "ER", rates = my_rates,
invariant = FALSE)

matrix_simple[1:10, 1:10]

(,11 [,21 [,3] [,4] [,8] [,61 C,71 [,8] [,9] [,10]
##t8 "1" "1" "M "gvoowQon o UM Q" 0" 0" 1"
€3 "1" "1v Mgt mgnoomQoMo MQM MQM MQM MO Mp"
t2 lllll ||1Il ll1ll ll1ll llOIl lllll lllll lllll IIOII lllll
t1 "1 "LvoMgnoomgnoomQno mon o rgn o nmgm o wQr o g
£10 "1" "1 "M UgnoomQro voM o M oM Mpt Mg
##t9 "1™ "1™ "gvoUgnoomQon o voM riM voM Q" 1M
t5 "0" "O0" "O" "O" "i" 1" "i" Q" Q" Q"
t6 lloll IIOII IIOII IIOII lllll lllll lllll "O" IIOII IIOII
t4 lloll lIOIl IIOII l|0ll lllll IIOII IIOH IIOH lll" llOH
t7 "0" "O0" "O" "O" "i" "Oo" "O" "O" "1" "O"

But of course, as mentioned above, in practice, such matrices have more nuance
and can including missing characters, ambiguous characters, multi-state char-
acters, inapplicable characters, etc.. All these coded and defined by different
authors using different tokens (or symbols). Let’s give it a go and transform
this simple data to something more messy:

Modify the matrix to contain missing and special data
matrix_complex <- matrix_simple

Adding 50 random "-" tokens
matrix_complex[sample(1:length(matrix_complex), 50)] <- "-"
Adding 50 random "?7" tokens
matrix_complex[sample(1l:length(matrix_complex), 50)] <- "?7"

170 CHAPTER 6. OTHER FUNCTIONALITIES

Adding 50 random "072" tokens
matrix_complex[sample(1l:length(matrix_complex), 50)] <- "0%2"
matrix_complex[1:10,1:10]

(.11 [,21 [,3] [,41 [,81 [,e1 [,71 [,8] [,9] [,10]

t8 "1 "' Mivo M mpeomQmowQM o mQM MQM MO%2"
t3 "1" M- qgnoowgno o wpno o mQwomgno wQn o mQM o Mg
##t2 "1" "1" 0 "LM U0%2" "O" MO%2" "1 "1t not Mg
t1 "1 "gv o egnoowgeoowmQn o mQmo o wgn o wpn o wQuo g
tlo lllll IIO%2II lllll lllll n_n ll?ll IIO%2II llO%Qll lllll lllll
£9 M1 QM ngMoowgnowQy2m mOM gn o wQUo o mQM Mg
t5 "0 M-t mpnoowQn o mgn o mgeo o wgnoowgnoowQu o v
t6 "O" "-" QM vQOM MiM Mg v-no o w_m o wpwo g
t4 "?" "0" 0" 0" "1 "O" 0" 0" "1" "Q"
t7 IIOII IIOII IIOII "0%2" lllll IIOII IIOII n_n lllll n_n

In multi.ace you can specify what all these tokens actually mean and how
the code should interpret them. For example, - often means inapplicable data
(i.e. the specimen does not have the coded feature, for example, the colour of
the tail of a tailless bird); or ? that often means missing data (i.e. it is unknown
if the specimen has a tail or not since only the head was available). And more
than the differences in meaning between these characters, different people treat
these characters differently even if they have the same meaning for the token.
For example, one might want to treat - as meaning “we don’t know” (which
will be treated by the algorithm as “any possible trait value”) or “we know, and
it’s no possible” (which will be treated by the algorithm as NA). Because of this
situation, multi.ace allows combining any special case marked with a special
token to a special behaviour. For example we might want to create a special
case called "missing" (i.e. the data is missing) that we want to denote using the
token "?" and we can specify the algorithm to treat this "missing" cases ("?")
as treating the character token value as “any possible values”. This behaviour
can be hard coded by providing a function with the name of the behaviour. For
example:

The specific token for the missing cases (note the "\\" for protecting the value)
special.tokens <- c("missing" = "\\7")

The behaviour for the missing cases (7)
special.behaviour <- list(missing <- function(x, y) return(y))
Where x is the input value (here "?") and y is all the possible normal values for t

This example shows a very common case (and is actually used by default, more
on that below) but this architecture allows for very modular combination of
tokens and behaviours. For example, in our code above we introduced the
token "%" which is very odd (to my knowledge) and might mean something
very specific in our case. Say we want to call this case "weirdtoken" and mean

6.14. MULTI.ACE 171

that whenever this token is encountered in a character, it should be interpreted
by the algorithm as the values 1 and 2, no matter what:

Set a list of extra special tokens
my_spec_tokens <- c("weirdtoken" = "\\7")

Weird tokens are considered as state 0 and 3
my_spec_behaviours <- 1list()
my_spec_behaviours$weirdtoken <- function(x,y) return(c(1,2))

If you don’t need/don’t have any of this specific tokens, don’t worry, most special
but common tokens are handled by default as such:

The token for missing values:

default_tokens <- c('"missing" = "\\7",
The token for inapplicable values:
"inapplicable" = "\\-",
The token for polymorphisms:
"polymorphism" = "\\&",
The token for uncertainties:
"uncertanity" = "\\/")

With the following associated default behaviours

Treating missing data as all data values

default_behaviour <- list(missing <- function(x,y) vy,

Treating inapplicable data as all data values (like missing)
inapplicable <- function(x, y) vy,

Treating polymorphisms as all values present:
polymorphism <- function(x,y) strsplit(x, split

Treating uncertainties as all values present (like polymorphisms) :
uncertanity <- function(x,y) strsplit(x, split

"\\&") [[1171,

"\\/")LIID

We can then use these token description along with our complex matrix and our
list of trees to run the ancestral states estimations as follows:

Running ancestral states

ancestral_states <- multi.ace(matrix_complex, multiple_trees,
special.tokens = my_spec_tokens,
special.behaviours = my_spec_behaviours,
verbose = TRUE)

Preparing the data:...

Warning: The character 39 is invariant (using the current special behaviours
for special characters) and is simply duplicated for each node.

. .Done.

172 CHAPTER 6. OTHER FUNCTIONALITIES

This outputs a list of ancestral parts of the matrices for each tree
For example, here's the first one:
ancestral_states[[1]]1[1:9, 1:10]

(,11 [,21 [,31 [,4]1 [,5] [,6] (.71 [,8] [,9]1 [,10]

nl Il1l| Il1l| ||1l| lllll lllll IIO/1/2" lllll I|OI’ IIOII ’llll
n2 "1" lllll lllll lllll llo/lll IIO/1/2II "0/1" IIOII "OII lllll
nS II1II |I1l| |I1Il l|1|l I|O/1l| IIO/1/2|I IIOII IIOII IlOlI Il1|l
n4 |l1l| Il1l| |I1ll l|1|l lloll IIO/1/2|I lllll ll1|| IlOlI Il1||
n5 Illll Il1l| lllll II1II lllll IIO/1/2II lI1II IIOII IIOII Illll
n6 Il1l| Il1l| ||1l| II1II II1II IIO/1/2II lllll IIOII I|OII Illll
n7 IIOII "0/1" lIO/lll IIOII Illll Il1ll ll1ll "OII "OII "0/1"
n8 IIO" IIO" |I0|l IIOII lllll IIO/1/2H IIOII llOH lllll IIOII
n9 IIOII IIOll |IOIl lloll n 1|l Il1|| lloll IlOlI n 1|I IlOlI

Note that there are many different options that are not covered here. For exam-
ple, you can use different models for each character via the models argument,
you can specify how to handle uncertainties via the threshold argument, use a
branch length modifier (brlen.multiplier), specify the type of output, etc...

6.14.2 Feeding the results to char.diff to get distance ma-
trices

After running your ancestral states estimations, it is not uncommon to then use
these resulting data to calculate the distances between taxa and then ordinate
the results to measure disparity. You can do that using the char.diff func-
tion described above but instead of measuring the distances between characters
(columns) you can measure the distances between species (rows). You might no-
tice that this function uses the same modular token and behaviour descriptions.
That makes sense because they're using the same core C functions implemented
in dispRity that greatly speed up distance calculations.

Running ancestral states

and outputing a list of combined matrices (tips and nodes)

ancestral_states <- multi.ace(matrix_complex, multiple_trees,
special.tokens = my_spec_tokens,
special.behaviours = my_spec_behaviours,
output = "combined.matrix",
verbose = TRUE)

Preparing the data:...

Warning: The character 39 is invariant (using the current special behaviours
for special characters) and is simply duplicated for each node.

. .Done.

6.14. MULTI.ACE 173

We can then feed these matrices directly to char.diff, say for calculating the
“MORD?” distance:

Measuring the distances between rows using the MORD distance
distances <- lapply(ancestral_states, char.diff, method = "mord", by.col = FALSE)

And we now have a list of distances matrices with ancestral states estimated!

6.14.3 Running ancestral states estimations for continuous
characters

You can also run multi.ace on continuous characters. The function detects
any continuous characters as being of class "numeric" and runs them using the
ape: :ace function.

set.seed (1)

Creating three coalescent trees

my_trees <- replicate(3, rcoal(15), simplify = FALSE)
Adding node labels

my_trees <- lapply(my_trees, makeNodeLabel)

Making into a multiPhylo object

class(my_trees) <- "multiPhylo"

Creating a matrix of continuous characters
data <- space.maker(elements = 15, dimensions = 5, distribution = rnorm,
elements.name = my_trees[[1]]$tip.label)

With such data and trees you can easily run the multi.ace estimations. By
default, the estimations use the default arguments from ape: :ace, knowingly a
Brownian Motion (model = "BM") with the REML method (method = "REML";
this method “first estimates the ancestral value at the root (aka, the phyloge-
netic mean), then the variance of the Brownian motion process is estimated by
optimizing the residual log-likelihood” - from ?ape: :ace).

Running multi.ace on continuous data

my_ancestral_states <- multi.ace(data, my_trees)

Warning in sqrt(1/out$hessian): NaNs produced
Warning in sqrt(l/out$hessian): NaNs produced
Warning in sqrt(l/out$hessian): NaNs produced
Warning in sqrt(1l/out$hessian): NaNs produced
Warning in sqrt(1/out$hessian): NaNs produced
Warning in sqrt(1/out$hessian): NaNs produced
Warning in sqrt(1/out$hessian): NaNs produced
Warning in sqrt(l/out$hessian): NaNs produced
Warning in sqrt(l/out$hessian): NaNs produced
Warning in sqrt(1/out$hessian): NaNs produced
Warning in sqrt(1/out$hessian): NaNs produced

174 CHAPTER 6. OTHER FUNCTIONALITIES

Warning in sqrt(l/out$hessian): NaNs produced
Warning in sqrt(1l/out$hessian): NaNs produced

We end up with three matrices of node states estimates
str(my_ancestral_states)

List of 3
¢ : num [1:14, 1:5] -0.191 -0.155 -0.227 -0.17 0.138 ...

#it ..— attr(*, "dimnames")=List of 2

.. ..$: chr [1:14] "Nodel" "Node2" "Node3" "Node4"

.. ..$: NULL

¢ : num [1:14, 1:5] -0.385 -0.552 -0.445 -0.435 -0.478 ..
#it ..— attr(*, "dimnames")=List of 2

.. ..% : chr [1:14] "Nodel" "Node2" "Node3" "Node4d"

.. ..$: NULL

¢ : num [1:14, 1:5] -0.3866 -0.2232 -0.0592 -0.7246 -0.2253 ...
..— attr(x, "dimnames")=List of 2

.. ..$: chr [1:14] "Nodel" "Node2" "Node3" "Node4d"

.. ..$: NULL

This results in three matrices with ancestral states for the nodes. When us-
ing continuous characters, however, you can output the results directly as a
dispRity object that allows visualisation and other normal dispRity pipeline:

Running multi.ace on continuous data
my_ancestral_states <- multi.ace(data, my_trees, output = "dispRity")

Warning in sqrt(l/out$hessian): NaNs produced
Warning in sqrt(l/out$hessian): NaNs produced
Warning in sqrt(l/out$hessian): NaNs produced
Warning in sqrt(1/out$hessian): NaNs produced
Warning in sqrt(l/out$hessian): NaNs produced
Warning in sqrt(l/out$hessian): NaNs produced
Warning in sqrt(l/out$hessian): NaNs produced
Warning in sqrt(1l/out$hessian): NaNs produced
Warning in sqrt(1/out$hessian): NaNs produced
Warning in sqrt(1/out$hessian): NaNs produced
Warning in sqrt(l/out$hessian): NaNs produced
Warning in sqrt(l/out$hessian): NaNs produced
Warning in sqrt(l/out$hessian): NaNs produced

We end up with three matrices of node states estimates
plot (my_ancestral_states)

6.14. MULTI.ACE 175

[]
o~ —
S °
@Q
g - - . :
@
N
c ° L 3 ®
2 @ e® oo
@ _
5 e ® .". .'.) °
g e % []
°
[° &° °
° []
I I I I
-1 0 1 2

Dimension 1 (15.15%)

You can also mix continuous and discrete characters together. By default the
multi.ace detects which character is of which type and applies the correct
estimations based on that. However you can always specify models or other
details character per characters.

Adding two discrete characters

data <- as.data.frame(data)

data <- cbind(data, "new_char" = as.character(sample(1:2, 15, replace = TRUE)))
data <- cbind(data, "new_char2" = as.character(sample(1:2, 15, replace = TRUE)))

Setting up different models for each characters
BM for all 5 continuous characters

and ER and ARD for the two discrete ones
my_models <- c(rep("BM", 5), "ER", "ARD")

Running the estimation with the specified models
my_ancestral_states <- multi.ace(data, my_trees, models = my_models)

Warning in sqrt(1/out$hessian): NaNs produced
Warning in sqrt(1/out$hessian): NaNs produced
Warning in sqrt(1/out$hessian): NaNs produced
Warning in sqrt(1/out$hessian): NaNs produced
Warning in sqrt(l/out$hessian): NaNs produced
Warning in sqrt(l/out$hessian): NaNs produced
Warning in sqrt(l1/out$hessian): NaNs produced
Warning in sqrt(1/out$hessian): NaNs produced

176 CHAPTER 6. OTHER FUNCTIONALITIES

Warning in sqrt(l/out$hessian): NaNs produced
Warning in sqrt(1l/out$hessian): NaNs produced
Warning in sqrt(1/out$hessian): NaNs produced
Warning in sqrt(1/out$hessian): NaNs produced
Warning in sqrt(l/out$hessian): NaNs produced

Of course all the options discussed in the first part above also can apply here!

Chapter 7

The guts of the dispRity
package

7.1 Manipulating dispRity objects

Disparity analysis involves a lot of manipulation of many matrices (especially
when bootstrapping) which can be impractical to visualise and will quickly over-
whelm your R console. Even the simple Beck and Lee 2014 example above
produces an object with > 72 lines of lists of lists of matrices!

Therefore dispRity uses a specific class of object called a dispRity object.
These objects allow users to use S3 method functions such as summary.dispRity,
plot.dispRity and print.dispRity. dispRity also contains various util-
ity functions that manipulate the dispRity object (e.g. sort.dispRity,
extract.dispRity see the full list in the next section). These functions modify
the dispRity object without having to delve into its complex structure! The
full structure of a dispRity object is detailed here.

Loading the example data
data(disparity)

What is the class of the median_centroids object?
class(disparity)

[1] "dispRity"
What does the object contain?
names (disparity)

[1] "matrix" "tree" "call" "subsets" "disparity"

177

https://github.com/TGuillerme/dispRity/blob/master/disparity_object.md

178 CHAPTER 7. THE GUTS OF THE DISPRITY PACKAGE

Summarising it using the S3 method print.dispRity
disparity

---- dispRity object ----

7 continuous (acctran) time subsets for 99 elements in one matrix with 97 dimension
#i 90, 80, 70, 60, 50 ...

Rows were bootstrapped 100 times (method:"full") and rarefied to 20, 15, 10, 5 elem
Disparity was calculated as: c(median, centroids).

Note that it is always possible to recall the full object using the argument all
= TRUE in print.dispRity:

Display the full object

print(disparity, all = TRUE)

This is more nearly ~ 5000 lines on my 13 inch laptop screen!

7.2 dispRity utilities

The package also provides some utility functions to facilitate multidimensional
analysis.

7.2.1 dispRity object utilities

The first set of utilities are functions for manipulating dispRity objects:

7.2.1.1 make.dispRity

This function creates empty dispRity objects.
Creating an empty dispRity object
make.dispRity()

Empty dispRity object.
Creating an "empty" dispRity object with a matrix
(disparity_obj <- make.dispRity(matrix(rnorm(20), 5, 4)))

---- dispRity object ----
Contains a matrix 5x4.
7.2.1.2 £ill.dispRity

This function initialises a dispRity object and generates its call properties.

The dispRity object's call is indeed empty
disparity_obj$call

1list ()

7.2. DISPRITY UTILITIES 179

Filling an empty disparity object (that needs to contain at least a matrix)
(disparity_obj <- fill.dispRity(disparity_obj))

Warning in check.data(data, match_call): Row names have been automatically
added to data$matrix.

—-—-- dispRity object ----

5 elements in one matrix with 4 dimensions.

The dipRity object has now the correct minimal attributes
disparity_obj$call

$dimensions
[1] 1 2 3 4

7.2.1.3 get.matrix
This function extracts a specific matrix from a disparity object. The matrix can
be one of the bootstrapped matrices or/and a rarefied matrix.

Extracting the matrix containing the coordinates of the elements at time 50
str(get.matrix(disparity, "50"))

num [1:18, 1:97] -0.1 0.427 0.333 0.054 0.674 ...

- attr(*, "dimnames")=List of 2

..$: chr [1:18] "Leptictis" "Dasypodidae" "n24" "Potamogalinae"
..$: NULL

Extracting the 3rd bootstrapped matrix with the 2nd rarefaction level
(15 elements) from the second group (80 Mya)
str(get.matrix(disparity, subsets = 1, bootstrap = 3, rarefaction = 2))

num [1:15, 1:97] -0.134942 -0.571937 0.000589 0.266188 0.266188 ...
- attr(*, "dimnames")=List of 2

..$: chr [1:15] "n15" "Maelestes" "n20" "n34"

..$: NULL

7.2.1.4 n.subsets

This function simply counts the number of subsets in a dispRity object.

How many subsets are in this object?
n.subsets(disparity)

[11 7

7.2.1.5 name.subsets

This function gets you the names of the subsets in a dispRity object as a vector.

180 CHAPTER 7. THE GUTS OF THE DISPRITY PACKAGE

What are they called?
name.subsets(disparity)

[1] “90" II80II |I7OII ||60Il "50" "40" l|30|l

7.2.1.6 size.subsets

This function tells the number of elements in each subsets of a dispRity object.

How many elements are there in each subset?
size.subsets(disparity)

90 80 70 60 50 40 30
18 22 23 21 18 15 10

7.2.1.7 get.subsets
This function creates a dispRity object that contains only elements from one
specific subsets.

Extracting all the data for the crown mammals
(crown_mammals <- get.subsets(disp_crown_stemBS, "Group.crown'"))

The object keeps the properties of the parent object but is composed of only one su
length(crown_mammals$subsets)

7.2.1.8 combine.subsets

This function allows to merge different subsets.

Combine the two first subsets in the dispRity data example
combine.subsets(disparity, c(1,2))

Note that the computed values (bootstrapped data + disparity metric) are not
merge.

7.2.1.9 get.disparity

This function extracts the calculated disparity values of a specific matrix.

Extracting the observed disparity (default)
get.disparity(disparity)

Extracting the disparity from the bootstrapped values from the
10th rarefaction level from the second subsets (80 Mya)
get.disparity(disparity, observed = FALSE, subsets = 2, rarefaction = 10)

7.2. DISPRITY UTILITIES 181

7.2.1.10 scale.dispRity

This is the modified S3 method for scale (scaling and/or centring) that can
be applied to the disparity data of a dispRity object and can take optional
arguments (for example the rescaling by dividing by a maximum value).

Getting the disparity values of the time subsets
head (summary(disparity))

Scaling the same disparity values
head (summary(scale.dispRity(disparity, scale

TRUE)))

Scaling and centering:

head (summary(scale.dispRity(disparity, scale = TRUE, center = TRUE)))

Rescaling the value by dividing by a maximum value
head (summary(scale.dispRity(disparity, max = 10)))

7.2.1.11 sort.dispRity
This is the S3 method of sort for sorting the subsets alphabetically (default)
or following a specific pattern.

Sorting the disparity subsets in inverse alphabetic order
head (summary(sort(disparity, decreasing = TRUE)))

Customised sorting
head (summary (sort(disparity, sort = c(7, 1, 3, 4, 5, 2, 6))))

7.2.1.12 get.tree add.tree and remove.tree

These functions allow to manipulate the potential tree components of dispRity
objects.

Getting the tree component of a dispRity object
get.tree(disparity)

Removing the tree
remove.tree(disparity)

Adding a tree
add.tree(disparity, tree = BeckLee_tree)

Note that get.tree can also be used to extract trees from different subsets
(custom or continuous/discrete subsets).

For example, if we have three time bins like in the example below we have three
time bins and we can extract the subtrees for these three time bins in different
ways using the option subsets and to.root:

182 CHAPTER 7. THE GUTS OF THE DISPRITY PACKAGE

Load the Beck & Lee 2014 data
data(BeckLee_tree) ; data(BeckLee_mat99) ; data(BeckLee_ages)

Time binning (discrete method)

Generate two discrete time bins from 120 to 40 Ma every 20 Ma

time_bins <- chrono.subsets(data = BeckLee_mat99, tree = BeckLee_tree,
method = "discrete", time = c(120, 100, 80, 60),
inc.nodes = TRUE, FADLAD = BeckLee_ages)

Getting the subtrees all the way to the root
root_subsets <- get.tree(time_bins, subsets = TRUE)

Plotting the bin contents
0old_par <- par(mfrow = c(2,2))
plot(BecklLee_tree, main = "original tree", show.tip.label = FALSE)
axisPhylo()
abline(v = BeckLee_tree$root.time - c(120, 100, 80, 60))
for(i in 1:3) {
plot(root_subsets[[i]], main = names(root_subsets) [i],
show.tip.label = FALSE)

axisPhylo ()
3
original tree 120 - 100
i S ——
T T T T T 1
140 100 60 40 20 O 120 115 110 105 100
100 - 80 80 - 60
e I
e
T —————=
T T T (R T T T L
100 95 90 85 80 80 75 70 65 60

7.2. DISPRITY UTILITIES 183

par (old_par)

But we can also extract the subtrees containing only branch lengths for the
actual bins using to.root = FALSE:

Getting the subtrees all the way to the root
bin_subsets <- get.tree(time_bins, subsets = TRUE, to.root = FALSE)

Plotting the bin contents
0ld_par <- par(mfrow = c(2,2))
plot(BecklLee_tree, main = "original tree", show.tip.label = FALSE)
axisPhylo()
abline(v = BeckLee_tree$root.time - c(120, 100, 80, 60))
for(i in 1:3) {
plot(bin_subsets[[i]], main = names(bin_subsets) [i],
show.tip.label = FALSE)

axisPhylo()
}
original tree 120 - 100
——
I [T T T 1
140 100 60 40 20 O 120 115 110 105 100
100 - 80 80 - 60
= S
. —
— ———(——=
T T T T 1 T T T 1
100 95 90 85 80 80 75 70 65 60

par(old_par)

This can be useful for example for calculating the branch lengths in each bin:

How many cumulated phylogenetic diversity in each bin?
lapply(bin_subsets, function(tree) sum(tree$edge.length))

$°120 - 100"

184 CHAPTER 7. THE GUTS OF THE DISPRITY PACKAGE

[1] 189.2829
#it

$°100 - 80"
[1] 341.7223
#i#

$°80 - 60°
[1] 426.7486

7.3 The dispRity object content

The functions above are utilities to easily and safely access different elements
in the dispRity object. Alternatively, of course, each elements can be accessed
manually. Here is an explanation on how it works. The dispRity object is a
list of two to four elements, each of which are detailed below:

e $matrix: an object of class 1ist that contains at least one object of class
matrix: the full multidimensional space.

e $call: an object of class 1ist containing information on the dispRity
object content.

e $subsets: an object of class 1ist containing the subsets of the multidi-
mensional space.

e $disparity: an object of class 1ist containing the disparity values.

The dispRity object is loosely based on C structure objects. In fact, it is
composed of one unique instance of a matrix (the multidimensional space) upon
which the metric function is called via “pointers” to only a certain number of
elements and /or dimensions of this matrix. This allows for: (1) faster and easily
tractable execution time: the metric functions are called through apply family
function and can be parallelised; and (2) a really low memory footprint: at any
time, only one matrix (or list of matrices) is present in the R environment rather
than multiple copies of it for each subset.

7.3.1 $matrix

This is the multidimensional space, stored in the R environment as a 1ist object
containing one or more matrix objects. Each matrix requires row names but not
column names (optional). By default, if the row names are missing, dispRity
function will arbitrarily generate them in numeric order (i.e. rownames (matrix)
<- l:nrow(matrix)). This element of the dispRity object is never modified.

7.3.2 $call

This element contains the information on the dispRity object content. It is a
list that can contain the following:

e $callPsubsets: a vector of character with information on the sub-
sets type (either "continuous", "discrete" or "custom"), their eventual

7.3.

THE DISPRITY OBJECT CONTENT 185

model ("acctran", "deltran", "random", "proximity", "equal.split",
"gradual.split") and eventual information about the trees and matri-
ces used through chrono.subsets. This element generated only once via
chrono.subsets() and custom.subsets().
$call$dimensions: either a single numeric value indicating how many
dimensions to use or a vector of numeric values indicating which specific
dimensions to use. This element is by default the number of columns in
$matrix but can be modified through boot.matrix() or dispRity().
$call$bootstrap: this is a 1ist containing three elements:

— [[1]1]: the number of bootstrap replicates (numeric)

— [[2]1]: the bootstrap method (character)

— [[31]: the rarefaction levels (numeric vector)
$call$disparity: thisis a 1ist containing one element, $metric, that is
a list containing the different functions passed to the metric argument
in dispRity. These are call elements and get modified each time the
dispRity function is used (the first element is the first metric(s), the
second, the second metric(s), etc.).

7.3.3 $subsets

This element contain the eventual subsets of the multidimensional space. It is
a list of subset names. Each subset name is in turn a list of at least one
element called elements which is in turn a matrix. This elements matrix is
the raw (observed) elements in the subsets. The elements matrix is composed
of numeric values in one column and n rows (the number of elements in the
subset). Each of these values are a “pointer” (C inspired) to the element of
the $matrix. For example, lets assume a dispRity object called disparity,
composed of at least one subsets called subi:

disparity$subsets$subl$elements

[1,]
2,1]
(3,]
[4,]

[,1]
5

4
6
7

The values in the matrix “point” to the elements in $matrix: here, the multi-
dimensional space with only the 4th, 5th, 6th and 7th elements. The following
elements in diparity$subsets$subl will correspond to the same “pointers” but
drawn from the bootstrap replicates. The columns will correspond to different
bootstrap replicates. For example:

disparity$subsets$subl[[2]]

(1,]

(3,1]

(,11 [,2]1 [,3] [,4]
57 43 70 4
43 44 4 4
42 84 44 1

186 CHAPTER 7. THE GUTS OF THE DISPRITY PACKAGE

[4,] 84 7 2 10

This signifies that we have four bootstrap pseudo-replicates pointing each time
to four elements in $matrix. The next element ([[3]]) will be the same for
the eventual first rarefaction level (i.e. the resulting bootstrap matrix will have
m rows where m is the number of elements for this rarefaction level). The next
element after that ([[41]) will be the same for with an other rarefaction level
and so forth...

When a probabilistic model was used to select the elements (models that have
the "split" suffix, e.g. chrono.subsets(..., model = "gradual.split")),
the $elements is a matrix containing a pair of elements of the matrix and a
probability for sampling the first element in that list:

disparity$subsets$subl$elements
[,11 [,2] [,3]

[1,] 73 36 0.01871893

[2,] 74 37 0.02555876

[3,] 33 38 0.85679821

In this example, you can read the table row by row as: “there is a probability of
0.018 for sampling element 73 and a probability of 0.82 (1-0.018) of sampling
element 36"

7.3.4 $disparity

The $disparity element is identical to the $subsets element structure (a list of
list(s) containing matrices) but the matrices don’t contain “pointers” to $matrix
but the disparity result of the disparity metric applied to the “pointers”. For
example, in our first example ($elements) from above, if the disparity metric
is of dimensions level 1, we would have:

disparity$disparity$subl$elements
[,1]
[1,] 1.82

This is the observed disparity (1.82) for the subset called sub1. If the disparity
metric is of dimension level 2 (say the function range that outputs two values),
we would have:

disparity$disparity$subli$elements

[,1]
[1,] 0.82
[2,] 2.82

The following elements in the list follow the same logic as before: rows are dis-
parity values (one row for a dimension level 1 metric, multiple for a dimensions
level 2 metric) and columns are the bootstrap replicates (the bootstrap with
all elements followed by the eventual rarefaction levels). For example for the
bootstrap without rarefaction (second element of the list):

7.3. THE DISPRITY OBJECT CONTENT 187

disparity$disparity$subl [[2]]
[,1] [,2] [,3] [,4]
[1,] 1.744668 1.777418 1.781624 1.739679

188 CHAPTER 7. THE GUTS OF THE DISPRITY PACKAGE

Chapter 8

dispRity ecology demo

This is an example of typical disparity analysis that can be performed in ecology.

8.1 Data

For this example, we will use the famous iris inbuilt data set

data(iris)

This data contains petal and sepal length for 150 individual plants sorted into
three species.

Separating the species
species <- iris[,5]

Which species?
unique(species)

[1] setosa versicolor virginica
Levels: setosa versicolor virginica

Separating the petal/sepal length
measurements <- iris[,1:4]
head (measurements)

Sepal.Length Sepal.Width Petal.Length Petal.Width

1 5.1 3.5 1.4 0.2
2 4.9 3.0 1.4 0.2
3 4.7 3.2 1.3 0.2
4 4.6 3.1 1.5 0.2
5 5.0 3.6 1.4 0.2
6 5.4 3.9 1.7 0.4

189

190 CHAPTER 8. DISPRITY ECOLOGY DEMO

We can then ordinate the data using a PCA (prcomp function) thus defining
our four dimensional space as the poetically named petal-space.

Ordinating the data
ordination <- prcomp(measurements)

The petal-space
petal_space <- ordination$x

Adding the elements names to the petal-space (the individuals IDs)
rownames (petal_space) <- 1:nrow(petal_space)

8.2 Classic analysis

A classical way to represent this ordinated data would be to use two dimensional
plots to look at how the different species are distributed in the petal-space.

Measuring the variance on each axis
axis_variances <- apply(petal_space, 2, var)
axis_variances <- axis_variances/sum(axis_variances)

Graphical option
par(bty = "n")

A classic 2D ordination plot

plot(petal_space[, 1], petal_spacel[, 2], col = species,
xlab = pasteO("PC 1 (", round(axis_variances[1], 2), ")"),
ylab = pasteO("PC 2 (", round(axis_variances([2], 2), ")"))

8.2. CLASSIC ANALYSIS

191

o
o
- 7] 1) ©
5 o
o o
o o
g—OO OOOO
o le) OO O
°3 o B 9
g o(go ooo%
SN) Sale oY o°©
S S o o
~ © o o
o~ o ~Qq°
0 O
%) @Oo O%oo
o ® (@)
o) %% o ©
1 8 °
(o)
OO 7
o o
o5 -
| e}
o
o
[I I I I I I]
-3 -2 -1 0 1 2 3 4
PC 1 (0.92)

This shows the distribution of the different species in the petal-space along
the two first axis of variation. This is a pretty standard way to visualise the
multidimensional space and further analysis might be necessary to test wether
the groups are different such as a linear discriminant analysis (LDA). However,
in this case we are ignoring the two other dimensions of the ordination! If we
look at the two other axis we see a totally different result:

Plotting the two second axis of the petal-space
plot(petal_spacel[, 3], petal_spacel, 4], col = species,
xlab = paste0("PC 3 (", round(axis_variances[3], 2), ")"),

ylab

paste0("PC 4 (", round(axis_variances([4], 2), ")"))

192 CHAPTER 8. DISPRITY ECOLOGY DEMO

<
o
o)
o
N (@) (o]
o
(o] o S ® (o] o
(o]
jan) [e) oOO %)
-
o o 0O o o g (@)
S o | @ O@Od%bo ©©° °
<+ © 5 © Q)C%OO 80 o~ &
O o) % OO (o] (o]
o o O
O (e?oo
N o ©
? | (ele}) o
O O
o
° o © o
<
S -
1
I I I
-0.5 0.0 0.5
PC 3 (0.02)

Additionally, these two represented dimensions do not represent a biological re-
ality per se; i.e. the values on the first dimension do not represent a continuous
trait (e.g. petal length), instead they just represent the ordinations of correla-
tions between the data and some factors.

Therefore, we might want to approach this problem without getting stuck in
only two dimensions and consider the whole dataset as a n-dimensional object.

8.3 A multidimensional approach with dispRity

The first step is to create different subsets that represent subsets of the ordinated
space (i.e. sub-regions within the n-dimensional object). Each of these subsets
will contain only the individuals of a specific species.

Creating the table that contain the elements and their attributes

petal_subsets <- custom.subsets(petal_space, group = list(
"setosa" = which(species == "setosa"),

8.3. A MULTIDIMENSIONAL APPROACH WITH DISPRITY 193

"versicolor" = which(species == "versicolor"),
"virginica" = which(species == "virginica")))

Visualising the dispRity object content
petal_subsets

---- dispRity object ----
3 customised subsets for 150 elements in one matrix:
#i# setosa, versicolor, virginica.

This created a dispRity object (more about that here) with three subsets cor-
responding to each subspecies.

8.3.1 Bootstrapping the data

We can the bootstrap the subsets to be able test the robustness of the measured
disparity to outliers. We can do that using the default options of boot.matrix
(more about that here):

Bootstrapping the data
(petal_bootstrapped <- boot.matrix(petal_subsets))

---- dispRity object ----
3 customised subsets for 150 elements in one matrix with 4 dimensions:
#i# setosa, versicolor, virginica.

Rows were bootstrapped 100 times (method:"full").

8.3.2 Calculating disparity

Disparity can be calculated in many ways, therefore the dispRity function
allows users to define their own measure of disparity. For more details on mea-
suring disparity, see the dispRity metrics section.

In this example, we are going to define disparity as the median distance be-
tween the different individuals and the centroid of the ordinated space. High
values of disparity will indicate a generally high spread of points from this cen-
troid (i.e. on average, the individuals are far apart in the ordinated space). We
can define the metrics easily in the dispRity function by feeding them to the
metric argument. Here we are going to feed the functions stats: :median and
dispRity::centroids which calculates distances between elements and their
centroid.

Calculating disparity as the median distance between each elements and
the centroid of the petal-space

(petal_disparity <- dispRity(petal_bootstrapped, metric = c(median, centroids)))

—---- dispRity object ----
3 customised subsets for 150 elements in one matrix with 4 dimensions:

194 CHAPTER 8. DISPRITY ECOLOGY DEMO

setosa, versicolor, virginica.
Rows were bootstrapped 100 times (method:"full").
Disparity was calculated as: c(median, centroids).

8.3.3 Summarising the results (plot)

Similarly to the custom.subsets and boot .matrix function, dispRity displays
a dispRity object. But we are definitely more interested in actually look at the
calculated values.

First we can summarise the data in a table by simply using summary:

Displaying the summary of the calculated disparity
summary (petal_disparity)

subsets n obs bs.median 2.5% 25% 75% 97.5%
1 setosa 50 0.421 0.432 0.363 0.409 0.456 0.502
2 versicolor 50 0.693 0.662 0.563 0.618 0.702 0.781
3 virginica 50 0.785 0.719 0.548 0.652 0.786 0.902

We can also plot the results in a similar way:

Graphical options
par(bty = "n")

Plotting the disparity in the petal_space
plot(petal_disparity)

8.3. A MULTIDIMENSIONAL APPROACH WITH DISPRITY 195

© _
—
o | |
© |
o .
o _| |
Corn) O :
U) 1
8 |
e 1
= N~ '
5 ©
o
c :
S @ - |
o ©O | '
£ S — :
o o :
LQ — 1
o . !
.|
o 1
| | |
setosa versicolor virginica
Subsets

Now contrary to simply plotting the two first axis of the PCA where we saw
that the species have a different position in the two first petal-space, we can
now also see that they occupy this space clearly differently!

8.3.4 Testing hypothesis

Finally we can test our hypothesis that we guessed from the disparity plot
(that some groups occupy different volume of the petal-space) by using the
test.dispRity option.

Running a PERMANOVA

test.dispRity(petal_disparity, test = adonis.dispRity)

Warning in test.dispRity(petal_disparity, test = adonis.dispRity): adonis.dispRity test will 1
See 7adonis.dispRity for more details.

Warning in adonis.dispRity(data, ...): The input data for adonis.dispRity was not a distance n
The results are thus based on the distance matrix for the input data (i.e. dist(data$matrix[[1

196 CHAPTER 8. DISPRITY ECOLOGY DEMO

Make sure that this is the desired methodological approach!

Permutation test for adonis under reduced model
Permutation: free
Number of permutations: 999

##

vegan::adonis2(formula = dist(matrix) ~ group, method = "euclidean")
#i# Df Sum0fSqgs R2 F Pr(OF)

Model 2 592.07 0.86894 487.33 0.001 x*x*x*

Residual 147 89.30 0.13106

Total 149 681.37 1.00000

——-

Signif. codes: O 's*xx' 0.001 'sx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Post-hoc testing of the differences between species (corrected for multiple tests)
test.dispRity(petal_disparity, test = t.test, correction = "bonferroni")

[[1]]

#i#t statistic: t
setosa : versicolor -33.37334
setosa : virginica -28.36656
versicolor : virginica -5.24564
#i#

[[2]]

#Hit parameter: df
setosa : versicolor 166.2319
setosa : virginica 127.7601
versicolor : virginica 164.6248
##

[[3]]

p-value
setosa : versicolor 4.126944e-75
setosa : virginica 1.637347e-56
versicolor : virginica 1.420552e-06
##

[[4]]

stderr
setosa : versicolor 0.006875869
setosa : virginica 0.010145340

versicolor : virginica 0.011117360

We can now see that there is a significant difference in petal-space occupancy
between all species of iris.

8.3.4.1 Setting up a multidimensional null-hypothesis

One other series of test can be done on the shape of the petal-space. Using a
MCMC permutation test we can simulate a petal-space with specific properties

8.3. A MULTIDIMENSIONAL APPROACH WITH DISPRITY 197

and see if our observed petal-space matches these properties (similarly to Diaz

et al. [2016]):

Testing against a uniform distribution

disparity_uniform <- null.test(petal_disparity, replicates = 200,
null.distrib = runif, scale = FALSE)

plot(disparity_uniform)

MC test for subsets setosa MC test for subsets versicolor
— p-value I — p-value[]]
0.00498 0 0.00498|
& N T

Frequency
15
Frequency
15
1

[I I] [I I]
0.45 050 055 0.60 055 060 065 0.70

sim sim

MC test for subsets virginica

o _ —
© p-valhi
| 0.0049
>
g 9 -
5]
> —
o
L o |
L N
o -
[T T T T 1
0.55 0.65 0.75

sim

Testing against a normal distribution

disparity_normal <- null.test(petal_disparity, replicates = 200,
null.distrib = rnorm, scale = TRUE)

plot(disparity_normal)

198 CHAPTER 8. DISPRITY ECOLOGY DEMO

MC test for subsets setosa

40

p-value
0.00498

Frequency
20 30

10

0.5 1.0 15 2.0

sim

MC test for subsets virginica

71 p-value
0.00498

Frequency
20 40 60 80

0
L

0.8 1.2 1.6 2.0

sim

Frequency

MC test for subsets versicolor

71 p-value
0.00498

20 30 40
|

10

0
L

sim

In both cases we can see that our petal-space is not entirely normal or uniform.
This is expected because of the simplicity of these parameters.

Chapter 9

Palaeobiology demo:
disparity-through-time and
within groups

This demo aims to give quick overview of the dispRity package (v.1.7) for
palaeobiology analyses of disparity, including disparity through time analyses.

This demo showcases a typical disparity-through-time analysis: we are going
to test whether the disparity changed through time in a subset of eutherian
mammals from the last 100 million years using a dataset from Beck and Lee
[2014].

9.1 Before starting

9.1.1 The morphospace

In this example, we are going to use a subset of the data from Beck and
Lee [2014]. See the example data description for more details. Briefly, this
dataset contains an ordinated matrix of the Gower distance between 50 mam-
mals based (BeckLee_mat50), another matrix of the same 50 mammals and
the estimated discrete data characters of their descendants (thus 50 + 49 rows,
BeckLee_mat99), a dataframe containing the ages of each taxon in the dataset
(BeckLee_ages) and finally a phylogenetic tree with the relationships among
the 50 mammals (BeckLee_tree). The ordinated matrix will represent our full
morphospace, i.e. all the mammalian morphologies that ever existed through
time (for this dataset).

Loading demo and the package data
library(dispRity)

199

200CHAPTER 9. PALAEOBIOLOGY DEMO: DISPARITY-THROUGH-TIME AND WITHIN GROU.

Setting the random seed for repeatability
set.seed(123)

Loading the ordinated matrix/morphospace:
data(BeckLee_mat50)

data(BeckLee_mat99)

head (BeckLee_mat50[,1:5])

[,1] [,2] [,3] [,4] [,5]
Cimolestes -0.5613001 0.06006259 0.08414761 -0.2313084 0.18825039
Maelestes -0.4186019 -0.12186005 0.25556379 0.2737995 0.28510479
Batodon -0.8337640 0.28718501 -0.10594610 -0.2381511 0.07132646
Bulaklestes -0.7708261 -0.07629583 0.04549285 -0.4951160 0.39962626
Daulestes -0.8320466 -0.09559563 0.04336661 -0.5792351 0.37385914
Uchkudukodon -0.5074468 -0.34273248 0.40410310 -0.1223782 0.34857351

dim(BeckLee_mat50)

[1] 50 48

The morphospace contains 50 taxa and has 48 dimensions (or axes)

Showing a list of first and last occurrences data for some fossils
data(BeckLee_ages)
head (BeckLee_ages)

FAD LAD
Adapis 37.2 36.8
Asioryctes 83.6 72.1
Leptictis 33.9 33.3
Miacis 49.0 46.7
Mimotona 61.6 59.2
Notharctus 50.2 47.0

Plotting a phylogeny
data(BeckLee_tree)
plot(BeckLee_tree, cex = 0.7)
axisPhylo(root = 140)

9.1. BEFORE STARTING

L ton
horﬁ omylus
Trlbosgn/enomys
ezosire| -
l\qoenthenum

D\ﬁ\gd% Geolfar?&a
Todralestes

%’tﬂln% L1atum

Xyclaenus

L eptictis
—|:(§ypsonlctops

? afamg)

alestes
zaTamEdalestld

khaatrﬂenum
SIOTYCtES

el

u 6} estes
aulestes

[I I I I I I |
140 120 100 80 60 40 20 O

Eoryctes
golenadon
- Soricidae
Icaronycteris
iacis
VU
/f(?tbiomanis
8tharctus
lesiadapis
Purgatonu
Cynocephalus

Potamogalinae

rmecophag|dae

yp%ds dae

You can have an even nicer looking tree if you use the strap package!

if (!require(strap)) install.packages("strap")
strap: :geoscalePhylo(BeckLee_tree, cex.tip =

R

cex.ts

0.6)

202CHAPTER 9. PALAEOBIOLOGY DEMO: DISPARITY-THROUGH-TIME AND WITHIN GROU.

—FEoryctes

S

|caronycteris
§

Vulp
Patriamanis

e

Cynocephalus

- Trichechus
-MMoeritherium Brocavi
- - RIRfEABCyon
| Diifiaaslatesia N i
ol Motamoga |hnae.d
Myrmecophagidae
Dgés%%ﬁdae

g
pLps
%@aj@éﬁ%s

Z

Leptictis

Han
Bl
s s c|slgl & s A EERREEEE
2 £l & § e 51595 & | B |EE|E |l
£ gl B 2 glglg £ sl9s £ | £ (22| EEISE
& = G E olasl = [3 (&£ |52
= = 5 v =
g g g [8 %
e =) = i = £
C Paleogene Neogene Qugt.
| | | | | I I I T I T

9.1.2 Setting up your own data

I greatly encourage you to follow along this tutorial with your very own data:
it is more exciting and, ultimately, that’s probably your objective.

What data can I use?

You can use any type of morphospace in any dataset form ("matrix",
"data.frame"). Throughout this tutorial, you we assume you are using the
(loose) morphospace definition from Guillerme et al. [2020a]: any matrix were
columns are traits and rows are observations (in a distance matrix, columns
are still trait, i.e. “distance to species A”, etc.). We won’t cover it here but you
can also use lists of matrices and list of trees.

How should I format my data for this tutorial?
To go through this tutorial you will need:

e A matrix with tip data

¢ A phylogenetic tree

e A matrix with tip and node data

o A table of first and last occurrences data (FADLAD)

If you are missing any of these, fear not, here are a couple of functions to
simulate the missing data, it will surely make your results look funky but it’ll
let you go through the tutorial.

WARNING: the data generated by the functions i.need.a.matrix,

9.1. BEFORE STARTING 203

i.need.a.tree, i.need.node.data and i.need.FADLAD are used
to SIMULATE data for this tutorial. This is not to be used
for publications or analysing real data! If you need a data ma-
trix, a phylogenetic tree or FADLAD data, (i.need.a.matrix,
i.need.a.tree and i.need.FADLAD), you will actually need to
collect data from the literature or the field! If you need node
data, you will need to use ancestral states estimations (e.g. using
estimate_ancestral_states from the Claddis package)

Functions to get simulate a PCO looking like matrix from a tree
i.need.a.matrix <- function(tree) {
matrix <- space.maker(elements = Ntip(tree), dimensions = Ntip(tree), distribution = rnorm,
scree = rev(cumsum(rep(1/Ntip(tree), Ntip(tree)))))
rownames (matrix) <- tree$tip.label
return(matrix)

Function to simulate a tree

i.need.a.tree <- function(matrix) {
tree <- rtree(nrow(matrix))
tree$root.time <- max(tree.age(tree)$age)
tree$tip.label <- rownames(matrix)
tree$node.label <- pasteO("n", 1:(nrow(matrix)-1))
return(tree)

Function to simulate some "node" data
i.need.node.data <- function(matrix, tree) {
matrix_node <- space.maker(elements = Nnode(tree), dimensions = ncol(matrix),
distribution = rnorm, scree = apply(matrix, 2, var))
if(!'is.null(tree$node.label)) {
rownames (matrix_node) <- tree$node.label
} else {
rownames (matrix_node) <- pasteO("n", 1:(nrow(matrix)-1))

}

return(rbind(matrix, matrix_node))

Function to simulate some "FADLAD" data
i.need.FADLAD <- function(tree) {
tree_ages <- tree.age(tree) [1:Ntip(tree),]
return(data.frame(FAD = tree_ages[,1], LAD = tree_ages[,1], row.names = tree_ages[,2]))

You can use these functions for the generating the data you need. For example

https://cran.r-project.org/web/packages/Claddis/index.html

204CHAPTER 9. PALAEOBIOLOGY DEMO: DISPARITY-THROUGH-TIME AND WITHIN GROU.

Aaaaah I don't have FADLAD data!
my_FADLAD <- i.need.FADLAD(tree)
Sorted.

In the end this is what your data should be named to facilitate the rest of this
tutorial (fill in yours here):

A matrix with tip data
my_matrix <- BeckLee_mat50

A phylogenetic tree
my_tree <- BeckLee_tree

A matrix with tip and node data
my_tip_node_matrix <- BeckLee_mat99

A table of first and last occurrences data (FADLAD)
my_fadlad <- BeckLee_ages

9.2 A disparity-through-time analysis

9.2.1 Splitting the morphospace through time

One of the crucial steps in disparity-through-time analysis is to split the full
morphospace into smaller time subsets that contain the total number of mor-
phologies at certain points in time (time-slicing) or during certain periods in
time (time-binning). Basically, the full morphospace represents the total num-
ber of morphologies across all time and will be greater than any of the time
subsets of the morphospace.

The dispRity package provides a chrono.subsets function that allows users
to split the morphospace into time slices (using method = continuous) or into
time bins (using method = discrete). In this example, we are going to split the
morphospace into five equal time bins of 20 million years long from 100 million
years ago to the present. We will also provide to the function a table containing
the first and last occurrences dates for some fossils to take into account that
some fossils might occur in several of our different time bins.

Creating the vector of time bins ages
time_bins <- rev(seq(from = 0, to = 100, by = 20))

Splitting the morphospace using the chrono.subsets function
binned_morphospace <- chrono.subsets(data = my_matrix, tree = my_tree,
method = "discrete", time = time_bins, inc.nodes = FALSE,
FADLAD = my_fadlad)

The output object is a dispRity object (see more about that here. In brief,

9.2. A DISPARITY-THROUGH-TIME ANALYSIS 205

dispRity objects are lists of different elements (i.e. disparity results, mor-
phospace time subsets, morphospace attributes, etc.) that display only a sum-
mary of the object when calling the object to avoiding filling the R console with
superfluous output. It also allows easy plotting/summarising/analysing for re-
peatability down the line but we will not go into this right now.

Printing the class of the object
class(binned_morphospace)

[1]

Printing the content of the object
str (binned_morphospace)

"dispRity"

List of 4
¢ matrix :List of 1

..$: num [1:50, 1:48] -0.561 -0.419 -0.834 -0.771 -0.832 ...

#it ..— attr(*, "dimnames")=List of 2

#Hit$: chr [1:50] "Cimolestes" "Maelestes" "Batodon" "Bulaklestes"
#i#t$: NULL

$ tree :Class "multiPhylo"

List of 1

it ..$:List of 6

#i# ..$ edge : int [1:98, 1:2] 51 52 52 53 53 51 54 55 56 56 ...
##t ..$ edge.length: num [1:98] 24.5 24.6 12.7 11.8 11.8 ...

#H# ..$ Nnode : int 49

#i# ..$ tip.label : chr [1:50] "Daulestes" "Bulaklestes" "Uchkudukodon"
..$ node.labels: chr [1:49] "nl1" "n2" "n3" "n4"

#it ..$ root.time : num 139

.. ..- attr(x, "class")= chr "phylo"

#it— attr(x, "order")= chr "cladewise"

$ call :List of 1

..$ subsets: Named chr [1:4] "discrete" "1" "1" "FALSE"

i ..— attr(*, "names")= chr [1:4] "" "trees" "matrices" "bind"

$ subsets:List of 5

..$ 100 - 80:List of 1

#it$ elements: int [1:8, 1] 5 4 6 8 43 10 11 42

..$ 80 - 60 :List of 1

.. ..$ elements: int [1:15, 1] 7 8 91 2 3 12 13 14 44 ...

#Hit ..$ 60 - 40 :List of 1

.. ..% elements: int [1:13, 1] 41 49 24 25 26 27 28 21 22 19 ...

..$ 40 - 20 :List of 1

.. ..$ elements: int [1:6, 1] 15 39 40 35 23 47

..$ 20 - 0 :List of 1

. ..$ elements: int [1:10, 1] 36 37 38 32 33 34 50 48 29 30

- attr(x, "class")= chr "dispRity"

"Kennalestes"

206CHAPTER 9. PALAEOBIOLOGY DEMO: DISPARITY-THROUGH-TIME AND WITHIN GROU.

names (binned_morphospace)

[1] "matrix" "tree" "call" "subsets"

Printing the object as a dispRity class
binned_morphospace

---- dispRity object ----
5 discrete time subsets for 50 elements in one matrix with 1 phylogenetic tree
#i# 100 - 80, 80 - 60, 60 - 40, 40 - 20, 20 - O.

These objects will gradually contain more information when com-
pleting the following steps in the disparity-through-time analysis.

9.2.2 Bootstrapping the data

Once we obtain our different time subsets, we can bootstrap and rarefy them
(i.e. pseudo-replicating the data). The bootstrapping allows us to make each
subset more robust to outliers and the rarefaction allows us to compare subsets
with the same number of taxa to remove sampling biases (i.e. more taxa in one
subset than the others). The boot.matrix function bootstraps the dispRity
object and the rarefaction option within performs rarefaction.

Getting the minimum number of rows (i.e. taxa) in the time subsets
minimum_size <- min(size.subsets(binned_morphospace))

Bootstrapping each time subset 100 times and rarefying them
rare_bin_morphospace <- boot.matrix(binned_morphospace, bootstraps = 100,
rarefaction = minimum_size)

Note how information is adding up to the dispRity object.

9.2.3 Calculating disparity

We can now calculate the disparity within each time subsets along with
some confidence intervals generated by the pseudoreplication step above
(bootstraps/rarefaction). Disparity can be calculated in many ways and this
package allows users to come up with their own disparity metrics. For more
details, please refer to the dispRity metric section (or directly use moms).

In this example, we are going to look at how the spread of the data in the mor-
phospace through time. For that we are going to use the sum of the variance
from each dimension of the morphospace in the morphospace. We highly rec-
ommend using a metric that makes sense for your specific analysis and for your
specific dataset and not just because everyone uses it [Guillerme et al., 2020b,
Guillerme et al. [2020a]]!

How can I be sure that the metric is the most appropriate for my
morphospace and question?

https://tguillerme.shinyapps.io/moms/

9.2. A DISPARITY-THROUGH-TIME ANALYSIS 207

This is not a straightforward question but you can use the test.metric function
to check your assumptions (more details here): basically what test.metric does
is modifying your morphospace using a null process of interest (e.g. changes in
size) and checks whether your metric does indeed pick up that change. For
example here, let see if the sum of variances picks up changes in size but not
random changes:

my_test <- test.metric(my_matrix, metric = c(sum, dispRity::variances), shifts = c("random", "siz
summary (my_test)

10% 20% 30% 40% 50% 60% 70% 80% 90% 100% slope
random 2.53 2.50 2.56 2.50 2.54 2.51 2.52 2.53 2.53 2.52 0.0003234646
size.increase 2.23 2.17 2.25 2.26 2.31 2.35 2.39 2.47 2.50 2.52 0.0037712409
size.hollowness 2.40 2.50 2.59 2.65 2.63 2.62 2.60 2.57 2.55 2.52 0.0008954035
#i# p_value R~2(adj)
random 9.689431e-02 0.06301936

size.increase 1.016309e-17 0.93443767
size.hollowness 6.630162e-02 0.08377594

plot (my_test)

208CHAPTER 9. PALAEOBIOLOGY DEMO: DISPARITY-THROUGH-TIME AND WITHIN GROU.

c(sum, dispRity::variances)

c(sum, dispRity::variances)

2.6

25

2.4

2.3

2.2

24

23

2.2

random
—— Slope: 0.00032.; Adj. R"2: 0.063
L]
L4 . °
L]
L]
L] []
L[]
L]
L]
T T T T T
20 40 60 80 100

Amount of data considered (%)

size

Slope: 0.0038"; Adj. R"2: 0.934
° . —— Slope: 9e-04.; Adj. R"2: 0.084

L]
® size hollowness
T T T T T
20 40 60 80 100

Amount of data considered (%)

9.2. A DISPARITY-THROUGH-TIME ANALYSIS 209

We see that changes in the inner size (see Guillerme et al. [2020b] for more
details) is actually picked up by the sum of variances but not random changes
or outer changes. Which is a good thing!

As you've noted, the sum of variances is defined in test.metric as c(sum,
variances). This is a core bit of the dispRity package were you can define
your own metric as a function or a set of functions. You can find more info
about this in the dispRity metric section but in brief, the dispRity package
considers metrics by their “dimensions” level which corresponds to what they
output. For example, the function sum is a dimension level 1 function because
no matter the input it outputs a single value (the sum), variances on the other
hand is a dimension level 2 function because it will output the variance of each
column in a matrix (an example of a dimensions level 3 would be the func-
tion var that outputs a matrix). The dispRity package always automatically
sorts the dimensions levels: it will always run dimensions level 3 > dimensions
level 2 > and dimensions level 1. In this case both c(sum, variances) and
c(variances, sum) will result in actually running sum(variances(matrix)).

Anyways, let’s calculate the sum of variances on our bootstrapped and rarefied
morphospaces:

Calculating disparity for the bootstrapped and rarefied data
disparity <- dispRity(rare_bin_morphospace , metric = c(sum, dispRity::variances))

To display the actual calculated scores, we need to summarise the disparity
object using the S3 method summary that is applied to a dispRity object (see
?summary.dispRity for more details). By the way, as for any R package, you
can refer to the help files for each individual function for more details.

Summarising the disparity results

summary (disparity)

subsets n obs bs.median 2.5% 25% 75% 97.5%
1 100 - 80 8 2.207 1.962 1.615 1.876 2.017 2.172
2 100 - 80 6 NA 1.923 1.477 1.768 2.065 2.222
3 80 - 60 15 2.315 2.167 1.979 2.111 2.227 2.308
4 80 - 60 6 NA 2.167 1.831 2.055 2.300 2.460
5 60 - 40 13 2.435 2.244 2.006 2.183 2.304 2.384
6 60 - 40 6 NA 2.284 1.683 2.140 2.383 2.532
7 40 - 20 6 2.604 2.206 1.628 2.026 2.388 2.604
8 20 - 0 10 2.491 2.257 1.958 2.170 2.326 2.421
9 20 - 0 6 NA 2.302 1.766 2.143 2.366 2.528

The summary.dispRity function comes with many options on which
values to calculate (central tendency and quantiles) and on how
many digits to display. Refer to the function’s manual for more
details.

210CHAPTER 9. PALAEOBIOLOGY DEMO: DISPARITY-THROUGH-TIME AND WITHIN GROU.

9.2.4 Plotting the results

It is sometimes easier to visualise the results in a plot than in a table. For that we
can use the plot S3 function to plot the dispRity objects (see ?plot.dispRity
for more details).

Graphical options
quartz(width = 10, height = 5) ; par(mfrow = (c(1,2)), bty = "n")

Warning in quartz(width = 10, height = 5): Quartz device is not available on
this platform
Plotting the bootstrapped and rarefied results
plot(disparity, type = "continuous", main = "bootstrapped results")
plot(disparity, type = "continuous", main = "rarefied results",

rarefaction = minimum_size)

bootstrapped results rarefied results

26

2.4
24

c(sum, dispRity::variances,
2.0 22
| |
c(sum, dispRity::variances)
20 22
| |

18
18

16

©
-

14

T T T T 1 oo T T T 1
100 - 80 80 - 60 60 - 40 40-20 20-0 100 - 80 80 - 60 60 - 40 40-20 20-0

Subsets Subsets

Nice. The curves look pretty similar.

Same as for the summary.dispRity function, check out the
plot.dispRity manual for the many, many options available.

9.2.5 Testing differences

Finally, to draw some valid conclusions from these results, we can apply some
statistical tests. We can test, for example, if mammalian disparity changed
significantly through time over the last 100 million years. To do so, we can
compare the means of each time-bin in a sequential manner to see whether the
disparity in bin n is equal to the disparity in bin n+1, and whether this is in
turn equal to the disparity in bin n+2, etc. Because our data is temporally
autocorrelated (i.e. what happens in bin n+1 depends on what happened in
bin n) and pseudoreplicated (i.e. each bootstrap draw creates non-independent
time subsets because they are all based on the same time subsets), we apply a

9.2. A DISPARITY-THROUGH-TIME ANALYSIS 211

non-parametric mean comparison: the wilcox.test. Also, we need to apply
a p-value correction (e.g. Bonferroni correction) to correct for multiple testing
(see 7p.adjust for more details).

Testing the differences between bins in the bootstrapped dataset.

test.dispRity(disparity, test = wilcox.test, comparison = '"sequential",
correction = "bonferroni")

[[1]]

#it statistic: W

100 - 80 : 80 - 60 730

80 - 60 : 60 - 40 2752

60 - 40 : 40 - 20 5461

40 - 20 : 20 - O 4506

##

[[2]]

#it p.value

100 - 80 : 80 - 60 7.081171e-25
80 - 60 : 60 - 40 1.593988e-07
60 - 40 : 40 - 20 1.000000e+00
40 - 20 : 20 - 0 9.115419e-01

Testing the differences between bins in the rarefied dataset.

test.dispRity(disparity, test = wilcox.test, comparison = '"sequential',
correction = "bonferroni'", rarefaction = minimum_size)

[[1]]

#i statistic: W

100 - 80 : 80 - 60 1518

80 - 60 : 60 - 40 3722

60 - 40 : 40 - 20 5676

40 - 20 : 20 - O 4160

##

[[2]]

#i#t p.value

100 - 80 : 80 - 60 7.158946e-17
80 - 60 : 60 - 40 7.199018e-03
60 - 40 : 40 - 20 3.953427e-01
40 - 20 : 20 - O 1.609715e-01

Here our results show significant changes in disparity through time between all
time bins (all p-values < 0.05). However, when looking at the rarefied results,
there is no significant difference between the time bins in the Palaeogene (60-40
to 40-20 Mya), suggesting that the differences detected in the first test might
just be due to the differences in number of taxa sampled (13 or 6 taxa) in each
time bin.

212CHAPTER 9. PALAEOBIOLOGY DEMO: DISPARITY-THROUGH-TIME AND WITHIN GROU.

9.3 Some more advanced stuff

The previous section detailed some of the basic functionalities in the dispRity
package but of course, you can do some much more advanced analysis, here
is just a list of some specific tutorials from this manual that you might be
interested in:

e Time slicing: an alternative method to look at disparity through time that
allows you to specify evolutionary models [Guillerme and Cooper, 2018].

e Many more disparity metrics: there are many, many different things you
might be interested to measure in your morphospace! This manual has
some extended documentation on what to use (or check Guillerme et al.
[2020D)).

¢ Many more ways to look at disparity: you can for example, use distri-
butions rather than point estimates for your disparity metric (e.g. the
variances rather than the sum of variances); or calculate disparity from
non ordinated matrices or even from multiple matrices and trees.

e And finally there are much more advanced statistical tests you might be
interested in using, such as the NPMANOVA, the “disparity-through-time
test”, using a null model approach or some model fitting...

You can even come up with your own ideas, implementations and modifications
of the package: the dispRity package is a modular and collaborative package
and I encourage you to contact me (guillert@tcd.e) for any ideas you have
about adding new features to the package (whether you have them already
implemented or not)!

mailto:guillert@tcd.e

Chapter 10

Morphometric geometric
demo: a between group
analysis

This demo aims to give quick overview of the dispRity package (v.1.7) for
palaeobiology analyses of disparity, including disparity through time analyses.

This demo showcases a typical between groups geometric morphometric anal-
ysis: we are going to test whether the disparity in two species of salamander
(plethodons!) are different and in which ways they are different.

10.1 Before starting

Here we are going to use the geomorph plethodon dataset that is a set of 12 2D
landmark coordinates for 40 specimens from two species of salamanders. This
section will really quickly cover how to make a Procrustes sumperimposition
analysis and create a geomorph data.frame to have data ready for the dispRity
package.

Loading geomorph
library(geomorph)

Loading the plethodon dataset
data(plethodon)

Running a simple Procrustes superimposition
gpa_plethodon <- gpagen(plethodon$land)

##

213

214CHAPTER 10. MORPHOMETRIC GEOMETRIC DEMO: A BETWEEN GROUP ANALYSIS

Performing GPA

|

##

Making projections... Finished!

Making a geomorph data frame object with the species and sites attributes
gdf_plethodon <- geomorph.data.frame(gpa_plethodon,

species = plethodon$species,

site = plethodon$site)

You can of course use your very own landmark coordinates dataset (though you
will have to do some modifications in the scripts that will come below - they
will be easy though!).

You can replace the gdf_plethodon by your own geomorph data frame!
my_geomorph_data <- gdf_plethodon

10.1.1 The morphospace
The first step of every disparity analysis is to define your morphospace.

Note that this is actually not true at all and kept as a erroneous
sentence: the first step of your disparity analysis should be to define
your question!

Our question here will be: is there a difference in disparity between the dif-
ferent species of salamanders and between the different sites (allopatric and
sympatric)?

OK, now we can go to the second step of every disparity analysis: defining
the morphospace. Here we will define it with the ordination of all possible
Procrustes superimposed plethodon landmark coordinates. You can do this
directly in dispRity using the geomorph.ordination function that can input
a geomorph data frame:

The morphospace
morphospace <- geomorph.ordination(gdf_plethodon)

This automatically generates a dispRity object with the information of each
groups. You can find more information about dispRity objects here but basi-
cally it summarises the content of your object without spamming your R console
and is associated with many utility functions like summary or plot. For example
here you can quickly visualise the two first dimensions of your space using the
plot function:

The dispRity object

morphospace

---- dispRity object ---—-
4 customised subsets for 40 elements in one matrix:

10.2. CALCULATING DISPARITY 215

#i# species.Jord, species.Teyah, site.Allo, site.Symp.
Plotting the morphospace
plot (morphospace)
species.Jord
® species.Teyah
© site.Allo
;{:\ 8 | site.Symp
8 o
—
e
o~
s 8 4
2 o
[
£
0o
To)
e
o
1
I I I
-0.05 0.00 0.05

Dimension 1 (36.74%)

Note that this only displays the two last groups (site.Allo and site.Symp) since they overlap

The dispRity package function comes with a lot of documentation of examples
so don’t hesitate to type plot.dispRity to check more plotting options.

10.2 Calculating disparity

Now that we have our morphospace, we can think about what we want to
measure. Two aspects of disparity that would be interesting for our question (is
there a difference in disparity between the different species of salamanders and
between the different sites?) would be the differences in size in the morphospace
(do both groups occupy the same amount of morphospace) and position in the
morphospace (do the do groups occupy the same position in the morphospace?).

To choose which metric would cover best these two aspects, please check the
Guillerme et al. [2020b] paper and associated app. Here we are going to use the
procrustes variance (geomorph: :morphol.disparity) for measuring the size of
the trait space and the average displacements [Guillerme et al., 2020b] for the
position in the trait space.

https://tguillerme.shinyapps.io/moms/

216CHAPTER 10. MORPHOMETRIC GEOMETRIC DEMO: A BETWEEN GROUP ANALYSIS

Defining a the procrustes variance metric
(as in geomorph::morphol.disparity)
proc.var <- function(matrix) {sum(matrix~2)/nrow(matrix)}

The size metric

test_size <- test.metric(morphospace, metric = proc.var,
shifts = c("random", "size"))

plot(test_size)

summary (test_size)

The position metric

test_position <- test.metric(morphospace, metric = c(mean, displacements),
shifts = c("random", "position"))

plot(test_position)

summary (test_position)

You can see here for more details on the test.metric function but basically
these graphs are showing that there is a relation between changes in size and in
position for each metric. Note that there are some caveats here but the selection
of the metric is just for the sake of the example!

Note also the format of defining the disparity metrics here using metric =
c(mean, displacements) or metric = proc.var. This is a core bit of the
dispRity package were you can define your own metric as a function or a set
of functions. You can find more info about this in the dispRity metric section
but in brief, the dispRity package considers metrics by their “dimensions” level
which corresponds to what they output. For example, the function mean is a
dimension level 1 function because no matter the input it outputs a single value
(the mean), displacements on the other hand is a dimension level 2 function
because it will output the ratio between the distance from the centroid and from
the centre of the trait space for each row in a matrix (an example of a dimensions
level 3 would be the function var that outputs a matrix). The dispRity package
always automatically sorts the dimensions levels: it will always run dimensions
level 3 > dimensions level 2 > and dimensions level 1. In this case both c(mean,
displacements) and c(mean, displacements) will result in actually running
mean (displacements (matrix)). Alternatively you can define your metric prior
to the disparity analysis like we did for the proc.var function.

Anyways, we can measure disparity using these two metrics on all the groups
as follows:

Bootstrapped disparity
disparity_size <- dispRity(boot.matrix(morphospace), metric = proc.var)
disparity_position <- dispRity(boot.matrix(morphospace), metric = c(mean, displacement:

Note that here we use the boot.matrix function for quickly bootstrapping the
matrix. This is not an essential step in this kind of analysis but it allows to

10.3. ANALYSE THE RESULTS 217

“reduce” the effect of outliers and create a distribution of disparity measures
(rather than single point estimates).

10.3 Analyse the results

We can visualise the results using the plot function on the resulting disparity
objects (or summarising them using summary):

Plotting the results

par(mfrow = c(1,2))

plot(disparity_size, main = "group sizes", las = 2, xlab = "")
plot(disparity_position, main = "group positions", las = 2, xlab = "")
group sizes group positions
o o
0.007 — o
: 2 164 o
S - @
0.006 B == £ :
. —_ : - ol
: ' o | 2448 o8
30005 7 [g A
o E : _8_ = _e_ _8_ '
0004 4 1 L g 124 | —
— £ - -
] o
0.003 — . - E
o 1.0 -
I I I I I I I I
g2 0§ =2 e g2 0§ =2 e
s & < & s & T &
0w F L 9 7 2 9
8 4 B g 8 4 B g
Summarising the results
summary (disparity_size)
#it subsets n obs bs.median 2.5% 25 75} 97.5%
1 species.Jord 20 0.005 0.005 0.004 0.005 0.005 0.005
2 species.Teyah 20 0.005 0.005 0.004 0.005 0.005 0.006
3 site.Allo 20 0.004 0.004 0.003 0.003 0.004 0.004
4 site.Symp 20 0.006 0.006 0.006 0.006 0.006 0.007
summary (disparity_position)
#it subsets n obs bs.median 2.5% 25% 75} 97.5%

1 species.Jord 20 1.096 1.122 1.069 1.104 1.168 1.404

218CHAPTER 10. MORPHOMETRIC GEOMETRIC DEMO: A BETWEEN GROUP ANALYSIS

2 species.Teyah 20 1.070 1.095 1.029 1.070 1.146 1.320
3 site.Allo 20 1.377 1.415 1.311 1.369 1.464 1.526
4 site.Symp 20 1.168 1.220 1.158 1.190 1.270 1.498

Just from looking at the data, we can guess that there is not much difference in
terms of morphospace occupancy and position for the species but there is on for
the sites (allopatric or sympatric). We can test it using a simple non-parametric
mean difference test (e.g. wilcox.test) using the dispRity package.

Testing the differences

test.dispRity(disparity_size, test = wilcox.test, correction = "bonferroni")
[[1]]

#i# statistic: W
species.Jord : species.Teyah 3842
species.Jord : site.Allo 9919
species.Jord : site.Symp 7
species.Teyah : site.Allo 9939
species.Teyah : site.Symp 155
site.Allo : site.Symp 0
##

[[2]]

#i# p.value

species.Jord : species.Teyah 2.808435e-02
species.Jord : site.Allo 1.718817e-32
species.Jord : site.Symp 1.896841e-33
species.Teyah : site.Allo 9.504256e-33
1
1

species.Teyah : site.Symp .507734e-31

site.Allo : site.Symp .537286e-33
test.dispRity(disparity_position, test = wilcox.test, correction = "bonferroni'")
[[1]1]

statistic: W
species.Jord : species.Teyah 6639
species.Jord : site.Allo 262
species.Jord : site.Symp 1386
species.Teyah : site.Allo 91
species.Teyah : site.Symp 981
site.Allo : site.Symp 9373
##

#+ [[2]]

p.value
species.Jord : species.Teyah 3.744848e-04
species.Jord : site.Allo 3.288928e-30
species.Jord : site.Symp 6.326430e-18

species.Teyah : site.Allo 2.309399e-32
species.Teyah : site.Symp 5.609280e-22

10.3. ANALYSE THE RESULTS 219

site.Allo : site.Symp 7.278818e-26

So by applying the tests we see a difference in terms of position between each
groups and differences in size between groups but between the species.

220CHAPTER 10. MORPHOMETRIC GEOMETRIC DEMO: A BETWEEN GROUP ANALYSIS

Chapter 11

dispRity R package manual

221

222 CHAPTER 11. DISPRITY R PACKAGE MANUAL

Chapter 12

References

223

224 CHAPTER 12. REFERENCES

Bibliography

Antonio Aguilera and Ricardo Pérez-Aguila. General n-dimensional rotations.
2004. URL http://wscg.zcu.cz/wscg2004 /Papers_ 2004__Short/N29.pdf.

Robin M Beck and Michael S Lee. Ancient dates or accelerated rates? Mor-
phological clocks and the antiquity of placental mammals. Proceedings of
the Royal Society B: Biological Sciences, 281(20141278):1-10, 2014. doi:
10.1098 /rspb.2014.1278. URL http://dx.doi.org/10.1098 /rspb.2014.1278.

Martin D Brazeau, Thomas Guillerme, and Martin R Smith. An algorithm
for Morphological Phylogenetic Analysis with Inapplicable Data. Systematic
Biology, 68(4):619-631, 12 2018. ISSN 1063-5157. doi: 10.1093/sysbio/syy083.
URL https://doi.org/10.1093 /sysbio/syy083.

Natalie Cooper, Gavin H. Thomas, Chris Venditti, Andrew Meade, and Rob P.
Freckleton. A cautionary note on the use of ornstein uhlenbeck models in
macroevolutionary studies. Biological Journal of the Linnean Society, 118(1):
64-77, 2016. doi: 10.1111/bij.12701. URL http://dx.doi.org/10.1111/bij.127
01.

Sandra Diaz, Jens Kattge, Johannes HC Cornelissen, Ian J Wright, Sandra
Lavorel, Stéphane Dray, Bjorn Reu, Michael Kleyer, Christian Wirth, I Colin
Prentice, et al. The global spectrum of plant form and function. Nature, 529
(7585):167, 2016. URL http://dx.doi.org/10.1038 /nature16489.

O’Reilly Joseph E., Puttick Mark N., Pisani Davide, and Donoghue Philip C.
J. Probabilistic methods surpass parsimony when assessing clade support in
phylogenetic analyses of discrete morphological data. Palaeontology, 61(1):
105-118. doi: 10.1111/pala.12330. URL http://dx.doi.org/10.1111/pala.12
330.

John A Endler, David A Westcott, Joah R Madden, and Tim Robson. Ani-
mal visual systems and the evolution of color patterns: sensory processing
illuminates signal evolution. Evolution, 59(8):1795-1818, 2005.

Richard G. FitzJohn. Diversitree: comparative phylogenetic analyses of diver-
sification in R. Methods in Ecology and Evolution, 3(6):1084-1092, 2012.

225

http://wscg.zcu.cz/wscg2004/Papers_2004_Short/N29.pdf
http://dx.doi.org/10.1098/rspb.2014.1278
https://doi.org/10.1093/sysbio/syy083
http://dx.doi.org/10.1111/bij.12701
http://dx.doi.org/10.1111/bij.12701
http://dx.doi.org/10.1038/nature16489
http://dx.doi.org/10.1111/pala.12330
http://dx.doi.org/10.1111/pala.12330

226 BIBLIOGRAPHY

ISSN 2041-210X. doi: 10.1111/§.2041-210X.2012.00234.x. URL http:
//dx.doi.org/10.1111/j.2041-210X.2012.00234.x.

T. Guillerme and N. Cooper. Time for a rethink: time sub-sampling methods
in disparity-through-time analyses. Palaeontology, 61(4):481-493, 2018. doi:
10.1111/pala.12364. URL http://dx.doi.org/10.1111/pala.12364.

Thomas Guillerme and Natalie Cooper. Effects of missing data on topolog-
ical inference using a Total Evidence approach. Molecular Phylogenetics
and Evolution, 94, Part A:146-158, 2016. ISSN 1055-7903. doi: http:
//dx.doi.org/10.1016/j.ympev.2015.08.023. URL http://dx.doi.org/10.
1016/j.ympev.2015.08.023.

Thomas Guillerme and Kevin Healy. mulTree: a package for running MCM-
Cglmm analysis on multiple trees, November 2014. URL https://doi.org/10
.5281/zenodo.12902.

Thomas Guillerme, Natalie Cooper, Stephen L. Brusatte, Katie E. Davis, An-
drew L. Jackson, Sylvain Gerber, Anjali Goswami, Kevin Healy, Melanie J.
Hopkins, Marc E. H. Jones, Graeme T. Lloyd, Joseph E. O’Reilly, Abi
Pate, Mark N. Puttick, Emily J. Rayfield, Erin E. Saupe, Emma Sherratt,
Graham J. Slater, Vera Weisbecker, Gavin H. Thomas, and Philip C. J.
Donoghue. Disparities in the analysis of morphological disparity. Biol-
ogy Letters, 16(7):20200199, 2020a. doi: 10.1098/rsbl.2020.0199. URL
https://royalsocietypublishing.org/doi/abs/10.1098 /rsbl.2020.0199.

Thomas Guillerme, Mark N Puttick, Ariel E Marcy, and Vera Weisbecker. Shift-
ing spaces: Which disparity or dissimilarity measurement best summarize
occupancy in multidimensional spaces? FEcology and Evolution, 2020b.

Thomas Guillerme, Jen A Bright, Christopher R Cooney, Emma C Hughes,
Zoé K Varley, Natalie Cooper, Andrew P Beckerman, and Gavin H Thomas.
Innovation and elaboration on the avian tree of life. Science Advances, 9(43):
eadgl641, 2023.

Jarrod D Hadfield. Mcmc methods for multi-response generalized linear mixed
models: The MCMCglmm R package. Journal of Statistical Software, 33(2):
1-22, 2010a. URL https://www.jstatsoft.org/v33/i02/.

Jarrod D Hadfield. Mcmc methods for multi-response generalized linear mixed
models: The MCMCglmm R package. Journal of Statistical Software, 33(2):
1-22, 2010b. URL https://www.jstatsoft.org/v33/i02/.

M. Hasegawa, H. Kishino, and T. A. Yano. Dating of the human ape splitting
by a molecular clock of mitochondrial-DNA. Journal of Molecular Evolution,
22(2):160-174, 1985.

Gene Hunt. Fitting and comparing models of phyletic evolution: random walks
and beyond. Paleobiology, 32(4):578-601, 2006. URL https://doi.org/10.166
6/05070.1.

http://dx.doi.org/10.1111/j.2041-210X.2012.00234.x
http://dx.doi.org/10.1111/j.2041-210X.2012.00234.x
http://dx.doi.org/10.1111/pala.12364
http://dx.doi.org/10.1016/j.ympev.2015.08.023
http://dx.doi.org/10.1016/j.ympev.2015.08.023
https://doi.org/10.5281/zenodo.12902
https://doi.org/10.5281/zenodo.12902
https://royalsocietypublishing.org/doi/abs/10.1098/rsbl.2020.0199
https://www.jstatsoft.org/v33/i02/
https://www.jstatsoft.org/v33/i02/
https://doi.org/10.1666/05070.1
https://doi.org/10.1666/05070.1

BIBLIOGRAPHY 227

Gene Hunt. Measuring rates of phenotypic evolution and the inseparability of
tempo and mode. Paleobiology, 38(3):351-373, 2012. URL https://doi.org/
10.1666/11047.1.

Gene Hunt, Melanie J Hopkins, and Scott Lidgard. Simple versus complex
models of trait evolution and stasis as a response to environmental change.
Proceedings of the National Academy of Sciences, page 201403662, 2015. URL
https://doi.org/10.1073/pnas.1403662111.

P. Lewis. A likelihood approach to estimating phylogeny from discrete morpho-
logical character data. Systematic Biology, 50(6):913-925, 2001. doi: 10.1080/
106351501753462876. URL http://dx.doi.org/10.1080,/106351501753462876.

David J Murrell. A global envelope test to detect non-random bursts of trait
evolution. Methods in Ecology and Fwvolution, 9(7):1739-1748, 2018. URL
https://doi.org/10.1111/2041-210X.13006.

Joseph E. O’Reilly, Mark N. Puttick, Luke Parry, Alastair R. Tanner, James E.
Tarver, James Fleming, Davide Pisani, and Philip C. J. Donoghue. Bayesian
methods outperform parsimony but at the expense of precision in the es-
timation of phylogeny from discrete morphological data. Biology Letters,
12(4), 2016. ISSN 1744-9561. doi: 10.1098/rsbl.2016.0081. URL
http://dx.doi.org/10.1098 /rsbl.2016.008]1.

Mark N Puttick, Joseph E O’Reilly, Alastair R Tanner, James F Fleming, James
Clark, Lucy Holloway, Jesus Lozano-Fernandez, Luke A Parry, James E
Tarver, Davide Pisani, et al. Uncertain-tree: discriminating among com-
peting approaches to the phylogenetic analysis of phenotype data. Pro-
ceedings of the Royal Society B, 284(1846):20162290, 2017. URL http:
//dx.doi.org/10.1098 /rspb.2016.2290.

https://doi.org/10.1666/11047.1
https://doi.org/10.1666/11047.1
https://doi.org/10.1073/pnas.1403662111
http://dx.doi.org/10.1080/106351501753462876
https://doi.org/10.1111/2041-210X.13006
http://dx.doi.org/10.1098/rsbl.2016.0081
http://dx.doi.org/10.1098/rspb.2016.2290
http://dx.doi.org/10.1098/rspb.2016.2290

	dispRity
	What is dispRity?
	Installing and running the package
	Which version do I choose?
	dispRity is always changing, how do I know it's not broken?
	Help
	Citations

	Glossary
	Glossary equivalences in palaeobiology and ecology

	Getting started with dispRity
	What sort of data does dispRity work with?
	Ordinated matrices
	Performing a simple dispRity analysis

	Details of specific functions
	Time slicing
	Customised subsets
	Bootstraps and rarefactions
	Disparity metrics
	Summarising dispRity data (plots)
	Testing disparity hypotheses
	Fitting modes of evolution to disparity data
	Disparity as a distribution
	Disparity from other matrices
	Disparity from multiple matrices (and multiple trees!)
	Disparity with trees: dispRitree!
	Disparity of variance-covariance matrices (covar)
	Disparity and distances

	Making stuff up!
	Simulating discrete morphological data
	Simulating multidimensional spaces

	Other functionalities
	char.diff
	clean.data
	crown.stem
	get.bin.ages
	match.tip.edge
	MCMCglmm utilities
	pair.plot
	reduce.matrix
	select.axes
	set.root.time
	slice.tree
	slide.nodes and remove.zero.brlen
	tree.age
	multi.ace

	The guts of the dispRity package
	Manipulating dispRity objects
	dispRity utilities
	The dispRity object content

	dispRity ecology demo
	Data
	Classic analysis
	A multidimensional approach with dispRity

	Palaeobiology demo: disparity-through-time and within groups
	Before starting
	A disparity-through-time analysis
	Some more advanced stuff

	Morphometric geometric demo: a between group analysis
	Before starting
	Calculating disparity
	Analyse the results

	dispRity R package manual
	References

