
www.postersession.com

• To apply to a neural network with BN layers:

• The forward pass and backward pass remain unchanged

• Adam on G(1,n) : Adam-G
- The adaptive step size is given to each weight vector

rather than each parameter. In this way, the direction of
the gradient is not corrupted, and the size of the step is
adaptively controlled

- Please refer to the paper for details

• Regularization on G(1,n) : 𝐿𝑂 𝛼, 𝑌 =
𝛼

2
𝑌𝑇𝑌 − 𝐼 𝐹

2

• Classification error rate on CIFAR (median of five runs): WRN-d-k
denotes a wide residual network that has d convolutional layers
and a widening factor k

Things we observe …
• Two networks, with the same forward pass but different

weight scaling, may fall into different local minima

• 𝐿2 regularization of the weights is known to be

indispensable for the performance, but |w| does not affect

the output of the network. Why is it important then?

• The scale of |w| affects the learning rate, so 𝐿2

regularization functions as a learning rate control

unexpectedly

What we did …
• Give scale invariance to the weight update step

How?
• Utilize the geometry of the space of scale invariant vectors

• Derive learning rules for this space

• Derive a new regularization method in this space

Overview

• ℝ2 vs G(1,2)

- ℝ2 : Only the tangent direction ℎ
contributes to minimizing cost, and
the normal direction disturbs the
learning rate

- G(1,2) : Move the point by |h| (rad)

Operators on a Grassmann

manifold G(1,n)

Algorithm 1) SGD with momentum on G(1,n) : SGD-G

Require: learning rate 𝜂, momentum coefficient γ, norm_threshold 𝜈

Initialize 𝑦0 ∈ ℝ𝑛×1 with a random unit vector

Initialize 𝜏0 ∈ ℝ𝑛×1 with a zero vector

for 𝑡 = 1,⋯ , 𝑇

𝑔 ⟵ 𝜕𝑓(𝑦𝑡−1)/𝜕𝑦 Run a backward pass to obtain 𝑔

ℎ ⟵ 𝑔 − (𝑦𝑡−1
𝑇 𝑔)𝑦𝑡−1 Project 𝑔 onto the tangent space at 𝑦𝑡−1

 ℎ ⟵ norm_clip(ℎ, 𝜈)† Clip the norm of the gradient at 𝜈

𝑑 ⟵ γ𝜏𝑡−1 − 𝜂 ℎ Update delta with momentum

𝑦𝑡 ⟵ exp𝑦𝑡−1
(𝑑) Move to the new position by the exponential map

𝜏𝑡 ⟵ pt𝑦𝑡−1
(𝑑) Move the momentum by the parallel translation

†norm_clip ℎ, 𝜈 = 𝜈 ⋅ ℎ/|ℎ| if ℎ > 𝜈, else ℎ

for 𝑊 ={weight matrices such that 𝑊𝑇𝑥 is an input to a BN layer}

Let 𝑊 be an 𝑛 × 𝑝 matrix

for 𝑖 = 1,⋯ , 𝑝

𝑚 ← 𝑚 + 1

Assign a column vector 𝑤𝑖 in 𝑊 to 𝑦𝑚 ∈ 𝐺(1, 𝑛)

Assign remaining parameters to 𝑣 ∈ ℝ𝑙

for 𝑡 = 1,⋯ , 𝑇

Run a forward pass to calculate the loss 𝐿

Run a backward pass to obtain
𝜕𝐿

𝜕𝑦𝑖
for 𝑖 = 1,⋯ ,𝑚 and

𝜕𝐿

𝜕𝑣

for 𝑖 = 1,⋯ ,𝑚

Update the point 𝑦𝑖 by SGD-G or Adam-G

Update 𝑣 by conventional optimization algorithms (such as SGD)

For orthogonality regularization, replace 𝐿 with 𝐿 + 𝑊 𝐿𝑂(𝛼,𝑊)

Dataset CIFAR-10 CIFAR-100

Model SGD SGD-G Adam-G SGD SGD-G Adam-G

VGG-13 5.88 5.87 6.05 26.17 25.29 24.89

VGG-19 6.49 5.92 6.02 27.62 25.79 25.59

WRN-28-10 3.89 3.85 3.78 18.66 18.19 18.30

WRN-40-10 3.72 3.72 3.80 18.39 18.04 17.85

Dataset SVHN

Model SGD SGD-G Adam-G

VGG-13 1.78 1.74 1.72

VGG-19 1.94 1.81 1.77

WRN-16-4 1.64 1.67 1.61

WRN-22-8 1.64 1.63 1.55

• Classification error rate on SVHN (median of five funs):

• The proposed algorithms suffer less from a plateau after each learning rate drop
• The proposed algorithms achieve lower training loss than baseline SGD

• 𝑦 = exp𝑦 2𝜋 ⋅
ℎ

|ℎ|

- It returns to the original point after moving by 2𝜋
→ gradient clipping is necessary

We want a space where all the scaled versions of a vector collapse to a point

1) 1-d Grassmann manifold G(1,n)
• 𝑥 and 𝑦 are equivalent if and only if 𝑥 = 𝑎𝑦 for 𝑎 ∈ ℝ\{0}
• 𝑔𝑔 ∆1, ∆2 = ∆1

𝑇∆2/𝑦
𝑇𝑦

If we choose a representation 𝑦 with 𝑦𝑇𝑦 = 1, G(1,n) and V(1,n) offer the same metric and resulting operators

2) 1-d Stiefel manifold V(1,n)
• equivalent to the unit sphere, 𝑥 = 1
• 𝑔𝑠 ∆1, ∆2 = ∆1

𝑇∆2

Space of scale invariant vectors

Proposed algorithms

Experiments

Riemannian approach to batch normalization
Minhyung Cho Jaehyung Lee

mhyung.cho@gmail.com jaehyung.lee@kaist.ac.kr

Batch normalization

BN 𝑧 =
𝑧 − 𝐸[𝑧]

𝑉𝑎𝑟[𝑧]
=

𝑤𝑇(𝑥 − 𝐸 𝑥)

𝑤𝑇𝑅𝑥𝑥𝑤
=

𝑢𝑇(𝑥 − 𝐸 𝑥)

𝑢𝑇𝑅𝑥𝑥𝑢

where 𝑢 = 𝑤/|𝑤| and 𝑅𝑥𝑥 is the covariance

matrix of 𝑥

• forward pass is scale invariant

BN 𝑤𝑇𝑥 = BN(𝑢𝑇𝑥)

• backward pass is scale invariant

𝜕BN(𝑤𝑇𝑥)

𝜕𝑥
=

𝜕BN(𝑢𝑇𝑥)

𝜕𝑥

• weight update is not scale invariant
𝜕BN(𝑧)

𝜕𝑤
=

1

|𝑤|

𝜕BN(𝑧)

𝜕𝑢

CIFAR-10

We derive iterative algorithms to solve the unconstrained
optimization on G(1,n) :

min
𝑦∈𝐺(1,𝑛)

𝑓(𝑦)

• Optimizations algorithms in Euclidean space can be easily
extended to those on manifolds by properly using the operators
defined on the manifolds

• A weight vector is a point on the manifold, so we can move it by
the exponential map

• Gradient is a tangent vector to the manifold, so the momentum
(accumulation of gradient) can be moved by the parallel translation

Gradient of a function
• grad 𝑓(𝑦) ∈ 𝑇𝑦ℳ
• Gradient of 𝑓 on a manifold is a

tangent vector to the manifold
• grad 𝑓 = 𝑔 − 𝑦𝑇𝑔 𝑦

where 𝑔𝑖 = 𝜕𝑓/𝜕𝑦𝑖

Exponential map
• exp𝑦(ℎ) where 𝑦 ∈ ℳ, ℎ ∈ 𝑇𝑦ℳ
• Move 𝑦 along a unique geodesic

on ℳ, with initial velocity ℎ, in a
unit time

• exp𝑦 ℎ = 𝑦cos ℎ +
ℎ

|ℎ|
sin ℎ

Parallel translation
• pt𝑦(Δ; ℎ) where 𝑦 ∈ ℳ and

Δ, ℎ ∈ 𝑇𝑦ℳ
• Parallel translate Δ along the

geodesic with the initial velocity
ℎ in a unit time

• pt𝑦 ℎ; ℎ = ℎcos ℎ − 𝑦|ℎ|sin |ℎ|

ℎ

 𝑔

ℎ

|ℎ|

 𝑔

ℎ

span(𝑦)

𝑇𝑦𝐺(1,2)

span(𝑦1)

span(𝑦)

ℎ

ℎ1

span(𝑦1)

span(𝑦)

𝑇𝑦𝐺(1,2)

𝑇𝑦1
𝐺(1,2)

𝑦1 = exp𝑦 ℎ

ℎ1 = pt𝑦 ℎ; ℎ ,|ℎ| = |ℎ1|

Source code for the experiments is available at https://github.com/MinhyungCho/riemannian-batch-normalization

CIFAR-100 SVHN

R
ie

m
a
n
n

ia
n
 B

N

http://www.megaprint.com/
https://github.com/MinhyungCho/riemannian-batch-normalization

