eHive Workshop

part 2. How to create pipelines
(configuration files)

Leo Gordon

wellcome trust

Blsanger

Before we begin:

+ Please make sure you have correct setup from part 1:

* You are running scr een - RDon one of farm login nodes

*+ ensembl (core) and ensembl-hive repositories are installed and up-to-date:
$ cvs -g update -dP

+ $ENSEMBL_CVS ROOT_ DI R points to the directory holding the checkouts

+ Slides are here:
$ENSEMBL_CVS ROOT_DI R/ ensenbl - hi ve/ docs/ present ati ons/ H veWor kshop_Sept 2013

+ $PERL5LI B includes ensembl/modules and ensembl-hive/modules
+ $PATH includes ensembl-hive/scripts
* You have a username+password on our training MySQL server

(set them in $EHI VE_* environment variables for the duration of the course)

+ Do we need breaks?

BYsanger e/

Modularity of pipelines. PipeConfigs & Runnables

+ A Hive pipeline is defined in a PipeConfig file which references one or more Runnable
modules.

* Many tasks can be solved by using “universal” Runnables provided by the Hive
(SystemCmd, SqlCmd, JobFactory, Dummy), but sometimes you have to write your own
application-specific Runnables.

+ We shall learn to use universal Runnables before making our own
(however it may be the opposite of what you do in practice)

+ Hive’s “universal” Runnables live here;:
$SENSEMBL CVS_ ROOT DIR/ensembl-hive/modules/Bio/EnsEMBL/Hive/RunnableDB/

+ Hive’s PipeConfig files live here:
$ENSEMBL CVS ROOT DIR/ensembl-hive/modules/Bio/EnsEMBL/Hive/PipeConfig/
They are written in a subset of Perl.

BYsanger e/

The simplest pipeline : AnyCommands_conf.pm

¥+ Open the file - this is the smallest PipeConfig possible:

use base ('Bio::EnsEMBL: :Hive: :PipeConfig: :HiveGeneric conf'); # or subclass

sub pipeline analyses {
return [
{ -logic_name => 'perform cmd',
-module => 'Bio: :EnsiEMBL: :Hive: :RunnableDB: :SystemCmd',
},
17

$ init_pipeline.pl Bio::EnseEMBL:: H ve:: Pi peConfi g:: AnyConmands_conf

$ generate _graph.pl -url $EH VE URL -out any _c_enpty. png [performcmd(l)]

-0

or open http://guihive.internal.sanger.ac.uk:8080/ instead

BYsanger e/

http://guihive.internal.sanger.ac.uk:8080/

Seeding and running AnyCommands_conf.pm

* No jobs - we will have to seed them:

S seed pipeline.pl -url $EHIVE_URL -logic_name perform cmd \
—input id '{"cmd" => "echo Hello, world"}'

$ runWorker.pl -url $EHIVE URL

+ and run;:

+ Practical to a certain extent (analysis_capacity, batch_size, resources)

BYsanger e, EMBL-EBI

institute

Analysis-wide parameters and substitution

+ We can define values for old parameters and create new ones:

sub pipeline analyses ({
return |
{ -logic_name => 'perform cmd',
-module => 'Bio::EnsiEMBL: :Hive: :RunnableDB: :SystemCmd',
-parameters => {
"emd" => "gzip #filename# ",

b,
b,

1;

created a new parameter
“‘cmd” defined on the analysis level that can be defined by jobs

+ Exercise:
seed a few jobs and run them (you can copy some compressible files from ~lg4/work/pdfs)

* Automated seeding of jobs?

for filename in "find pdfs/ -name '*.pdf'" ; do
seed pipeline.pl -url $EHIVE URL \
-logic_name perform cmd -input id "{ 'filename' => '$filename' }";

EMBL-EBI

done

Blsanger e/

Factories and dataflow : CompressFiles_conf.pm

e Dataflow Rules can be used to make Jobs seed other Jobs

e Factory is an Analysis whose only aim is to seed other Jobs, create a “fan”, turn time into space

e Higher level input

sub pipeline analyses ({

return |

{

},
1;
}

¢ wellcome trust
Ksanger
Institute

-logic_name => 'find files',

-module => 'Bio: :EnsEMBL: :Hive: :RunnableDB: : JobFactory',

-parameters => {

"inputcmd' => 'find ﬁ -type £ ',
'column names' => [|'filename'],

},
-flow_into => {

2 => ['compress a file'],

created a new
higher level parameter

ﬁhat to call the output

b,

\\lhere the output should go

-logic_name => |'compress_a file',
-module => 'Bio: :EnsEMBL: :Hive: :RunnableDB: :SystemCmd',
-parameters => {

'emd' => 'gzip #filename#'

b

-analysis capacity => 4,

€.

2

compress a_file (2)
B N

EMBL-EBI

Dataflow conventions

+ Each Dataflow Event is a pair (branch_number, hash_of parameters+).

% In our example the 'find_files' job that we seed with
{ 'directory' => 'pdfs' }
generates the following Dataflow Events:
#2, { 'filename' => 'pdfs/first.pdf' } ‘ The “fan”
#2, { 'filename' => 'pdfs/second.pdf' }

#2, { 'filename' => 'pdfs/last.pdf' } “autoflow” event,
#1, { 'directory' => 'pdfs' } helps to bind analyses consecutively

+ “Reserved” branch numbers that have their own meaning (similar to UNIX file descriptors):
% 1 is almost always present, it is the “continuation” after Job is ‘DONE’
¥ 2 is used by many Factory Runnables to emit the “fan” (of Jobs, etc)
¥ -1 : “postmortem dataflow after MEMLIMIT” on LSF
¥* -2 : “postmortem dataflow after RUNLIMIT” on LSF
% 3, 4, 5... : unreserved, can be used for anything

+ Each Runnable has its own set of branch_numbers that it may emit Dataflow Events into.
Check its documentation or code to make sure the dataflow you are wiring is live.
What happens if it's not?

<+ How to regain the single thread of control?

BYsanger e/

Regaining single thread of control: semaphored dataflow

+ Built-in mechanism for converging individual threads back together.
+ Based on semaphores that can block an individual job by a set of prerequisite jobs.

joo

Semaphored dataflow in a PipeConfig

+ Creating a funnel Analysis : let the pipeline send us a notification:

{ -logic_name => 'report by email’',
-module => 'Bio: :EnsEMBL: :Hive: :RunnableDB: :NotifyByEmail',
-meadow_type => 'LOCAL', # NB: farm nodes may not support sendmail
-parameters => {
'email' => $ENV{'USER'} . '@sanger.ac.uk', # what if it's wrong?

'subject' => 'pipeline has finished',
'text' => 'done compressing files in #directory#',

b,
b,

+ Linking two rules together happens in the emitting Analysis:

~flow_into =%@s a group of jobs that control a semaphore

'2->A' => ['compress_a file'],

'A->1' => ['report by email'],

}
\E’ates one job that is controlled by the semaphore

+ Try running.

(solution: CompressFiles2_conf)
+ A break?

EMBL-EBI

Blsanger e/

mailto:'@sanger.ac.uk

Parameters and their implicit propagation

¢ Exercise 1
How do we set a default directory name for analysis 1?

¢ Exercise 2:
Introduce another parameter 'only files' to define the wildcard pattern
for filenames we want to compress

+ What if we wanted to pass something to analysis 2 directly?
Say, if we want the same analysis to act as decompressor:
'emd' => 'gzip #gzip flags# #filenamei'
and thenset' gzip flags' to '-d somehow/somewhere?

+ First, pass the parameter to the job being seeded, then propagate it

+ Explicit propagation using templates vs implicit propagation

BYsanger e/

How implicit parameter propagation works

a=5.b=200,c=-1
{ ()
my $a=5; my $b=200 ;my $c=-1;
$b=250 ;
{
my $a=15;
for my $b (2,3,4) {
Sb *= 10;
}
}
$b=300;
}

(o) ()

EMBL-EBI

Bsanger e/

Using implicit parameter propagation

+ What if we wanted to pass something to analysis 2 directly?
Say, if we want the same analysis to act as decompressor:
'emd' => 'gzip #gzip flags# #filenamei'

+ Implicit parameter propagation mechanism is off by default, switch it on using:
sub hive neta table {

ny ($self) = @;
return {
% $sel f - >SUPER: : hi ve_net a_t abl e},

‘hive_use_param stack' => 1,

}

+ Can you now propagate 'gzi p_fl ags' to analysis 2?
(solution: CompressFiles3_conf)

EMBL-EBI

Bsanger e/

Capturing data : another role of JobFactory

+ Both SystemCmd and SqlCmd only run your command,
no output is captured in any structured way.

So SqICmd is usually used to INSERT, DELETE, UPDATE, CREATE/ALTER/DROP TABLE,
but not with SELECT.

+ JobFactory is not specifically creating Jobs - it simply transforms streams of “things” into
Dataflow Events that may be converted into Jobs, stored in database tables, or
accumulated. It is the wiring that defines what happens next.

{ -logic_name => 'pre_compress_size',
-module => 'Bio: :EnsEMBL: :Hive: :RunnableDB: : JobFactory',
-parameters => {
'"inputcmd' => "wc -c #filename# | sed -e 's/* *//' ",
'delimiter’ = "',
'column names' => ['orig size', 'orig filename'],

b
b

+ Insert and wire it correctly.
% How to check whether we have captured anything?

% How to pass it outside?

BYsanger e/

Accumulating data from a semaphore group

+ How do we pass the data from the box into the funnel?
+ The data can be passed from any job within the box into the correct funnel Job

+ Different structures or combinations can be accumulated (hashes, arrays, piles, multisets)

+ pseudo-Analysis names as targets for Dataflow (with or without templates).
% ':////accu?hash name={key name}"'

% ':////accu?array name=[index name]'

% ':////accu?pile name=[]"

% ':////accu?multiset name={}'

#+ see LongMult_conf for example.

Flow the data into accu (which branch?).

EMBL-EBI

Bsanger e/

Advanced parameter substitution : expressions

+ What if we want to compute a value of #alpha#+1 rather than just a string?

"al pha_plus_one' => '#expr(#al pha#+1)expr#

+ Any Perl expression can be evaluated as follows:
% first, #alpha# will be text-substituted with the value of alpha parameter
% then the resulting string will be evaluated

% put a space between dollar and the name ($ beta) if you want standard Perl
interpretation of the variable

% put curly braces around #alpha# if you want to dereference a reference:
* @{ #array_ref# }

* %{ #hash_ref# }

+ We can flatten accumulated structures (that are not scalars) into scalars
using #expr()expr# . For example,

"mn_conp_size' => '#expr(m n val ues % #conp_si ze#}) expr#' ,
"max_conp_size' => '#expr(max val ues 9% #conp_si ze#}) expr#',
"text' => 'conpressed sizes between #m n_conp_si ze# and #max_conp_si ze#'

BYsanger e/

Exercise: accumulation + substitution

+ Let's put it all together:

% Factory on a directory to dataflow single filenames

compute their sizes and accumulate them

compress the files

% compute the compressed sizes and accumulate

funnel flattens the accumulated structures and
emails you the report

[post_compress_size (4)] \
+ Solution: CompressFiles4_conf ;0 (R

BYsanger e/

Questions?

el

‘Acknowledgements

‘Matthieu Muffato and Miguel Pignatelli Fundmg y
. trust 2-55§EEZI
Current and previous members welicome =NEL AT
of Compara team LT L
b =, 99 BBSRC

All users of eHive system for
testing, feedback and ideas

European Commission

Paul Flicek, Steve Searle and Framework Programme 7

the entire Ensembl Team gl
Q Qua ntomics
cccccccccccccccccccccccccc nce :
‘ &? 1;;& ‘ Tools {-*r the F:rlr)'l'l'lon of Livestock Genomes

BYsanger e/

	Slide 1
	Before we begin, please:
	Modularity of pipelines. PipeConfigs & Runnables
	The simplest pipeline : AnyCommands_conf.pm
	AnyCommands_conf.pm (2)
	Analysis-wide parameters and substitution
	Factories and dataflow : CompressFiles_conf.pm
	Dataflow conventions
	Regaining single thread of control: semaphored dataflow
	Semaphored dataflow in a PipeConfig
	Slide 11
	How parameter stack works
	Slide 13
	Capturing data from a command : JobFactory
	Accumulating data from a semaphore group
	Advanced parameter substitution : expressions
	Exercise: accumulation + substitution
	Questions?
	Slide 19

