mtcars
## mpg cyl disp hp drat wt qsec vs am gear carb ## Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4 ## Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4 ## Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1 ## Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1 ## Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2 ## Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1 ## Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4 ## Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2 ## Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2 ## Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4 ## Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4 ## Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3 ## Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3 ## Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3 ## Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4 ## Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4 ## Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4 ## Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1 ## Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2 ## Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1 ## Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1 ## Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2 ## AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2 ## Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4 ## Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2 ## Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1 ## Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2 ## Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2 ## Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4 ## Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6 ## Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8 ## Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2
stars(mtcars)aplpack::faces(mtcars)## effect of variables: ## modified item Var ## "height of face " "mpg" ## "width of face " "cyl" ## "structure of face" "disp" ## "height of mouth " "hp" ## "width of mouth " "drat" ## "smiling " "wt" ## "height of eyes " "qsec" ## "width of eyes " "vs" ## "height of hair " "am" ## "width of hair " "gear" ## "style of hair " "carb" ## "height of nose " "mpg" ## "width of nose " "cyl" ## "width of ear " "disp" ## "height of ear " "hp"
GGally::scatmat(trees)GGally::scatmat(mtcars)GGally::scatmat(randu)rgl::plot3d(randu)rgl::plot3d(randu)corrplot::corrplotLåt \(X\) vara matrisen med \(d\) variabler i kolumner och \(n\) observationer på rader. Antag centrerad. Om \(n\geq d\) kan vi göra en singulärvärdesuppdelning (SVD) av \(X\)
\[ X = UD V^T \] där
\[ \begin{align*} X & = UD V^T = \sum_{i=1}^p u_id_iv_i^T\\ & \approx \sum_{i=1}^q u_id_iv_i^T = U_{1:n,1:q}D_{1:q}V_{1:q}, \end{align*} \] för \(q<p\).
trees (normaliserade)mtcars utan cylmtcars utan cyllibrary(GDAdata) head(Decathlon)
## Totalpoints DecathleteName Nationality m100 Longjump Shotput Highjump ## 1 8559 Torsten Voss DDR 10.66 8.00 14.73 2.06 ## 2 8504 Uwe Freimuth DDR 11.10 7.66 16.30 1.94 ## 3 8440 Siegfried Wentz BRD 11.21 7.22 15.84 2.09 ## 4 8409 Aleksandr Nevski SU 10.95 7.35 14.99 2.08 ## 5 8381 John Sayre USA 10.86 7.41 14.22 2.00 ## 6 8366 Vadim Podmaryov SU 11.09 7.56 15.28 2.08 ## m400 m110hurdles Discus Polevault Javelin m1500 yearEvent P100m Plj ## 1 48.28 14.50 43.28 4.9 61.28 268.80 1985 938 1061 ## 2 48.46 14.77 47.72 4.9 68.26 270.56 1985 839 975 ## 3 47.75 14.28 45.52 4.7 69.66 278.38 1985 814 866 ## 4 49.29 14.76 46.12 4.6 68.16 261.09 1985 872 898 ## 5 49.98 14.84 46.08 5.3 67.68 277.07 1985 892 913 ## 6 50.00 14.89 48.58 4.6 67.46 272.31 1985 841 950 ## Psp Phj P400m P110h Ppv Pdt Pjt P1500 ## 1 773 859 896 911 880 732 757 752 ## 2 870 749 887 878 880 823 863 741 ## 3 841 887 921 939 819 778 884 691 ## 4 789 878 848 879 790 790 861 804 ## 5 742 803 816 869 1004 789 854 699 ## 6 807 878 815 863 790 841 851 730
biplotbiplotVi vill hitta kluster av observationer/variabler som liknar varandra
scale)