Riemannian approach to batch normalization Jaehyung Lee Minhyung Cho

Overview

Batch normalization

 $BN(z) = \frac{z - E[z]}{\sqrt{Var[z]}} = \frac{w^T(x - E[x])}{\sqrt{w^T R_{xx} w}} = \frac{u^T(x - E[x])}{\sqrt{u^T R_{xx} u}}$ where u = w/|w| and R_{xx} is the covariance matrix of *x*

- forward pass is scale invariant $BN(w^T x) = BN(u^T x)$
- backward pass is scale invariant $\partial BN(w^T x) \quad \partial BN(u^T x)$ ∂x ∂x
- weight update is **not** scale invariant $\partial BN(z) = 1 \ \partial BN(z)$ $|w| \partial u$

Things we observe ...

- Two networks, with the same forward pass but different weight scaling, may fall into different local minima
- L_2 regularization of the weights is known to be indispensable for the performance, but |w| does not affect the output of the network. Why is it important then?
- The scale of |w| affects the learning rate, so L_2 regularization functions as a learning rate control unexpectedly

What we did ...

• Give scale invariance to the weight update step

How?

- Utilize the geometry of the space of scale invariant vectors
- Derive learning rules for this space
- Derive a new regularization method in this space

Operators on a Grassmann manifold G(1,n)

Gradient of a function

- grad $f(y) \in T_{y}\mathcal{M}$
- Gradient of f on a manifold is a tangent vector to the manifold
- grad $f = g (y^T g)y$ where $g_i = \partial f / \partial y_i$

Exponential map

- $\exp_{\mathcal{V}}(h)$ where $y \in \mathcal{M}, h \in T_{\mathcal{V}}\mathcal{M}$
- Move *y* along a unique geodesic on \mathcal{M} , with initial velocity h, in a span (y_1) unit time
- $\exp_{y}(h) = y\cos|h| + \frac{h}{|h|}\sin|h|$

Parallel translation

- $pt_{y}(\Delta; h)$ where $y \in \mathcal{M}$ and $\Delta, h \in T_{\mathcal{V}}\mathcal{M}$
- Parallel translate Δ along the geodesic with the initial velocity *h* in a unit time
- $pt_{y}(h;h) = h\cos|h| y|h|\sin|h|$
- \mathbb{R}^2 vs G(1,2) \mathbb{R}^2 : Only the tangent direction \vec{h} contributes to minimizing cost, and the normal direction disturbs the learning rate
 - G(1,2): Move the point by |h| (rad)
- $y = \exp_y \left(2\pi \cdot \frac{h}{|h|} \right)$
 - \rightarrow gradient clipping is necessary

Space of scale invariant vectors

We want a space where all the scaled versions of a vector collapse to a point

- 1-d Grassmann manifold G(1,n)
- x and y are equivalent if and only if x = ay for $a \in \mathbb{R} \setminus \{0\}$
- $g_g(\Delta_1, \Delta_2) = \Delta_1^T \Delta_2 / y^T y$

If we choose a representation y with $y^T y = 1$, G(1,n) and V(1,n) offer the same metric and resulting operators

mhyung.cho@gmail.com

jaehyung.lee@kaist.ac.kr

- It returns to the original point after moving by 2π

2) 1-d Stiefel manifold V(1,n)• equivalent to the unit sphere, |x| = 1• $g_s(\Delta_1, \Delta_2) = \Delta_1^T \Delta_2$

Proposed algorithms

We derive iterative algorithms to solve the unconstrain optimization on G(1,n):

 $\min_{y\in G(1,n)}f(y)$

- Optimizations algorithms in Euclidean space can b extended to those on manifolds by properly using t defined on the manifolds
- A weight vector is a **point** on the manifold, so we ca the exponential map
- Gradient is a tangent vector to the manifold, so the (accumulation of gradient) can be moved by the para

Algorithm 1) SGD with momentum on G(1,n) : SGD-G

Require: learning rate η , momentum coefficient γ , norm_thr Initialize $y_0 \in \mathbb{R}^{n \times 1}$ with a random unit vector Initialize $\tau_0 \in \mathbb{R}^{n \times 1}$ with a zero vector

for $t = 1, \cdots, T$

 $g \leftarrow \partial f(y_{t-1})/\partial y$ $d \leftarrow \gamma \tau_{t-1} - \eta \hat{h}$ $y_t \leftarrow \exp_{y_{t-1}}(d)$ $\tau_t \leftarrow \operatorname{pt}_{y_{t-1}}(d)$

Run a backward pass to obtain g $h \leftarrow g - (y_{t-1}^T g) y_{t-1}$ Project g onto the tangent space $\hat{h} \leftarrow \operatorname{norm_clip}(h, v)^{\dagger}$ Clip the norm of the gradient at v Update delta with momentum Move to the new position by the e Move the momentum by the paral

[†]norm_clip(h, v) = $v \cdot h/|h|$ if |h| > v, else h

Experiments

	facto	rk					Dataset		SVHN	
Dataset	CIFAR-10		CIFAR-100			Model	SGD	SGD-G	Adam-G	
Model	SGD	SGD-G	Adam-G	SGD	SGD-G	Adam-G	VGG-13	1.78	1.74	1.72
VGG-13	5.88	5 87	6.05	26.17	25.29	24.89	VGG-19	1.94	1.81	1.77
VGG-10	6.49	5.02	6.02	27.62	25.20	25.50	WRN-16-4	1.64	1.67	1.61
VDN 29 10	2 20	2.92	2.72	19 66	10 10	19.20	WRN-22-8	1.64	1.63	1.55

- The proposed algorithms suffer less from a plateau after each learning rate drop
- The proposed algorithms achieve lower training loss than baseline SGD

ned	 To apply to a neural network with BN layers: 							
	for $W = \{$ weight matrices such that $W^T x$ is an input to a BN layer $\}$							
	Let W be an $n \times p$ matrix							
	for $i = 1, \cdots, p$							
e easily	$m \leftarrow m + 1$							
he operators	Assign a column vector w_i in W to $y_m \in G(1, n)$							
	Assign remaining parameters to $v \in \mathbb{R}^{l}$							
an move it by	for $t = 1, \cdots, T$							
e momentum	Run a forward pass to calculate the loss L							
llel translation	Run a backward pass to obtain $\frac{\partial L}{\partial y_i}$ for $i = 1, \dots, m$ and $\frac{\partial L}{\partial v}$							
	for $i = 1, \cdots, m$							
eshold v	Update the point y_i by SGD-G or Adam-G							
	Update v by conventional optimization algorithms (such as SGD)							
	For orthogonality regularization, replace L with $L + \sum_{W} L^{O}(\alpha, W)$							
	 The forward pass and backward pass remain unchanged 							
at y_{t-1}	 Adam on G(1,n) : Adam-G 							
	 The adaptive step size is given to each weight vector 							
	rather than each parameter. In this way, the direction of							
exponential map	the gradient is not corrupted, and the size of the step is							
llel translation	 Please refer to the paper for details 							
	• Regularization on G(1,n) : $L^{O}(\alpha, Y) = \frac{\alpha}{2} Y^{T}Y - I _{F}^{2}$							

Source code for the experiments is available at https://github.com/MinhyungCho/riemannian-batch-normalization