This report lists the candidate variable for DataScheme variables of the construct physact.
This report is meant to be compiled after having executed the script
./manipulation/0-ellis-island.R
, which prepares the necessary data transfer object (DTO). We begin with a brief recap of this script and the DTO it produces.
All data land on Ellis Island.
The script 0-ellis-island.R
is the first script in the analytic workflow. It accomplished the following:
./data/shared/derived/meta-data-live.csv
, which is updated every time Ellis Island script is executed../data/shared/meta-data-map.csv
. They are used by automatic scripts in later harmonization and analysis.# load the product of 0-ellis-island.R, a list object containing data and metadata
dto <- readRDS("./data/unshared/derived/dto.rds")
# the list is composed of the following elements
names(dto)
[1] "studyName" "filePath" "unitData" "metaData"
# 1st element - names of the studies as character vector
dto[["studyName"]]
[1] "alsa" "lbsl" "satsa" "share" "tilda"
# 2nd element - file paths of the data files for each study as character vector
dto[["filePath"]]
[1] "./data/unshared/raw/ALSA-Wave1.Final.sav" "./data/unshared/raw/LBSL-Panel2-Wave1.Final.sav"
[3] "./data/unshared/raw/SATSA-Q3.Final.sav" "./data/unshared/raw/SHARE-Israel-Wave1.Final.sav"
[5] "./data/unshared/raw/TILDA-Wave1.Final.sav"
# 3rd element - list objects with the following elements
names(dto[["unitData"]])
[1] "alsa" "lbsl" "satsa" "share" "tilda"
# each of these elements is a raw data set of a corresponding study, for example
dplyr::tbl_df(dto[["unitData"]][["lbsl"]])
Source: local data frame [656 x 27]
id AGE94 SEX94 MSTAT94 EDUC94 NOWRK94 SMK94 SMOKE
(int) (int) (int) (fctr) (int) (fctr) (fctr) (fctr)
1 4001026 68 1 divorced 16 no, retired no never smoked
2 4012015 94 2 widowed 12 no, retired no never smoked
3 4012032 94 2 widowed 20 no, retired no don't smoke at present but smoked in the past
4 4022004 93 2 NA NA NA NA never smoked
5 4022026 93 2 widowed 12 no, retired no never smoked
6 4031031 92 1 married 8 no, retired no don't smoke at present but smoked in the past
7 4031035 92 1 widowed 13 no, retired no don't smoke at present but smoked in the past
8 4032201 92 2 NA NA NA NA don't smoke at present but smoked in the past
9 4041062 91 1 widowed 7 NA no don't smoke at present but smoked in the past
10 4042057 91 2 NA NA NA NA NA
.. ... ... ... ... ... ... ... ...
Variables not shown: ALCOHOL (fctr), WINE (int), BEER (int), HARDLIQ (int), SPORT94 (int), FIT94 (int), WALK94 (int),
SPEC94 (int), DANCE94 (int), CHORE94 (int), EXCERTOT (int), EXCERWK (int), HEIGHT94 (int), WEIGHT94 (int), HWEIGHT
(int), HHEIGHT (int), SRHEALTH (fctr), smoke_now (lgl), smoked_ever (lgl)
# 4th element - a dataset names and labels of raw variables + added metadata for all studies
dto[["metaData"]] %>% dplyr::select(study_name, name, item, construct, type, categories, label_short, label) %>%
DT::datatable(
class = 'cell-border stripe',
caption = "This is the primary metadata file. Edit at `./data/shared/meta-data-map.csv",
filter = "top",
options = list(pageLength = 6, autoWidth = TRUE)
)
dto[["metaData"]]%>%dplyr::filter(study_name=="alsa", name=="EXRTHOUS")%>%dplyr::select(name,label)
name label
1 EXRTHOUS Exertion around house
dto[["unitData"]][["alsa"]]%>%histogram_discrete("EXRTHOUS")
dto[["unitData"]][["alsa"]]%>%dplyr::group_by_("EXRTHOUS")%>%dplyr::summarize(n=n())
Source: local data frame [3 x 2]
EXRTHOUS n
(fctr) (int)
1 Yes 290
2 No 1773
3 NA 24
dto[["metaData"]] %>% dplyr::filter(study_name=="alsa", name=="HWMNWK2W") %>% dplyr::select(name,label)
name label
1 HWMNWK2W Times walked in past two weeks
dto[["unitData"]][["alsa"]]%>% histogram_continuous("HWMNWK2W", bin_width=1)
dto[["unitData"]][["alsa"]]%>% dplyr::group_by_("HWMNWK2W") %>% dplyr::summarize(n=n())
Source: local data frame [24 x 2]
HWMNWK2W n
(int) (int)
1 1 58
2 2 117
3 3 46
4 4 96
5 5 36
6 6 67
7 7 34
8 8 33
9 9 4
10 10 53
.. ... ...
dto[["metaData"]] %>% dplyr::filter(study_name=="alsa", name=="LSVEXC2W") %>% dplyr::select(name,label)
name label
1 LSVEXC2W Less vigor sessions last 2 weeks
dto[["unitData"]][["alsa"]]%>% histogram_continuous("LSVEXC2W", bin_width=1)
dto[["unitData"]][["alsa"]]%>% dplyr::group_by_("LSVEXC2W") %>% dplyr::summarize(n=n())
Source: local data frame [20 x 2]
LSVEXC2W n
(int) (int)
1 1 25
2 2 69
3 3 14
4 4 70
5 5 15
6 6 52
7 7 12
8 8 11
9 9 1
10 10 14
11 11 1
12 12 9
13 14 76
14 18 2
15 22 1
16 24 1
17 28 10
18 30 1
19 42 5
20 NA 1698
dto[["metaData"]]%>%dplyr::filter(study_name=="alsa", name=="LSVIGEXC")%>%dplyr::select(name,label)
name label
1 LSVIGEXC Less vigor past 2 weeks
dto[["unitData"]][["alsa"]]%>%histogram_discrete("LSVIGEXC")
dto[["unitData"]][["alsa"]]%>%dplyr::group_by_("LSVIGEXC")%>%dplyr::summarize(n=n())
Source: local data frame [3 x 2]
LSVIGEXC n
(fctr) (int)
1 Yes 389
2 No 1675
3 NA 23
dto[["metaData"]]%>%dplyr::filter(study_name=="alsa", name=="TMHVYEXR")%>%dplyr::select(name,label)
name label
1 TMHVYEXR Time heavy physical exertion
dto[["unitData"]][["alsa"]]%>%histogram_continuous("TMHVYEXR", bin_width=5)
dto[["unitData"]][["alsa"]]%>%dplyr::group_by_("TMHVYEXR")%>%dplyr::summarize(n=n())
Source: local data frame [27 x 2]
TMHVYEXR n
(int) (int)
1 1 77
2 2 71
3 3 15
4 4 30
5 5 11
6 6 8
7 7 4
8 8 7
9 10 11
10 11 1
.. ... ...
dto[["metaData"]]%>%dplyr::filter(study_name=="alsa", name=="TMVEXC2W")%>%dplyr::select(name,label)
name label
1 TMVEXC2W Vigor Time past 2 weeks
dto[["unitData"]][["alsa"]]%>%histogram_continuous("TMVEXC2W", bin_width=60)
dto[["unitData"]][["alsa"]]%>%dplyr::group_by_("TMVEXC2W")%>%dplyr::summarize(n=n())
Source: local data frame [37 x 2]
TMVEXC2W n
(int) (int)
1 1 1
2 2 1
3 4 3
4 5 2
5 8 4
6 10 1
7 11 1
8 14 1
9 18 1
10 21 1
.. ... ...
dto[["metaData"]]%>%dplyr::filter(study_name=="alsa", name=="VIGEXC2W")%>%dplyr::select(name,label)
name label
1 VIGEXC2W Vigor Sessions in past 2 weeks
dto[["unitData"]][["alsa"]]%>%histogram_continuous("VIGEXC2W", bin_width=1)
dto[["unitData"]][["alsa"]]%>%dplyr::group_by_("VIGEXC2W")%>%dplyr::summarize(n=n())
Source: local data frame [13 x 2]
VIGEXC2W n
(int) (int)
1 1 10
2 2 24
3 3 2
4 4 10
5 5 1
6 6 8
7 7 1
8 8 1
9 9 1
10 10 7
11 12 1
12 14 19
13 NA 2002
dto[["metaData"]]%>%dplyr::filter(study_name=="alsa", name=="VIGEXCS")%>%dplyr::select(name,label)
name label
1 VIGEXCS Vigorous exercise
dto[["unitData"]][["alsa"]]%>%histogram_discrete("VIGEXCS")
dto[["unitData"]][["alsa"]]%>%dplyr::group_by_("VIGEXCS")%>%dplyr::summarize(n=n())
Source: local data frame [3 x 2]
VIGEXCS n
(fctr) (int)
1 Yes 85
2 No 1979
3 NA 23
dto[["metaData"]]%>%dplyr::filter(study_name=="alsa", name=="WALK2WKS")%>%dplyr::select(name,label)
name label
1 WALK2WKS Walking past 2 weeks
dto[["unitData"]][["alsa"]]%>%histogram_discrete("WALK2WKS")
dto[["unitData"]][["alsa"]]%>%dplyr::group_by_("WALK2WKS")%>%dplyr::summarize(n=n())
Source: local data frame [3 x 2]
WALK2WKS n
(fctr) (int)
1 Yes 973
2 No 1091
3 NA 23
dto[["metaData"]]%>%dplyr::filter(study_name=="lbsl", name=="CHORE94")%>%dplyr::select(name,label)
name label
1 CHORE94 Doing household chores, number of hours spent per week
dto[["unitData"]][["lbsl"]]%>%histogram_continuous("CHORE94", bin_width=1)
dto[["unitData"]][["lbsl"]]%>%dplyr::group_by_("CHORE94")%>%dplyr::summarize(n=n())
Source: local data frame [30 x 2]
CHORE94 n
(int) (int)
1 0 21
2 1 70
3 2 67
4 3 56
5 4 44
6 5 41
7 6 31
8 7 32
9 8 26
10 9 4
.. ... ...
dto[["metaData"]]%>%dplyr::filter(study_name=="lbsl", name=="DANCE94")%>%dplyr::select(name,label)
name label
1 DANCE94 Dancing
dto[["unitData"]][["lbsl"]]%>%histogram_continuous("DANCE94", bin_width=1)
dto[["unitData"]][["lbsl"]]%>%dplyr::group_by_("DANCE94")%>%dplyr::summarize(n=n())
Source: local data frame [13 x 2]
DANCE94 n
(int) (int)
1 0 280
2 1 18
3 2 8
4 3 8
5 4 8
6 5 3
7 6 3
8 8 1
9 10 4
10 12 1
11 15 1
12 20 1
13 NA 320
dto[["metaData"]]%>%dplyr::filter(study_name=="lbsl", name=="EXCERTOT")%>%dplyr::select(name,label)
name label
1 EXCERTOT Number of total hours in an average week exercising for shape/fun (not housework)
dto[["unitData"]][["lbsl"]]%>%histogram_continuous("EXCERTOT", bin_width=1)
dto[["unitData"]][["lbsl"]]%>%dplyr::group_by_("EXCERTOT")%>%dplyr::summarize(n=n())
Source: local data frame [24 x 2]
EXCERTOT n
(int) (int)
1 0 131
2 1 43
3 2 63
4 3 67
5 4 50
6 5 38
7 6 33
8 7 37
9 8 16
10 9 4
.. ... ...
dto[["metaData"]]%>%dplyr::filter(study_name=="lbsl", name=="EXCERWK")%>%dplyr::select(name,label)
name label
1 EXCERWK Number of times in past week exercised or played sports
dto[["unitData"]][["lbsl"]]%>%histogram_continuous("EXCERWK", bin_width=1)
dto[["unitData"]][["lbsl"]]%>%dplyr::group_by_("EXCERWK")%>%dplyr::summarize(n=n())
Source: local data frame [21 x 2]
EXCERWK n
(int) (int)
1 0 171
2 1 36
3 2 52
4 3 52
5 4 53
6 5 54
7 6 31
8 7 63
9 8 4
10 9 2
.. ... ...
dto[["metaData"]]%>%dplyr::filter(study_name=="lbsl", name=="FIT94")%>%dplyr::select(name,label)
name label
1 FIT94 Physical fitness, number of hours each week
dto[["unitData"]][["lbsl"]]%>%histogram_continuous("FIT94", bin_width=1)
dto[["unitData"]][["lbsl"]]%>%dplyr::group_by_("FIT94")%>%dplyr::summarize(n=n())
Source: local data frame [17 x 2]
FIT94 n
(int) (int)
1 0 137
2 1 50
3 2 44
4 3 51
5 4 30
6 5 14
7 6 20
8 7 8
9 8 5
10 10 8
11 12 5
12 15 1
13 18 1
14 20 1
15 21 1
16 25 1
17 NA 279
dto[["metaData"]]%>%dplyr::filter(study_name=="lbsl", name=="SPEC94")%>%dplyr::select(name,label)
name label
1 SPEC94 Spectator sports, number of hours spent per week
dto[["unitData"]][["lbsl"]]%>%histogram_continuous("SPEC94", bin_width=1)
dto[["unitData"]][["lbsl"]]%>%dplyr::group_by_("SPEC94")%>%dplyr::summarize(n=n())
Source: local data frame [9 x 2]
SPEC94 n
(int) (int)
1 0 248
2 1 21
3 2 15
4 3 21
5 4 12
6 5 3
7 8 2
8 9 1
9 NA 333
dto[["metaData"]]%>%dplyr::filter(study_name=="lbsl", name=="SPORT94")%>%dplyr::select(name,label)
name label
1 SPORT94 Participant sports, number of hours
dto[["unitData"]][["lbsl"]]%>%histogram_continuous("SPORT94", bin_width=1)
dto[["unitData"]][["lbsl"]]%>%dplyr::group_by_("SPORT94")%>%dplyr::summarize(n=n())
Source: local data frame [16 x 2]
SPORT94 n
(int) (int)
1 0 251
2 1 11
3 2 11
4 3 11
5 4 14
6 5 3
7 6 8
8 7 3
9 8 9
10 9 1
11 10 9
12 12 3
13 15 3
14 16 1
15 20 4
16 NA 314
dto[["metaData"]]%>%dplyr::filter(study_name=="lbsl", name=="WALK94")%>%dplyr::select(name,label)
name label
1 WALK94 Walking, number of hours per week
dto[["unitData"]][["lbsl"]]%>%histogram_continuous("WALK94", bin_width=1)
dto[["unitData"]][["lbsl"]]%>%dplyr::group_by_("WALK94")%>%dplyr::summarize(n=n())
Source: local data frame [17 x 2]
WALK94 n
(int) (int)
1 0 75
2 1 72
3 2 78
4 3 57
5 4 40
6 5 33
7 6 28
8 7 24
9 8 8
10 10 10
11 11 1
12 12 5
13 14 1
14 15 1
15 20 2
16 30 1
17 NA 220
dto[["metaData"]]%>%dplyr::filter(study_name=="satsa", name=="GEXERCIS")%>%dplyr::select(name,label)
name
1 GEXERCIS
label
1 Here are seven different options concerning exercise during your leisure time. Which one of these options best fits how you yourself exercise on a yearly basis?
dto[["unitData"]][["satsa"]]%>%histogram_discrete("GEXERCIS")
dto[["unitData"]][["satsa"]]%>%dplyr::group_by_("GEXERCIS")%>%dplyr::summarize(n=n())
Source: local data frame [8 x 2]
GEXERCIS n
(fctr) (int)
1 I hardly get any exercise at all 169
2 I get very little exercise 181
3 I get little exercise 193
4 I don't get very much exercise 394
5 I get quite a lot of exercise 430
6 I get a lot of exercise 88
7 I get very much exercise 17
8 NA 25
dto[["metaData"]]%>%dplyr::filter(study_name=="tilda", name=="BH101")%>%dplyr::select(name,label)
name label
1 BH101 bh101 During the last 7 days, on how many days did you do vigorous physical activit?
dto[["unitData"]][["tilda"]]%>%histogram_discrete("BH101")
dto[["unitData"]][["tilda"]]%>%dplyr::group_by_("BH101")%>%dplyr::summarize(n=n())
Source: local data frame [9 x 2]
BH101 n
(int) (int)
1 0 6303
2 1 454
3 2 409
4 3 346
5 4 208
6 5 272
7 6 97
8 7 403
9 NA 12
dto[["metaData"]]%>%dplyr::filter(study_name=="tilda", name=="BH102")%>%dplyr::select(name,label)
name label
1 BH102 bh102 How much time did you usually spend doing vigorous physical activities on one?
dto[["unitData"]][["tilda"]] %>% dplyr::filter(!BH102==-1)%>%histogram_discrete("BH102")
dto[["unitData"]][["tilda"]]%>%dplyr::group_by_("BH102")%>%dplyr::summarize(n=n())
Source: local data frame [13 x 2]
BH102 n
(int) (int)
1 -1 6314
2 0 408
3 1 621
4 2 404
5 3 231
6 4 216
7 5 145
8 6 60
9 7 23
10 8 53
11 9 4
12 10 16
13 NA 9
dto[["metaData"]]%>%dplyr::filter(study_name=="tilda", name=="BH102A")%>%dplyr::select(name,label)
name label
1 BH102A bh102a How much time did you usually spend doing vigorous physical activities on one?
dto[["unitData"]][["tilda"]]%>% dplyr::filter(!BH102A==-1)%>%histogram_continuous("BH102A", bin_width=5)
dto[["unitData"]][["tilda"]]%>%dplyr::group_by_("BH102A")%>%dplyr::summarize(n=n())
Source: local data frame [16 x 2]
BH102A n
(int) (int)
1 -1 6314
2 0 1418
3 10 45
4 14 1
5 15 44
6 20 81
7 24 1
8 25 7
9 28 1
10 30 441
11 35 8
12 40 33
13 45 69
14 50 23
15 55 6
16 NA 12
dto[["metaData"]]%>%dplyr::filter(study_name=="tilda", name=="BH103")%>%dplyr::select(name,label)
name label
1 BH103 bh103 During the last 7 days, on how many days did you do moderate physical activit?
dto[["unitData"]][["tilda"]]%>%histogram_discrete("BH103")
dto[["unitData"]][["tilda"]]%>%dplyr::group_by_("BH103")%>%dplyr::summarize(n=n())
Source: local data frame [9 x 2]
BH103 n
(int) (int)
1 0 4378
2 1 409
3 2 589
4 3 521
5 4 338
6 5 493
7 6 210
8 7 1549
9 NA 17
dto[["metaData"]]%>%dplyr::filter(study_name=="tilda", name=="BH104")%>%dplyr::select(name,label)
name label
1 BH104 bh104 How much time did you usually spend doing moderate physical activities on one?
dto[["unitData"]][["tilda"]]%>% dplyr::filter(!BH104==-1)%>%histogram_continuous("BH104", bin_width=1)
dto[["unitData"]][["tilda"]]%>%dplyr::group_by_("BH104")%>%dplyr::summarize(n=n())
Source: local data frame [13 x 2]
BH104 n
(int) (int)
1 -1 4395
2 0 776
3 1 1078
4 2 840
5 3 468
6 4 416
7 5 261
8 6 94
9 7 46
10 8 68
11 9 5
12 10 34
13 NA 23
dto[["metaData"]]%>%dplyr::filter(study_name=="tilda", name=="BH104A")%>%dplyr::select(name,label)
name label
1 BH104A bh104a How much time did you usually spend doing moderate physical activities on one?
dto[["unitData"]][["tilda"]]%>% dplyr::filter(!BH104A==-1)%>%histogram_continuous("BH104A", bin_width=5)
dto[["unitData"]][["tilda"]]%>%dplyr::group_by_("BH104A")%>%dplyr::summarize(n=n())
Source: local data frame [20 x 2]
BH104A n
(int) (int)
1 -1 4395
2 0 2666
3 10 118
4 12 3
5 13 2
6 14 1
7 15 77
8 16 1
9 19 1
10 20 198
11 25 14
12 30 864
13 35 2
14 36 1
15 40 42
16 45 66
17 50 24
18 55 10
19 56 1
20 NA 18
dto[["metaData"]]%>%dplyr::filter(study_name=="tilda", name=="BH105")%>%dplyr::select(name,label)
name label
1 BH105 bh105 During the last 7 days, on how many days did you walk for at least 10 minutes?
dto[["unitData"]][["tilda"]]%>%histogram_discrete("BH105")
dto[["unitData"]][["tilda"]]%>%dplyr::group_by_("BH105")%>%dplyr::summarize(n=n())
Source: local data frame [9 x 2]
BH105 n
(int) (int)
1 0 1369
2 1 349
3 2 499
4 3 668
5 4 557
6 5 746
7 6 328
8 7 3974
9 NA 14
dto[["metaData"]]%>%dplyr::filter(study_name=="tilda", name=="BH106")%>%dplyr::select(name,label)
name label
1 BH106 bh106 How much time did you usually spend walking on one of those days? HOURS
dto[["unitData"]][["tilda"]]%>%histogram_discrete("BH106")
dto[["unitData"]][["tilda"]]%>%dplyr::group_by_("BH106")%>%dplyr::summarize(n=n())
Source: local data frame [8 x 2]
BH106 n
(int) (int)
1 -1 1383
2 0 3166
3 1 2434
4 2 704
5 3 320
6 4 267
7 5 205
8 NA 25
dto[["metaData"]]%>%dplyr::filter(study_name=="tilda", name=="BH106A")%>%dplyr::select(name,label)
name label
1 BH106A bh106a How much time did you usually spend walking on one of those days? MINS
dto[["unitData"]][["tilda"]]%>% dplyr::filter(!BH106A==-1)%>%histogram_continuous("BH106A", bin_width=1)
dto[["unitData"]][["tilda"]]%>%dplyr::group_by_("BH106A")%>%dplyr::summarize(n=n())
Source: local data frame [24 x 2]
BH106A n
(int) (int)
1 -1 1382
2 0 2966
3 10 302
4 12 6
5 13 2
6 15 305
7 18 2
8 20 615
9 24 2
10 25 65
.. ... ...
dto[["metaData"]]%>%dplyr::filter(study_name=="tilda", name=="BH107")%>%dplyr::select(name,label)
name label
1 BH107 bh107 During the last 7 days, how much time did you spend sitting on a week day? HO?
dto[["unitData"]][["tilda"]]%>%histogram_continuous("BH107")
dto[["unitData"]][["tilda"]]%>%dplyr::group_by_("BH107")%>%dplyr::summarize(n=n())
Source: local data frame [21 x 2]
BH107 n
(int) (int)
1 0 115
2 1 325
3 2 980
4 3 1491
5 4 1601
6 5 1090
7 6 951
8 7 608
9 8 551
10 9 128
.. ... ...
dto[["metaData"]]%>%dplyr::filter(study_name=="tilda", name=="BH107A")%>%dplyr::select(name,label)
name label
1 BH107A bh107a During the last 7 days, how much time did you spend sitting on a week day? MINS
dto[["unitData"]][["tilda"]]%>%histogram_continuous("BH107A")
dto[["unitData"]][["tilda"]]%>%dplyr::group_by_("BH107A")%>%dplyr::summarize(n=n())
Source: local data frame [14 x 2]
BH107A n
(int) (int)
1 0 7033
2 10 67
3 15 19
4 16 1
5 20 120
6 23 1
7 25 4
8 30 1079
9 35 5
10 40 23
11 45 31
12 50 19
13 55 7
14 NA 95
dto[["metaData"]]%>%dplyr::filter(study_name=="tilda", name=="IPAQEXERCISE3")%>%dplyr::select(name,label)
name label
1 IPAQEXERCISE3 IPAQmetminutes Phsyical activity met-minutes
dto[["unitData"]][["tilda"]]%>%histogram_continuous("IPAQEXERCISE3", bin_width = 500)
dto[["unitData"]][["tilda"]]%>%dplyr::group_by_("IPAQEXERCISE3")%>%dplyr::summarize(n=n())
Source: local data frame [1,707 x 2]
IPAQEXERCISE3 n
(dbl) (int)
1 0.0 827
2 33.0 12
3 40.0 2
4 49.5 13
5 60.0 1
6 66.0 43
7 80.0 5
8 89.5 1
9 99.0 63
10 113.0 1
.. ... ...
dto[["metaData"]]%>%dplyr::filter(study_name=="tilda", name=="IPAQMETMINUTES")%>%dplyr::select(name,label)
name label
1 IPAQMETMINUTES IPAQmetminutes Phsyical activity met-minutes
dto[["unitData"]][["tilda"]]%>%histogram_continuous("IPAQMETMINUTES", bin_width = 500)
dto[["unitData"]][["tilda"]]%>%dplyr::group_by_("IPAQMETMINUTES")%>%dplyr::summarize(n=n())
Source: local data frame [1,707 x 2]
IPAQMETMINUTES n
(dbl) (int)
1 0.0 827
2 33.0 12
3 40.0 2
4 49.5 13
5 60.0 1
6 66.0 43
7 80.0 5
8 89.5 1
9 99.0 63
10 113.0 1
.. ... ...
sessionInfo()
R version 3.2.5 (2016-04-14)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows >= 8 x64 (build 9200)
locale:
[1] LC_COLLATE=English_United States.1252 LC_CTYPE=English_United States.1252 LC_MONETARY=English_United States.1252
[4] LC_NUMERIC=C LC_TIME=English_United States.1252
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] ggplot2_2.1.0 knitr_1.12.3 magrittr_1.5
loaded via a namespace (and not attached):
[1] splines_3.2.5 lattice_0.20-33 colorspace_1.2-6 htmltools_0.3.5 mgcv_1.8-12
[6] yaml_2.1.13 chron_2.3-47 survival_2.38-3 nloptr_1.0.4 foreign_0.8-66
[11] DBI_0.4-1 RColorBrewer_1.1-2 plyr_1.8.3 stringr_1.0.0 MatrixModels_0.4-1
[16] munsell_0.4.3 gtable_0.2.0 htmlwidgets_0.6 evaluate_0.9 labeling_0.3
[21] latticeExtra_0.6-28 SparseM_1.7 extrafont_0.17 quantreg_5.21 pbkrtest_0.4-6
[26] parallel_3.2.5 markdown_0.7.7 highr_0.5.1 Rttf2pt1_1.3.3 Rcpp_0.12.5
[31] acepack_1.3-3.3 scales_0.4.0 DT_0.1.40 formatR_1.3 Hmisc_3.17-4
[36] jsonlite_0.9.20 lme4_1.1-12 gridExtra_2.2.1 testit_0.5 digest_0.6.9
[41] stringi_1.0-1 dplyr_0.4.3 grid_3.2.5 tools_3.2.5 lazyeval_0.1.10
[46] dichromat_2.0-0 Formula_1.2-1 cluster_2.0.3 tidyr_0.4.1 extrafontdb_1.0
[51] car_2.1-2 MASS_7.3-45 Matrix_1.2-4 rsconnect_0.4.2.1 data.table_1.9.6
[56] assertthat_0.1 minqa_1.2.4 rmarkdown_0.9.6 R6_2.1.2 rpart_4.1-10
[61] nnet_7.3-12 nlme_3.1-126