
EBI is an Outstation of the European Molecular Biology Laboratory.

eHive WorkshopeHive Workshop
part 3: writing your own Runnablespart 3: writing your own Runnables

Leo GordonLeo Gordon

States of a JobStates of a Job

A Job is a parametrised Storable instance of a Runnable.
It is fully represented in the Hive database (job table, job_id, foreign keys, etc)

A Job goes through the following states:

[SEMAPHORED] -- if they are created in pre-blocked state

READY -- can be claimed by Workers

CLAIMED -- for a short period to ensure no race condition with other Workers

[PRE_CLEANUP] -- method -- mostly file/db cleanup after prev. attempt

FETCH_INPUT -- method -- checking parameters and database activity

RUN -- method -- main functionality, ideally mute

WRITE_OUTPUT -- method -- mostly writing into databases, dataflow

[POST_CLEANUP] -- method -- mostly memory cleanup

DONE -- this is how they all should be

[FAILED] -- if exhausted all attempts

[PASSED_ON] -- if garbage-collected from a killed Worker

Lifecycle of a Runnable/JobLifecycle of a Runnable/Job

Hive Runnables inherit from 'Bio::EnsEMBL::Hive::Process' (or its descendents).
It gives them two things:

they get access to Hive API (the visible part of which is parameter management)

they acquire a lifecycle() subroutine that calls the following “virtual” methods:

param_defaults() # a hash of the lowest level defaults in parameter precedence

pre_cleanup() # is only called for retry_counts>0, mainly to clean up files

fetch_input()

run()

write_output()

post_cleanup() # mainly to clean up memory after all values of retry_count

standaloneJob.pl is a script to run a parametrised Runnable without a database at all:

standaloneJob.pl Bio::EnsEMBL::Hive::RunnableDB::SystemCmd -cmd 'ls -l'

standaloneJob.pl Bio::EnsEMBL::Hive::RunnableDB::SystemCmd \
-input_id "{ 'cmd' => 'ls -l' }"

Parameter retrieval/storage APIParameter retrieval/storage API

The top-level cohesive material of the Hive system is the API that deals with parameter
retrieval, storage and propagation. It is closely linked with dataflow mechanism.

Jobs do not know where the parameters they are working with come from.
All they need to know is:

How to get a value of a parameter:
my $alpha = $self->param('alpha');

How to set it to make available to other parts of Job's lifecycle:
$self->param('beta', $beta);

How to require that the given parameter has been passed:
my $alpha = $self->param_required('alpha');

How to check whether it is defined:
if ($self->param_is_defined('gamma')) { … }

Parameters that you have stored in $self->param() are not automatically dataflown
anywhere, it is your responsibility to trigger Dataflow Events:

Dataflow APIDataflow API

Dataflow event has two parameters: a hash and branch number:

$self->dataflow_output_id({ 'alpha' => 1.5, 'gamma' => 5 }, 3);

The first parameter can also be an arrayref (of hashes):

$self->dataflow_output_id([{'name' => 'Alice'}, {'name' => 'Bob'}], 2);

Feel free to use any number of distinct dataflow branches to create events, they do not
have to be all wired. You can create different modes of operation by wiring different
branches. A separate branch_number should be allocated for each distinct kind of data.

Be careful when explicitly dataflowing into branch #1, as this will override the autoflow.
You shoud know what you are doing (multiple events in branch #1 is a bad idea).

If you do explicitly dataflow into branch #1, make sure this Dataflow Event happens
after all Dataflow Events you envisage may constitute a semaphore group with funnel in
branch #1.

Error reporting APIError reporting API
You may leave a non-fatal human-readable message in log_message table:

$self->warning('I got a strange feeling I am in an infinite loop…');

Do not mix it with “warn” whose output will go to wherever STDERR of the Job is

Any fatal message will also be recorded in log_message:
die 'all gone wrong'; # just the message
$self->throw(); # with call stack trace (including Hive internal calls)

However the same die/throw/croak/... calls can be used to mark the successful
completion of a Job. In this case you have to first unset the incomplete flag.

$self->input_job->incomplete(0);
die 'all gone right'; # this message is still recorded

Setting transient_error to 0 and then dying will prevent further
attempts to retry the Job:

$self->input_job->transient_error(0);
if($alpha < 0) { die “alpha parameter cannot be negative”; }
$self->input_job->transient_error(1);

You can also instruct the Worker to exit if you believe it has been contaminated:
$self->input_job->lethal_for_worker(1);
die “There is no point to carry on with this Worker: /tmp is full”;

Exercise of the day: checking the distributive propertyExercise of the day: checking the distributive property

Our main exercise will be to construct a pipeline that will check experimentally that
A*(B1+B2+B3+...+Bn) == A*B1+A*B2+A*B3+...+A*Bn.

Long Multiplication pipeline components (3 runnables and the configuration file) can
be reused, but you will need to write our own AddArray.pm runnable for adding
together array members.

We will need to create two configuration files:

AddThenMultiply_conf.pm to define the flow of the left part

MultiplyThenAdd_conf.pm to define the flow of the right part

AddThenMultiply_conf vs MultiplyThenAdd_conf AddThenMultiply_conf vs MultiplyThenAdd_conf

Interface to the Runnable:
AddArray.pm should

take in 'b_array' parameter

dataflow the 'sum'
parameter into branch #1

Interface to the PipeConfigs:
we want to seed both pipelines
with the same input_id:
{

'a_multiplier' => 123,
'b_array' => [456,789]

}

How can we keep the same
interface in these two contexts?

Templates: the other kind of glueTemplates: the other kind of glue

Runnables have fixed parameter names for input and output -

in comparison with Perl subroutine calls that have a fixed order of parameters:

+ more flexible - you can specify certain parameters and not others

+ less error-prone - if you add parameters, there is no need to reshuffle them

− you may need “glue” to link analyses together

Two kinds of glue:

input transformation using parameter substitution:

'cmd' => 'gzip #filename#'

output transformation using templates:

2 => { 'compress_a_file' => {

'input_filename' => '#output_filename#', # rename

'check_input_once' => 1, # specific mode

'gzip_flags' => '#gzip_flags#', # explicit propagation

},

 'another_analysis' => undef, # no template - use as is

},

Templates work the same way independently of Dataflow’s destination type

Now you should know everything you need...Now you should know everything you need...

… to finish the exercise.

Solutions:
AddThenMultiply1_conf.pm and MultiplyThenAdd1_conf.pm
(to test the structure of pipelines without an extra Runnable)

AddThenMultiply2_conf.pm , MultiplyThenAdd2_conf.pm and AddArray.pm
(with a dedicated Runnable)

Feel free to merge two parts into one – with an automatic comparator in the end.

Questions?

AcknowledgementsAcknowledgements

Matthieu Muffato and Miguel Pignatelli

pipeline_wide_parameters()pipeline_wide_parameters()
and the order of precedence of parametersand the order of precedence of parameters

 The source of parameters is unknown to Jobs

sub pipeline_wide_parameters {

 my ($self) = @_;

 return {

 %{$self->SUPER::pipeline_wide_parameters},

 'gzip_flags' => '',

 'directory' => '.',

 'only_files' => '*',

 };
}

 Parameters can be:

“local” to the Job – accu & input_id (belonging/sent to the Job itself or its “stack” of ancestors)

analysis-wide parameters

pipeline-wide parameters

defaults set in the Runnable’s code

always inherit from the parent

	Slide 1
	Writing your own Runnable. Lifecycle of a Job
	Writing your own Runnable. Lifecycle of a Job
	Writing your own Runnable. Available API
	Writing your own Runnable. Available API
	Slide 6
	Slide 7
	Writing your own Runnable. Exercise
	Templates: the other kind of glue
	Slide 10
	Questions?
	Slide 12
	Slide 13

