ohi logo
OHI Science | Citation policy

[REFERENCE RMD FILE: https://cdn.rawgit.com/OHI-Science/ohiprep/master/globalprep/np/v2016/targetharvest_dataprep.html]

1 Summary

This analysis converts FAO capture production data into the OHI 2016 targeted harvest pressure data.

2 Updates from previous assessment

Corrected a couple typos in the targeted species master list.


3 Data Source

http://www.fao.org/fishery/statistics/software/fishstatj/en#downlApp
 Release date: March 2016 

FAO Global Capture Production Quantity 1950_2014

Downloaded: July 29 2016

Description: Quantity (tonnes) of fisheries capture for each county, species, year.

Time range: 1950-2014


# load libraries, set directories
library(ohicore)  #devtools::install_github('ohi-science/ohicore@dev')
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(stringr)
library(tidyr)

## comment out when knitting
#setwd("globalprep/prs_targetedharvest/v2016")


### Load FAO-specific user-defined functions
source('../../../src/R/fao_fxn.R') # function for cleaning FAO files
source('../../../src/R/common.R') # directory locations

4 Read in the raw data

This includes the FAO capture production data and a list of the “target” species.

## FAO capture production data
fis_fao_csv = read.csv(file.path(dir_M, 'git-annex/globalprep/_raw_data/FAO_capture/d2016/Global_capture_production_Quantity_1950-2014.csv'))


# species list 
sp2grp = read.csv('raw/species2group.csv') %>%
  filter(incl_excl == 'include') %>%
  select(target, species); head(sp2grp)
##     target                      species
## 1 cetacean     Atlantic spotted dolphin
## 2 cetacean Atlantic white-sided dolphin
## 3 cetacean   Australian snubfin dolphin
## 4 cetacean         Baird's beaked whale
## 5 cetacean            Baleen whales nei
## 6 cetacean            Beaked whales nei

5 Clean the FAO data

m <- fis_fao_csv %>%
  rename(country = Country..Country.,
         species = Species..ASFIS.species.,
         area = Fishing.area..FAO.major.fishing.area.,
         Unit = Measure..Measure.) %>%
  select(-Unit)

m <- m %>%
  gather("year", "value", 4:(ncol(m))) %>%
  mutate(year = gsub("X", "", year)) %>%
    fao_clean_data() 
## Warning: attributes are not identical across measure variables; they will
## be dropped
m <- m %>%
  mutate(species = as.character(species)) %>%
  mutate(species = ifelse(species == "Henslow\x92s swimming crab", "Henslow's swimming crab", species))

6 Identify the target species

This analysis only includes target species. The warning messages need to be checked and, if necessary, changes should be made to the raw/species2group.csv

# check for discrepancies in species list
## seals are no longer included:
spgroups = sort(as.character(unique(m$species)))
groups = c('turtle', 'seal', 'whale', 'sea lion', 'dolphin', 'porpoise')
for (group in groups) { #group='dolphin'
possibles <- spgroups[grep(group, spgroups)]
d_missing_l = setdiff(possibles, sp2grp$species)
  if (length(d_missing_l)>0){
    cat(sprintf("\nMISSING in the lookup the following species in target='%s'.\n    %s\n", 
                group, paste(d_missing_l, collapse='\n    ')))
  }
}
## 
## MISSING in the lookup the following species in target='turtle'.
##     Chinese softshell turtle
##     River and lake turtles nei
## 
## MISSING in the lookup the following species in target='seal'.
##     Baikal seal
##     Bearded seal
##     Caspian seal
##     Grey seal
##     Harbour seal
##     Harp seal
##     Hooded seal
##     Larga seal
##     Leopard seal
##     New Zealand fur seal
##     Northern fur seal
##     Ribbon seal
##     Ringed seal
##     South African fur seal
##     South American fur seal
## 
## MISSING in the lookup the following species in target='whale'.
##     Velvet whalefish
## 
## MISSING in the lookup the following species in target='sea lion'.
##     New Zealand sea lion
##     Steller sea lion
## 
## MISSING in the lookup the following species in target='dolphin'.
##     Common dolphinfish
# check for species in lookup not found in data
l_missing_d = setdiff(sp2grp$species, spgroups)
if (length(l_missing_d)>0){
  cat(sprintf('\nMISSING: These species in the lookup are not found in the FAO data \n'))
  print(l_missing_d)
}


## filter data to include only target species ----
m2 = m %>%
  filter(species %in% sp2grp$species)
unique(m2$area) # confirm these are all marine
##  [1] Marine areas outside the Antarctic Antarctic areas nei               
##  [3] Atlantic, Western Central          Atlantic, Eastern Central         
##  [5] Atlantic, Southwest                Pacific, Northwest                
##  [7] Pacific, Southeast                 Mediterranean and Black Sea       
##  [9] Pacific, Western Central           Atlantic, Northeast               
## [11] Atlantic, Northwest                Pacific, Eastern Central          
## [13] Indian Ocean, Eastern              Indian Ocean, Western             
## [15] Pacific, Southwest                 Pacific, Northeast                
## 29 Levels:  Africa - Inland waters ... Pacific, Western Central

7 Summarize data

# spread wide to expand years
m_w = m2 %>%
  spread(year, value) %>%
  left_join(sp2grp, by='species'); head(m_w)
## Warning in left_join_impl(x, y, by$x, by$y, suffix$x, suffix$y): joining
## factor and character vector, coercing into character vector
##     country               species                               area 1950
## 1 Argentina     Baleen whales nei Marine areas outside the Antarctic   NA
## 2 Argentina            Blue whale                Antarctic areas nei    7
## 3 Argentina    Bottlenose dolphin Marine areas outside the Antarctic   NA
## 4 Argentina Burmeister's porpoise Marine areas outside the Antarctic   NA
## 5 Argentina   Commerson's dolphin Marine areas outside the Antarctic   NA
## 6 Argentina        Common dolphin Marine areas outside the Antarctic   NA
##   1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964
## 1   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA
## 2   19    2    2    9    4    2    1    1    1    6    0    0    0    0
## 3   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA
## 4   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA
## 5   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA
## 6   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA
##   1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978
## 1   NA   NA   NA   NA   NA    0    0    0    0    0    0    0    0    0
## 2    0    0    0    0    0    0    0    0    0    0    0    0    0    0
## 3   NA   NA   NA   NA   NA    0    0    0    0    0    0    0    0    0
## 4   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA
## 5   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA
## 6   NA   NA   NA   NA   NA    0    0    0    0    0    0    0    0    0
##   1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992
## 1    0    0    0    0    0    0    0    0    0    0    0    0    0    0
## 2    0    0    0    0    0    0    0    0    0    0    0    0    0    0
## 3    0    0    0    0    0    0    0    0    0    0    0    0    0    0
## 4   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA
## 5   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA
## 6    0    0    0    0    0    0    0    0    0    0    0    0    0    0
##   1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006
## 1    0    0    0    0    0    0    0    0    0    0    1    0    0    0
## 2    0    0    0    0    0    0    0    0    0    0    0    0    0    0
## 3    0    0    0    0    0    0    0    0    0    0    0    0    1    0
## 4   NA   NA   NA   NA   NA    0    0    0    0    0    0    0    0    1
## 5   NA   NA   NA   NA   NA    0   12  212   37   40   16   12   24   14
## 6    0    0    0    0    0    0    0    0    0    0    0    0    0    0
##   2007 2008 2009 2010 2011 2012 2013 2014   target
## 1    0    0    0    0    0    0    0    0 cetacean
## 2    0    0    0    0    0    0    0    0 cetacean
## 3    0    0    0    0    0    0    0    0 cetacean
## 4    0    0    0    0    5    0    0    0 cetacean
## 5    0    0   21   21   11    0    0    0 cetacean
## 6    1    0    0    0    1    0    0    0 cetacean
# gather long by target
m_l = m_w %>%
  select(-area) %>%
  gather(year, value, -country, -species, -target, na.rm=T) %>%
  mutate(year = as.integer(as.character(year))) %>%
  arrange(country, target, year); head(m_l)
##     country        species   target year value
## 1 Argentina     Blue whale cetacean 1950     7
## 2 Argentina      Fin whale cetacean 1950   503
## 3 Argentina Humpback whale cetacean 1950    12
## 4 Argentina    Minke whale cetacean 1950     0
## 5 Argentina      Sei whale cetacean 1950   372
## 6 Argentina    Sperm whale cetacean 1950    52
# explore Japan[210]
m_l %>% 
  group_by(country, target, year) %>%
  summarize(value = sum(value)) %>% 
  filter(country == 'Japan', target == 'cetacean', year >= 2000) 
## Source: local data frame [15 x 4]
## Groups: country, target [1]
## 
##    country   target  year value
##     <fctr>   <fctr> <int> <dbl>
## 1    Japan cetacean  2000 19396
## 2    Japan cetacean  2001 19072
## 3    Japan cetacean  2002 19268
## 4    Japan cetacean  2003 17955
## 5    Japan cetacean  2004 16736
## 6    Japan cetacean  2005 17083
## 7    Japan cetacean  2006 15374
## 8    Japan cetacean  2007 14173
## 9    Japan cetacean  2008 10161
## 10   Japan cetacean  2009 12324
## 11   Japan cetacean  2010  7489
## 12   Japan cetacean  2011  3853
## 13   Japan cetacean  2012  2651
## 14   Japan cetacean  2013  3439
## 15   Japan cetacean  2014  3320
# summarize totals per region per year
m_sum = m_l %>%
  group_by(country, year) %>%
  summarize(value = sum(value, na.rm=TRUE)) %>%
  filter(value != 0) %>%
  ungroup(); head(m_sum) 
## # A tibble: 6 × 3
##     country  year value
##      <fctr> <int> <dbl>
## 1 Argentina  1950   946
## 2 Argentina  1951   796
## 3 Argentina  1952   798
## 4 Argentina  1953   678
## 5 Argentina  1954  1083
## 6 Argentina  1955   947

8 Assign country names to OHI regions

m_sum <- m_sum %>%
  mutate(country = as.character(country)) %>%
  mutate(country = ifelse(country == "C\xf4te d'Ivoire", "Ivory Coast", country))


### Function to convert to OHI region ID
m_sum_rgn <- name_2_rgn(df_in = m_sum, 
                       fld_name='country', 
                       flds_unique=c('year'))
## 
## These data were removed for not having any match in the lookup tables:
## 
## Other nei 
##         1 
## 
## These data were removed for not being of the proper rgn_type (eez,ohi_region) or mismatching region names in the lookup tables:
## < table of extent 0 x 0 >
## 
## DUPLICATES found. Consider using collapse2rgn to collapse duplicates (function in progress).
## # A tibble: 2 × 1
##      country
##        <chr>
## 1 Guadeloupe
## 2 Martinique
# these are duplicates for the same region
filter(m_sum_rgn, country %in% c("Guadeloupe", "Martinique"))
## # A tibble: 57 × 5
##       country  year value rgn_id                  rgn_name
##         <chr> <int> <dbl>  <int>                     <chr>
## 1  Guadeloupe  1970   0.1    140 Guadeloupe and Martinique
## 2  Guadeloupe  1971   0.1    140 Guadeloupe and Martinique
## 3  Guadeloupe  1972   0.1    140 Guadeloupe and Martinique
## 4  Guadeloupe  1973   0.1    140 Guadeloupe and Martinique
## 5  Guadeloupe  1974   0.1    140 Guadeloupe and Martinique
## 6  Guadeloupe  1975   0.1    140 Guadeloupe and Martinique
## 7  Guadeloupe  1976   0.1    140 Guadeloupe and Martinique
## 8  Guadeloupe  1977  20.0    140 Guadeloupe and Martinique
## 9  Guadeloupe  1978  20.0    140 Guadeloupe and Martinique
## 10 Guadeloupe  1979  10.0    140 Guadeloupe and Martinique
## # ... with 47 more rows
# They will be summed:
m_sum_rgn <- m_sum_rgn %>%
  group_by(rgn_id, rgn_name, year) %>%
  summarize(value = sum(value)) %>%
  ungroup()

9 Scale the data and save files

For each scenario identify the maximum year, rescale and save the pressure layer.

# identify  max and min years for each scenario and overall
maxyear_all = max(m_sum_rgn$year, na.rm=T)
scenario_maxyear = c('eez2016' = maxyear_all,  
                     'eez2015' = maxyear_all - 1,
                     'eez2014' = maxyear_all - 2,
                     'eez2013' = maxyear_all - 3,
                     'eez2012' = maxyear_all - 4)
minyear_all = scenario_maxyear[length(scenario_maxyear)]

# calculate and save for each scenario
for (i in 1:length(names(scenario_maxyear))) { # i=1
  
  maxyear = scenario_maxyear[i]
  scen = as.character(str_extract(names(scenario_maxyear)[i], "\\d{4}"))
  
  m_f = m_sum_rgn %>%
    filter(year >= minyear_all & year <= maxyear) %>%
    mutate(score = value / quantile(value, 0.95, na.rm = T)) %>% # * 1.10:  don't multiply by 1.10 since comparing to the max across all scenarios
    mutate(score = ifelse(score>1, 1, score))
  
  head(m_f); summary(m_f)
  
  m_f_max = m_f %>%
    filter(value == max(value, na.rm = TRUE))
  
  m_f_quantile_95  <- quantile(m_f$value, 0.95, na.rm=TRUE)
   

  message(sprintf('\n%s pressures scores for %d regions are rescaled to the 95th quantile in harvest since %s (%d-%d):', 
                  names(scenario_maxyear)[i], length(unique(m_f$rgn_id)), names(minyear_all), minyear_all, maxyear))
  message(sprintf('%s in %s: %d marine mammals and sea turtles harvested, and the 95th quantile is: %s ', 
                  m_f_max$rgn_name, m_f_max$year, m_f_max$value, m_f_quantile_95))
  # output displayed below  
  
  m_f = m_f %>%
    filter(year == maxyear) %>%
    select(rgn_id, pressure_score = score) %>%
    arrange(rgn_id); head(m_f); summary(m_f)
  
  # any regions that did not have a catch should have score = 0 
  rgns = rgn_master %>%
    filter(rgn_typ == "eez") %>%
    select(rgn_id = rgn_id_2013) %>%
    filter(rgn_id < 255) %>%
    unique() %>%
    arrange(rgn_id)
  
  m_f_fin = rgns %>%
    left_join(m_f) %>%
    mutate(pressure_score = ifelse(is.na(pressure_score), 0, pressure_score)) %>%
    arrange(rgn_id); head(m_f_fin); summary(m_f_fin)

  filesave = sprintf('rgn_fao_targeted_%sa.csv', scen)
  write.csv(m_f_fin, sprintf('output/fao_targeted_%s.csv', scen), row.names = FALSE)
  
  m_f_fin_gf <- m_f_fin %>%
    mutate(gapfill = 0) %>%
    select(rgn_id, gapfill)
  
    write.csv(m_f_fin_gf, sprintf('output/fao_targeted_gf_%s.csv', scen), row.names = FALSE)
}
## 
## eez2016 pressures scores for 30 regions are rescaled to the 95th quantile in harvest since eez2012 (2010-2014):
## Japan in 2010: 7489 marine mammals and sea turtles harvested, and the 95th quantile is: 3528.5
## Joining, by = "rgn_id"
## 
## eez2015 pressures scores for 30 regions are rescaled to the 95th quantile in harvest since eez2012 (2010-2013):
## Japan in 2010: 7489 marine mammals and sea turtles harvested, and the 95th quantile is: 3684.5
## Joining, by = "rgn_id"
## 
## eez2014 pressures scores for 30 regions are rescaled to the 95th quantile in harvest since eez2012 (2010-2012):
## Japan in 2010: 7489 marine mammals and sea turtles harvested, and the 95th quantile is: 3701.35
## Joining, by = "rgn_id"
## 
## eez2013 pressures scores for 29 regions are rescaled to the 95th quantile in harvest since eez2012 (2010-2011):
## Japan in 2010: 7489 marine mammals and sea turtles harvested, and the 95th quantile is: 3718.2
## Joining, by = "rgn_id"
## 
## eez2012 pressures scores for 23 regions are rescaled to the 95th quantile in harvest since eez2012 (2010-2010):
## Japan in 2010: 7489 marine mammals and sea turtles harvested, and the 95th quantile is: 3278.6
## Joining, by = "rgn_id"

10 Data check

The data from last year and this year should be the same unless there were changes to underlying FAO data or the master species list.

In this case, all of the regions looked very similar except region 141 (Faeroe Islands). This was due to a change in the FAO data.

new <- read.csv("output/fao_targeted_2015.csv")
old <- read.csv("../v2015/data/rgn_fao_targeted_2015a.csv") %>%
  select(rgn_id, pressure_score_old=pressure_score) %>%
  left_join(new, by="rgn_id")
old
##     rgn_id pressure_score_old pressure_score
## 1        1       0.0000000000   0.0000000000
## 2        2       0.0000000000   0.0000000000
## 3        3       0.0000000000   0.0000000000
## 4        4       0.0000000000   0.0000000000
## 5        5       0.0000000000   0.0000000000
## 6        6       0.0000000000   0.0000000000
## 7        7       0.0000000000   0.0000000000
## 8        8       0.0000000000   0.0000000000
## 9        9       0.0000000000   0.0000000000
## 10      10       0.0000000000   0.0000000000
## 11      11       0.0000000000   0.0000000000
## 12      12       0.0000000000   0.0000000000
## 13      13       0.0000000000   0.0000000000
## 14      14       0.0000000000   0.0000000000
## 15      15       0.0000000000   0.0000000000
## 16      16       0.0071067144   0.0067851812
## 17      17       0.0000000000   0.0000000000
## 18      18       0.0000000000   0.0000000000
## 19      19       0.0000000000   0.0000000000
## 20      20       0.5472170106   0.5224589497
## 21      21       0.0000000000   0.0000000000
## 22      24       0.0000000000   0.0000000000
## 23      25       0.0000000000   0.0000000000
## 24      26       0.0000000000   0.0000000000
## 25      28       0.0000000000   0.0000000000
## 26      29       0.0000000000   0.0000000000
## 27      30       0.0000000000   0.0000000000
## 28      31       0.0000000000   0.0000000000
## 29      32       0.0000000000   0.0000000000
## 30      33       0.0000000000   0.0000000000
## 31      34       0.0000000000   0.0000000000
## 32      35       0.0000000000   0.0000000000
## 33      36       0.0000000000   0.0000000000
## 34      37       0.0000000000   0.0000000000
## 35      38       0.0000000000   0.0000000000
## 36      39       0.0000000000   0.0000000000
## 37      40       0.0000000000   0.0000000000
## 38      41       0.0000000000   0.0000000000
## 39      42       0.0000000000   0.0000000000
## 40      43       0.0000000000   0.0000000000
## 41      44       0.0000000000   0.0000000000
## 42      45       0.0000000000   0.0000000000
## 43      46       0.0000000000   0.0000000000
## 44      47       0.0000000000   0.0000000000
## 45      48       0.0000000000   0.0000000000
## 46      49       0.0000000000   0.0000000000
## 47      50       0.0000000000   0.0000000000
## 48      51       0.0000000000   0.0000000000
## 49      52       0.0000000000   0.0000000000
## 50      53       0.0000000000   0.0000000000
## 51      54       0.0000000000   0.0000000000
## 52      55       0.0000000000   0.0000000000
## 53      56       0.0000000000   0.0000000000
## 54      57       0.0000000000   0.0000000000
## 55      58       0.0000000000   0.0000000000
## 56      59       0.0048325658   0.0046139232
## 57      60       0.0000000000   0.0000000000
## 58      61       0.0000000000   0.0000000000
## 59      62       0.0000000000   0.0000000000
## 60      63       0.0000000000   0.0000000000
## 61      64       0.0000000000   0.0000000000
## 62      65       0.0000000000   0.0000000000
## 63      66       0.0000000000   0.0000000000
## 64      67       0.0000000000   0.0000000000
## 65      68       0.0000000000   0.0000000000
## 66      69       0.0000000000   0.0000000000
## 67      70       0.0000000000   0.0000000000
## 68      71       0.0000000000   0.0000000000
## 69      72       0.0000000000   0.0000000000
## 70      73       0.2132014327   0.2035554349
## 71      74       0.0000000000   0.0000000000
## 72      75       0.0000000000   0.0000000000
## 73      76       0.0000000000   0.0000000000
## 74      77       0.0000000000   0.0000000000
## 75      78       0.0000000000   0.0000000000
## 76      79       0.0000000000   0.0000000000
## 77      80       0.0000000000   0.0000000000
## 78      81       0.0000000000   0.0000000000
## 79      82       0.0000000000   0.0000000000
## 80      84       0.0000000000   0.0000000000
## 81      85       0.0000000000   0.0000000000
## 82      86       0.0000000000   0.0000000000
## 83      88       0.0000000000   0.0000000000
## 84      89       0.0000000000   0.0000000000
## 85      90       0.0000000000   0.0000000000
## 86      91       0.0000000000   0.0000000000
## 87      92       0.0000000000   0.0000000000
## 88      93       0.0000000000   0.0000000000
## 89      94       0.0000000000   0.0000000000
## 90      95       0.0000000000   0.0000000000
## 91      96       0.0000000000   0.0000000000
## 92      97       0.0000000000   0.0000000000
## 93      98       0.0000000000   0.0000000000
## 94      99       0.0000000000   0.0000000000
## 95     100       0.0000000000   0.0000000000
## 96     101       0.0000000000   0.0000000000
## 97     102       0.0000000000   0.0000000000
## 98     103       0.0000000000   0.0000000000
## 99     104       0.0000000000   0.0000000000
## 100    105       0.0000000000   0.0000000000
## 101    106       0.0000000000   0.0000000000
## 102    107       0.0000000000   0.0000000000
## 103    108       0.0000000000   0.0000000000
## 104    110       0.0000000000   0.0000000000
## 105    111       0.0000000000   0.0000000000
## 106    112       0.0000000000   0.0000000000
## 107    113       0.0000000000   0.0000000000
## 108    114       0.0000000000   0.0000000000
## 109    115       0.0000000000   0.0000000000
## 110    116       0.0000000000   0.0000000000
## 111    117       0.0000000000   0.0000000000
## 112    118       0.0000000000   0.0000000000
## 113    119       0.0000000000   0.0000000000
## 114    120       0.0000000000   0.0000000000
## 115    121       0.0000000000   0.0000000000
## 116    122       0.0000000000   0.0000000000
## 117    123       0.0000000000   0.0000000000
## 118    124       0.0000000000   0.0000000000
## 119    125       0.0008528057   0.0008142217
## 120    126       0.0000000000   0.0000000000
## 121    127       0.0011370743   0.0010856290
## 122    129       0.0000000000   0.0000000000
## 123    130       0.0000000000   0.0000000000
## 124    131       0.0000000000   0.0000000000
## 125    132       0.0000000000   0.0000000000
## 126    133       0.0000000000   0.0000000000
## 127    134       0.0000000000   0.0000000000
## 128    135       0.0000000000   0.0000000000
## 129    136       0.0000000000   0.0000000000
## 130    137       0.0000000000   0.0000000000
## 131    138       0.0002842686   0.0002714072
## 132    139       0.0000000000   0.0000000000
## 133    140       0.0000000000   0.0000000000
## 134    141       0.0002842686   0.4179671597
## 135    143       0.0480413895   0.0903786131
## 136    144       0.0000000000   0.0000000000
## 137    145       1.0000000000   1.0000000000
## 138    146       0.0000000000   0.0000000000
## 139    147       0.0000000000   0.0000000000
## 140    148       0.0000000000   0.0000000000
## 141    149       0.0000000000   0.0000000000
## 142    150       0.0000000000   0.0000000000
## 143    151       0.0000000000   0.0000000000
## 144    152       0.0000000000   0.0000000000
## 145    153       0.0000000000   0.0000000000
## 146    154       0.0000000000   0.0000000000
## 147    155       0.0000000000   0.0000000000
## 148    156       0.0000000000   0.0000000000
## 149    157       0.0000000000   0.0000000000
## 150    158       0.0000000000   0.0000000000
## 151    159       0.0000000000   0.0000000000
## 152    161       0.0000000000   0.0000000000
## 153    162       0.0105179373   0.0100420681
## 154    163       0.0153505032   0.0268693174
## 155    164       0.0000000000   0.0000000000
## 156    166       0.0000000000   0.0000000000
## 157    167       0.0000000000   0.0000000000
## 158    168       0.0000000000   0.0000000000
## 159    169       0.0000000000   0.0000000000
## 160    171       0.0011370743   0.0010856290
## 161    172       0.0000000000   0.0000000000
## 162    173       0.0000000000   0.0000000000
## 163    174       0.0000000000   0.0000000000
## 164    175       0.0000000000   0.0000000000
## 165    176       0.0025584172   0.0024426652
## 166    177       0.0000000000   0.0000000000
## 167    178       0.0000000000   0.0000000000
## 168    179       0.0000000000   0.0000000000
## 169    180       0.0162033089   0.0157416203
## 170    181       0.0000000000   0.0000000000
## 171    182       0.0005685372   0.0005428145
## 172    183       0.0000000000   0.0000000000
## 173    184       0.0000000000   0.0000000000
## 174    185       0.0000000000   0.0000000000
## 175    186       0.0000000000   0.0000000000
## 176    187       0.0000000000   0.0000000000
## 177    188       0.0000000000   0.0000000000
## 178    189       0.0000000000   0.0000000000
## 179    190       0.0000000000   0.0000000000
## 180    191       0.0000000000   0.0000000000
## 181    192       0.0000000000   0.0000000000
## 182    193       0.0000000000   0.0000000000
## 183    194       0.0000000000   0.0000000000
## 184    195       0.0000000000   0.0000000000
## 185    196       0.0000000000   0.0000000000
## 186    197       0.0000000000   0.0000000000
## 187    198       0.0008528057   0.0000000000
## 188    199       0.0000000000   0.0000000000
## 189    200       0.0000000000   0.0000000000
## 190    202       0.0000000000   0.0000000000
## 191    203       0.0000000000   0.0000000000
## 192    204       0.0000000000   0.0000000000
## 193    205       0.0000000000   0.0000000000
## 194    206       0.0000000000   0.0000000000
## 195    207       0.0000000000   0.0000000000
## 196    208       0.0000000000   0.0000000000
## 197    209       0.0000000000   0.0000000000
## 198    210       0.9775996361   0.9333695210
## 199    212       0.0000000000   0.0000000000
## 200    213       0.0000000000   0.0000000000
## 201    214       0.0000000000   0.0000000000
## 202    215       0.0000000000   0.0000000000
## 203    216       0.0056853715   0.0054281449
## 204    218       0.0008528057   0.0008142217
## 205    219       0.0000000000   0.0000000000
## 206    220       0.0000000000   0.0000000000
## 207    221       0.0000000000   0.0000000000
## 208    222       0.0000000000   0.0000000000
## 209    223       0.1688555347   0.1612159045
## 210    224       0.0000000000   0.0000000000
## 211    227       0.0000000000   0.0000000000
## 212    228       0.0000000000   0.0000000000
## 213    231       0.0002842686   0.0002714072
## 214    232       0.0000000000   0.0000000000
## 215    237       0.0000000000   0.0000000000
## 216    244       0.0000000000   0.0000000000
## 217    245       0.0000000000   0.0000000000
## 218    247       0.0000000000   0.0000000000
## 219    248       0.0000000000   0.0000000000
## 220    249       0.0000000000   0.0000000000
## 221    250       0.0000000000   0.0000000000
plot(pressure_score ~ pressure_score_old, data=old)
abline(0, 1, col="red")

## look at the species in the 2016 data:
filter(m, country=="Faroe Islands") %>%
  filter(year == 2013) %>%
  filter(value>0)
##          country                      species
## 1  Faroe Islands                Angler(=Monk)
## 2  Faroe Islands                   Argentines
## 3  Faroe Islands        Atlantic bluefin tuna
## 4  Faroe Islands                 Atlantic cod
## 5  Faroe Islands                 Atlantic cod
## 6  Faroe Islands             Atlantic halibut
## 7  Faroe Islands             Atlantic halibut
## 8  Faroe Islands             Atlantic herring
## 9  Faroe Islands      Atlantic horse mackerel
## 10 Faroe Islands            Atlantic mackerel
## 11 Faroe Islands       Atlantic redfishes nei
## 12 Faroe Islands       Atlantic redfishes nei
## 13 Faroe Islands Atlantic white-sided dolphin
## 14 Faroe Islands            Atlantic wolffish
## 15 Faroe Islands            Atlantic wolffish
## 16 Faroe Islands           Black scabbardfish
## 17 Faroe Islands                    Blue ling
## 18 Faroe Islands     Blue whiting(=Poutassou)
## 19 Faroe Islands                      Capelin
## 20 Faroe Islands                   Common dab
## 21 Faroe Islands               Common dolphin
## 22 Faroe Islands                     Dealfish
## 23 Faroe Islands           Dogfish sharks nei
## 24 Faroe Islands                European hake
## 25 Faroe Islands              European plaice
## 26 Faroe Islands               European sprat
## 27 Faroe Islands        Freshwater fishes nei
## 28 Faroe Islands               Gadiformes nei
## 29 Faroe Islands               Gadiformes nei
## 30 Faroe Islands                Greenland cod
## 31 Faroe Islands            Greenland halibut
## 32 Faroe Islands            Greenland halibut
## 33 Faroe Islands                 Grey gurnard
## 34 Faroe Islands                      Haddock
## 35 Faroe Islands            Lanternfishes nei
## 36 Faroe Islands       Leafscale gulper shark
## 37 Faroe Islands                   Lemon sole
## 38 Faroe Islands                         Ling
## 39 Faroe Islands      Long-finned pilot whale
## 40 Faroe Islands        Lumpfish(=Lumpsucker)
## 41 Faroe Islands             Marine crabs nei
## 42 Faroe Islands            Marine fishes nei
## 43 Faroe Islands                    Moras nei
## 44 Faroe Islands               Northern prawn
## 45 Faroe Islands               Northern prawn
## 46 Faroe Islands      Northern shortfin squid
## 47 Faroe Islands               Norway lobster
## 48 Faroe Islands                  Norway pout
## 49 Faroe Islands                Orange roughy
## 50 Faroe Islands                      Pollack
## 51 Faroe Islands                    Porbeagle
## 52 Faroe Islands           Portuguese dogfish
## 53 Faroe Islands                Queen scallop
## 54 Faroe Islands          Rays and skates nei
## 55 Faroe Islands          Roundnose grenadier
## 56 Faroe Islands          Roundnose grenadier
## 57 Faroe Islands             Saithe(=Pollock)
## 58 Faroe Islands                       Turbot
## 59 Faroe Islands                  Tusk(=Cusk)
## 60 Faroe Islands                        Whelk
## 61 Faroe Islands                      Whiting
## 62 Faroe Islands               Witch flounder
## 63 Faroe Islands   Wolffishes(=Catfishes) nei
## 64 Faroe Islands   Wolffishes(=Catfishes) nei
##                                  area year    value
## 1                 Atlantic, Northeast 2013    608.0
## 2                 Atlantic, Northeast 2013  14306.0
## 3                 Atlantic, Northeast 2013      1.0
## 4                 Atlantic, Northeast 2013  29290.0
## 5                 Atlantic, Northwest 2013   3156.0
## 6                 Atlantic, Northeast 2013    103.0
## 7                 Atlantic, Northwest 2013     10.0
## 8                 Atlantic, Northeast 2013 115552.0
## 9                 Atlantic, Northeast 2013     51.0
## 10                Atlantic, Northeast 2013 144626.0
## 11                Atlantic, Northeast 2013   3460.0
## 12                Atlantic, Northwest 2013    200.0
## 13 Marine areas outside the Antarctic 2013    430.0
## 14                Atlantic, Northeast 2013     66.0
## 15                Atlantic, Northwest 2013      5.0
## 16                Atlantic, Northeast 2013    425.0
## 17                Atlantic, Northeast 2013   1089.0
## 18                Atlantic, Northeast 2013  82938.0
## 19                Atlantic, Northeast 2013  29361.0
## 20                Atlantic, Northeast 2013     18.0
## 21 Marine areas outside the Antarctic 2013      1.0
## 22                Atlantic, Northeast 2013     24.0
## 23                Atlantic, Northeast 2013    280.0
## 24                Atlantic, Northeast 2013      3.0
## 25                Atlantic, Northeast 2013    172.0
## 26                Atlantic, Northeast 2013    510.0
## 27             Europe - Inland waters 2013      0.1
## 28                Atlantic, Northeast 2013   1320.0
## 29                Atlantic, Northwest 2013      0.1
## 30                Atlantic, Northeast 2013      2.0
## 31                Atlantic, Northeast 2013   3378.0
## 32                Atlantic, Northwest 2013    302.0
## 33                Atlantic, Northeast 2013      5.0
## 34                Atlantic, Northeast 2013   5578.0
## 35                Atlantic, Northeast 2013   1456.0
## 36                Atlantic, Northeast 2013     28.0
## 37                Atlantic, Northeast 2013    121.0
## 38                Atlantic, Northeast 2013   5208.0
## 39 Marine areas outside the Antarctic 2013   1109.0
## 40                Atlantic, Northeast 2013      1.0
## 41                Atlantic, Northeast 2013     31.0
## 42                Atlantic, Northeast 2013      0.1
## 43                Atlantic, Northeast 2013      0.1
## 44                Atlantic, Northeast 2013   3660.0
## 45                Atlantic, Northwest 2013    592.0
## 46                Atlantic, Northeast 2013     50.0
## 47                Atlantic, Northeast 2013     44.0
## 48                Atlantic, Northeast 2013    336.0
## 49                Atlantic, Northeast 2013      2.0
## 50                Atlantic, Northeast 2013     10.0
## 51                Atlantic, Northeast 2013     17.0
## 52                Atlantic, Northeast 2013     52.0
## 53                Atlantic, Northeast 2013   5300.0
## 54                Atlantic, Northeast 2013    224.0
## 55                Atlantic, Northeast 2013     19.0
## 56                Atlantic, Northwest 2013      1.0
## 57                Atlantic, Northeast 2013  29704.0
## 58                Atlantic, Northeast 2013      0.1
## 59                Atlantic, Northeast 2013   2631.0
## 60                Atlantic, Northeast 2013     53.0
## 61                Atlantic, Northeast 2013    483.0
## 62                Atlantic, Northeast 2013      1.0
## 63                Atlantic, Northeast 2013    251.0
## 64                Atlantic, Northwest 2013     26.0
## look at the catch in the 2015 data:
old <- read.csv(file.path(dir_M, "git-annex/globalprep/_raw_data/FAO_capture/d2015/FAO_captureproduction_1950_2013.csv")) %>%
  filter(Country..Country.=="Faroe Islands") %>%
  select(Country..Country., Common_Name_ASFIS_species, X2013)