
EBI is an Outstation of the European Molecular Biology Laboratory.

eHive WorkshopeHive Workshop
part 2: How to create pipelinespart 2: How to create pipelines

(configuration files)(configuration files)

Leo GordonLeo Gordon

Before we begin:Before we begin:

Please make sure you have correct setup from part 1:

You are running screen -RD on one of farm login nodes

ensembl (core) and ensembl-hive repositories are installed and up-to-date:

$ cvs -q update -dP

$ENSEMBL_CVS_ROOT_DIR points to the directory holding the checkouts

Slides are here:
$ENSEMBL_CVS_ROOT_DIR/ensembl-hive/docs/presentations/HiveWorkshop_Sept2013

$PERL5LIB includes ensembl/modules and ensembl-hive/modules

$PATH includes ensembl-hive/scripts

You have a username+password on our training MySQL server

(set them in $EHIVE_* environment variables for the duration of the course)

Do we need breaks?

Modularity of pipelines. PipeConfigs & RunnablesModularity of pipelines. PipeConfigs & Runnables

 A Hive pipeline is defined in a PipeConfig file which references one or more Runnable
modules.

 Many tasks can be solved by using “universal” Runnables provided by the Hive
(SystemCmd, SqlCmd, JobFactory, Dummy), but sometimes you have to write your own
application-specific Runnables.

 We shall learn to use universal Runnables before making our own
(however it may be the opposite of what you do in practice)

 Hive’s “universal” Runnables live here:
$ENSEMBL_CVS_ROOT_DIR/ensembl-hive/modules/Bio/EnsEMBL/Hive/RunnableDB/

 Hive’s PipeConfig files live here:
$ENSEMBL_CVS_ROOT_DIR/ensembl-hive/modules/Bio/EnsEMBL/Hive/PipeConfig/

They are written in a subset of Perl.

The simplest pipeline : AnyCommands_conf.pmThe simplest pipeline : AnyCommands_conf.pm

Open the file - this is the smallest PipeConfig possible:

use base ('Bio::EnsEMBL::Hive::PipeConfig::HiveGeneric_conf'); # or subclass

sub pipeline_analyses {

 return [

 { -logic_name => 'perform_cmd',

 -module => 'Bio::EnsEMBL::Hive::RunnableDB::SystemCmd',

 },

];

}

$ init_pipeline.pl Bio::EnsEMBL::Hive::PipeConfig::AnyCommands_conf

$ generate_graph.pl -url $EHIVE_URL -out any_c_empty.png

or open http://guihive.internal.sanger.ac.uk:8080/ instead

http://guihive.internal.sanger.ac.uk:8080/

Seeding and running AnyCommands_conf.pmSeeding and running AnyCommands_conf.pm

No jobs - we will have to seed them:

$ seed_pipeline.pl -url $EHIVE_URL -logic_name perform_cmd \

-input_id '{"cmd" => "echo Hello, world"}'

and run:

$ runWorker.pl -url $EHIVE_URL

Practical to a certain extent (analysis_capacity, batch_size, resources)

Analysis-wide parameters and substitutionAnalysis-wide parameters and substitution

We can define values for old parameters and create new ones:

sub pipeline_analyses {

 return [

 { -logic_name => 'perform_cmd',

 -module => 'Bio::EnsEMBL::Hive::RunnableDB::SystemCmd',

 -parameters => {

 "cmd" => "gzip #filename# ",

 },

 },

];

}

Exercise:
seed a few jobs and run them (you can copy some compressible files from ~lg4/work/pdfs)

Automated seeding of jobs?

for filename in `find pdfs/ -name '*.pdf'` ; do
seed_pipeline.pl -url $EHIVE_URL \

-logic_name perform_cmd -input_id "{ 'filename' => '$filename' }";

done

created a new parameter
that can be defined by jobs“cmd” defined on the analysis level

Factories and dataflow : CompressFiles_conf.pmFactories and dataflow : CompressFiles_conf.pm

created a new
higher level parameter

what to call the output

where the output should go

● Dataflow Rules can be used to make Jobs seed other Jobs

● Factory is an Analysis whose only aim is to seed other Jobs, create a “fan”, turn time into space

● Higher level input

sub pipeline_analyses {

 return [

 { -logic_name => 'find_files',

 -module => 'Bio::EnsEMBL::Hive::RunnableDB::JobFactory',

 -parameters => {

 'inputcmd' => 'find #directory# -type f ',

 'column_names' => ['filename'],

 },

 -flow_into => {

 2 => ['compress_a_file'],

 },

 },

 { -logic_name => 'compress_a_file',

 -module => 'Bio::EnsEMBL::Hive::RunnableDB::SystemCmd',

 -parameters => {

 'cmd' => 'gzip #filename#',

 },

 -analysis_capacity => 4,

 },

];

}

 Each Dataflow Event is a pair (branch_number, hash_of_parameters+).

 In our example the 'find_files' job that we seed with
{ 'directory' => 'pdfs' }

 generates the following Dataflow Events:
#2, { 'filename' => 'pdfs/first.pdf' }
#2, { 'filename' => 'pdfs/second.pdf' }
. . .
#2, { 'filename' => 'pdfs/last.pdf' }
#1, { 'directory' => 'pdfs' }

 “Reserved” branch numbers that have their own meaning (similar to UNIX file descriptors):
1 is almost always present, it is the “continuation” after Job is ‘DONE’

2 is used by many Factory Runnables to emit the “fan” (of Jobs, etc)

-1 : “postmortem dataflow after MEMLIMIT” on LSF

-2 : “postmortem dataflow after RUNLIMIT” on LSF

3, 4, 5... : unreserved, can be used for anything

 Each Runnable has its own set of branch_numbers that it may emit Dataflow Events into.
 Check its documentation or code to make sure the dataflow you are wiring is live.

What happens if it’s not?

 How to regain the single thread of control?

Dataflow conventionsDataflow conventions

The “fan”

“autoflow” event,
helps to bind analyses consecutively

Regaining single thread of control: semaphored dataflowRegaining single thread of control: semaphored dataflow

Built-in mechanism for converging individual threads back together.

Based on semaphores that can block an individual job by a set of prerequisite jobs.

Semaphored dataflow in a PipeConfigSemaphored dataflow in a PipeConfig

Creating a funnel Analysis : let the pipeline send us a notification:

{ -logic_name => 'report_by_email',
-module => 'Bio::EnsEMBL::Hive::RunnableDB::NotifyByEmail',
-meadow_type => 'LOCAL', # NB: farm nodes may not support sendmail
-parameters => {

 'email' => $ENV{'USER'} . '@sanger.ac.uk', # what if it's wrong?
 'subject' => 'pipeline has finished',

 'text' => 'done compressing files in #directory#',
},

},

Linking two rules together happens in the emitting Analysis:

-flow_into => {

'2->A' => ['compress_a_file'],

'A->1' => ['report_by_email'],

}

Try running.
(solution: CompressFiles2_conf)

A break?

creates a group of jobs that control a semaphore

creates one job that is controlled by the semaphore

mailto:'@sanger.ac.uk

Parameters and their implicit propagationParameters and their implicit propagation

 Exercise 1:
How do we set a default directory name for analysis 1?

 Exercise 2:
Introduce another parameter 'only_files' to define the wildcard pattern
for filenames we want to compress

 What if we wanted to pass something to analysis 2 directly?
Say, if we want the same analysis to act as decompressor:

'cmd' => 'gzip #gzip_flags# #filename#'
and then set 'gzip_flags' to '-d' somehow/somewhere?

 First, pass the parameter to the job being seeded, then propagate it

 Explicit propagation using templates vs implicit propagation

How implicit parameter propagation worksHow implicit parameter propagation works

{

my $a=5; my $b=200 ;my $c=-1;

…

$b=250 ;

…

{

my $a=15;

for my $b (2,3,4) {

$b *= 10;

}

…

}

…

$b=300;

}

Using implicit parameter propagationUsing implicit parameter propagation

 What if we wanted to pass something to analysis 2 directly?
Say, if we want the same analysis to act as decompressor:

'cmd' => 'gzip #gzip_flags# #filename#'

 Implicit parameter propagation mechanism is off by default, switch it on using:
sub hive_meta_table {

 my ($self) = @_;

 return {

 %{$self->SUPER::hive_meta_table},

 'hive_use_param_stack' => 1,

 };

}

 Can you now propagate 'gzip_flags' to analysis 2?
(solution: CompressFiles3_conf)

Capturing data : another role of JobFactoryCapturing data : another role of JobFactory

 Both SystemCmd and SqlCmd only run your command,
no output is captured in any structured way.

So SqlCmd is usually used to INSERT, DELETE, UPDATE, CREATE/ALTER/DROP TABLE,
but not with SELECT.

JobFactory is not specifically creating Jobs - it simply transforms streams of “things” into
Dataflow Events that may be converted into Jobs, stored in database tables, or
accumulated. It is the wiring that defines what happens next.

 { -logic_name => 'pre_compress_size',

 -module => 'Bio::EnsEMBL::Hive::RunnableDB::JobFactory',

 -parameters => {

 'inputcmd' => "wc -c #filename# | sed -e 's/^ *//' ",

 'delimiter' => ' ',

 'column_names' => ['orig_size', 'orig_filename'],

 },

 },

Insert and wire it correctly.
How to check whether we have captured anything?

How to pass it outside?

Accumulating data from a semaphore groupAccumulating data from a semaphore group

How do we pass the data from the box into the funnel?

The data can be passed from any job within the box into the correct funnel Job

Different structures or combinations can be accumulated (hashes, arrays, piles, multisets)

pseudo-Analysis names as targets for Dataflow (with or without templates).

':////accu?hash_name={key_name}'

':////accu?array_name=[index_name]'

':////accu?pile_name=[]'

':////accu?multiset_name={}'

see LongMult_conf for example.

Flow the data into accu (which branch?).

Advanced parameter substitution : expressionsAdvanced parameter substitution : expressions

What if we want to compute a value of #alpha#+1 rather than just a string?

'alpha_plus_one' => '#expr(#alpha#+1)expr#'

Any Perl expression can be evaluated as follows:

first, #alpha# will be text-substituted with the value of alpha parameter

then the resulting string will be evaluated

put a space between dollar and the name ($ beta) if you want standard Perl
interpretation of the variable

put curly braces around #alpha# if you want to dereference a reference:
@{ #array_ref# }

%{ #hash_ref# }

We can flatten accumulated structures (that are not scalars) into scalars
using #expr()expr# . For example,

'min_comp_size' => '#expr(min values %{#comp_size#})expr#',
'max_comp_size' => '#expr(max values %{#comp_size#})expr#',
'text' => 'compressed sizes between #min_comp_size# and #max_comp_size#',

Exercise: accumulation + substitutionExercise: accumulation + substitution

Let’s put it all together:

Factory on a directory to dataflow single filenames

compute their sizes and accumulate them

compress the files

compute the compressed sizes and accumulate

funnel flattens the accumulated structures and
emails you the report

Solution: CompressFiles4_conf

Questions?Questions?

AcknowledgementsAcknowledgements

Matthieu Muffato and Miguel Pignatelli

	Slide 1
	Before we begin, please:
	Modularity of pipelines. PipeConfigs & Runnables
	The simplest pipeline : AnyCommands_conf.pm
	AnyCommands_conf.pm (2)
	Analysis-wide parameters and substitution
	Factories and dataflow : CompressFiles_conf.pm
	Dataflow conventions
	Regaining single thread of control: semaphored dataflow
	Semaphored dataflow in a PipeConfig
	Slide 11
	How parameter stack works
	Slide 13
	Capturing data from a command : JobFactory
	Accumulating data from a semaphore group
	Advanced parameter substitution : expressions
	Exercise: accumulation + substitution
	Questions?
	Slide 19

