
EBI is an Outstation of the European Molecular Biology Laboratory.

eHive WorkshopeHive Workshop
part 1: How to run, troubleshootpart 1: How to run, troubleshoot

 and tune pipelinesand tune pipelines

Leo GordonLeo Gordon

Pipeline and AnalysisPipeline and Analysis

Pipeline is a distributed computation process.

Parts of the computation are connected to other parts
via dependency rules.

eHive system both sets up these computation
processes and runs them.

Analyses as "big steps" or “stages” of pipelines.

Some may be done, some in progress, some have
not started yet.

Analyses as “containers” or “templates” for Jobs

What are Jobs?

Jobs and DataflowJobs and Dataflow

Jobs are individual units of computation that can be run.

A Job is defined by individual parameters and the Analysis it belongs to.

Jobs share whatever they inherit from their Analysis.

Dataflow - a universal messaging mechanism central to Hive.

 Jobs send out parametrized Dataflow Events

 Depending on Dataflow Rules (shared between
Jobs of the same Analysis) these Events may:

 create new Jobs

 do nothing (default)

 store data in tables

 send data to other Jobs

 establish complex Job dependency

patterns

Obtaining and installing eHive codeObtaining and installing eHive code

[http://www.ensembl.org/info/docs/eHive/installation.html]

Currently main dependency is EnsEMBL Core API, but strangely not BioPerl

$ export ENSEMBL_CVS_ROOT_DIR=$HOME/ensembl_main
$ cd $ENSEMBL_CVS_ROOT_DIR # assuming it exists; mkdir & cd otherwise

$ cvs -d :pserver:cvsuser@cvs.sanger.ac.uk:/cvsroot/ensembl login
Logging in to :pserver:cvsuser@cvs.sanger.ac.uk:2401/cvsroot/ensembl
CVS password: CVSUSER

$ cvs -d :pserver:cvsuser@cvs.sanger.ac.uk:/cvsroot/ensembl checkout ensembl
$ cvs -d :pserver:cvsuser@cvs.sanger.ac.uk:/cvsroot/ensembl checkout ensembl-hive

OR
$ git clone git.internal:/repos/git/ensembl/compara/ensembl-hive.git # fresher

#----------------------[~/.bash_profile]------------------------------

export ENSEMBL_CVS_ROOT_DIR=$HOME/ensembl_main # specific to your setup!

export PERL5LIB=${PERL5LIB}:$ENSEMBL_CVS_ROOT_DIR/ensembl/modules

no longer necessary for just running, but easier for development:
export PERL5LIB=${PERL5LIB}:$ENSEMBL_CVS_ROOT_DIR/ensembl-hive/modules

simply convenient; all Hive scripts live here:
export PATH=$PATH:$ENSEMBL_CVS_ROOT_DIR/ensembl-hive/scripts

http://www.ensembl.org/info/docs/eHive/installation.html

A quick test of your code/environment setupA quick test of your code/environment setup

$ db_cmd.pl -url mysql://anonymous@ensembldb.ensembl.org/

(should connect the mysql client to the public ensembl server)

$ perldoc Bio::EnsEMBL::Hive::PipeConfig::LongMult_conf

(should show the POD of the pipeline)

$ ~mm14/bin/tree -Ad $ENSEMBL_CVS_ROOT_DIR/ensembl-hive

(should show the content of the next slide)

mailto:anonymous@ensembldb.ensembl.org

Directory structure of eHive codeDirectory structure of eHive code

$ENSEMBL_CVS_ROOT_DIR/ensembl-hive contains:

.
|-- ./docs
| `-- ./docs/presentations
| `-- ./docs/presentations/HiveWorkshop_Sept2013
|-- ./modules
| `-- ./modules/Bio
| `-- ./modules/Bio/EnsEMBL
| `-- ./modules/Bio/EnsEMBL/Hive
| |-- ./modules/Bio/EnsEMBL/Hive/DBSQL
| |-- ./modules/Bio/EnsEMBL/Hive/Meadow
| |-- ./modules/Bio/EnsEMBL/Hive/PipeConfig
| |-- ./modules/Bio/EnsEMBL/Hive/RunnableDB
| | `-- ./modules/Bio/EnsEMBL/Hive/RunnableDB/LongMult
| `-- ./modules/Bio/EnsEMBL/Hive/Utils
|-- ./scripts
`-- ./sql

MySQL server setup for the workshopMySQL server setup for the workshop

A Hive pipeline is centred around a database.
To be able to create and/or run the pipeline you will need a running server
and know the connection parameters including the password.

In this workshop we will be using the following connection parameters:
Driver: MySQL (supported alternatives: SQLite and PostgreSQL)
Host: train-mysql.internal.sanger.ac.uk
Port: 3306 (default)
Username: train02..train25
Password: psw02..psw25

Number off, please

 Test your connection to the server:
$ db_cmd.pl -url mysql://trainXX:pswXX@train-mysql.internal.sanger.ac.uk/

CREATE DATABASE / DROP DATABASE
Make sure you prefix database names with your username

 You will notice the ubiquity of database URLs.
 This is the main way of representing database connection parameters.
 All Hive tools can use URLs for connecting to databases.

Pipeline database creationPipeline database creation

 Try running:

$ init_pipeline.pl Bio::EnsEMBL::Hive::PipeConfig::LongMult_conf \
-host train-mysql.internal -user trainXX -dbowner trainXX

Missing parameters? A pipeline typically has several parameters that can be supplied from init_pipeline.pl
command line. Some are optional, some are not. They will affect the database creation and will "stay" in the
pipeline in one form or another.

Supply the password and run init_pipeline.pl successfully.
After creating the pipeline it should print the list of suggested commands
which is a good reference point of what to do next.

 Environment variables that override connection parameters:

 Make sure this is done securely
(either .bash_profile or stuff that you source from there is not readable by the world).

export EHIVE_HOST=train-mysql.internal.sanger.ac.uk
export EHIVE_PORT=3306
export EHIVE_USER=trainXX
export EHIVE_PASS=pswXX

Peeking into the pipelinePeeking into the pipeline

 Non-interactive way - run
$ generate_graph.pl -url <URL> -out diagram.png

and see the initial graph with only initial jobs in READY state.

 Interactive way – open
http://guihive.internal.sanger.ac.uk:8080/
http://guihive.ebi.ac.uk:8080/

and paste in the pipeline URL.

 Power-user way – run
$ db_cmd.pl -url <URL>

and look into the tables.

 Hive database schema diagram:
$ENSEMBL_CVS_ROOT_DIR/

ensembl-hive/docs/hive_schema.png

http://guihive.internal.sanger.ac.uk:8080/
http://guihive.ebi.ac.uk:8080/

Workers : independent agents running the pipelineWorkers : independent agents running the pipeline

 The actual running of the pipeline's Jobs is done by Workers.
 They are independent agents (processes on the farm) that are
 synchronized only through the Hive database that acts as a blackboard.

 Workers are the only "doers" in the whole Hive system,
 and until some Workers are created no computation is performed.

 By default a Worker “specializes” into an analysis and then runs multiple Jobs
 for about an hour. You can impose various constraints.

$ runWorker.pl -url <URL> # automatic specialization

$ runWorker.pl -url <URL> -logic_name <analysis_name>

$ runWorker.pl -url <URL> -job_id <job_id>

 Workers can be run locally or submitted to the farm.
 A typical run of a pipeline is a combination of both.

 Let’s peek into the database and run some Workers:

$ db_cmd.pl -url <URL>

Running individual Workers (2 terminals)Running individual Workers (2 terminals)
SELECT * FROM worker; -- no workers yet
SELECT * FROM job; -- initial tasks to be performed

$ runWorker.pl -url <URL>

SELECT * FROM worker; -- worker#1 specialized into analysis#1
SELECT * FROM job; -- analysis#1 is a factory, new jobs created
SELECT * FROM accu; -- accumulators should be empty

$ runWorker.pl -url <URL>

SELECT * FROM worker; -- worker#2 specialized into analysis#2
SELECT * FROM job; -- perform partial multiplications
SELECT * FROM final_result; -- no results yet
SELECT * FROM accu; -- accumulators contain data for analysis#3

$ runWorker.pl -url <URL>

SELECT * FROM worker; -- worker#3 specialized into analysis#3
SELECT * FROM job; -- perform addition, dataflow into final_result
SELECT * FROM final_result; -- see the results

Note they were all local Workers.
Re-initialize the pipeline (we shall run it on the farm) :

$ init_pipeline.pl PipeConfig/LongMult_conf.pm -hive_force_init 1

re-create pipeline dbclass or path

Creating extra tasks by seedingCreating extra tasks by seeding

 Jobs are created:
by init_pipeline.pl when the Pipeline database is initialized (pipeline’s main entry point(s))

by running seed_pipeline.pl script at any moment (high-level calls to the whole pipeline's logic)

dynamically by the pipeline itself when the Dataflow Rules are activated (functions calling
other functions)

$ seed_pipeline.pl -url <URL>

$ seed_pipeline.pl -url <URL> -analysis_id 1 \
 -input_id '{"a_multiplier" => "96966905521","b_multiplier" => 327358788}'

$ seed_pipeline.pl -url <URL> -logic_name take_b_apart \
 -input_id '{"a_multiplier" => "96966905521","b_multiplier" => 327358788}'

 Not all pipelines are designed to be dynamically seeded, but some are.

 Counter-indications for seeding:
incoming dataflow arcs (job creation (solid blue) or accumulated (dashed green))

existence of control rules (solid red “inhibitor” arcs)

Submitting Workers to the farm manuallySubmitting Workers to the farm manually

 Optionally re-create the pipeline database :

$ init_pipeline.pl LongMult_conf.pm -hive_force_init 1

 Run one factory Worker locally (it is special):

$ runWorker.pl -url <URL>

 Submit some Workers to the farm (run a few of these):

$ bsub -o /dev/null -e /dev/null runWorker.pl -url <URL>
$ bsub -o /dev/null -e /dev/null runWorker.pl -url <URL>

 Check the status of your submission:

$ bjobs -w

 Any difference between Workers in the worker table?

 Any confusion between Hive Jobs and LSF Jobs?

Automatic scheduling of WorkersAutomatic scheduling of Workers

Submitting individual Workers to the farm is tedious.
It has to be done in time, and the number of Workers has to be right.
Since we don't want to babysit our pipelines all day/week/month,
we have a dedicated "scheduler".

(ideal
)

Using Beekeeper to schedule WorkersUsing Beekeeper to schedule Workers

 beekeeper.pl is our main "scheduling" script that drives the execution of the
pipeline. Submitting the right number of Workers performing our pipeline is the only task
of beekeeper.pl , it does not by itself perform any computation. Nor does it keep any
connection to the Workers.

 What happens when we kill the beekeeper.pl ?

 Let’s re-initialize our database:

$ init_pipeline.pl LongMult_conf.pm … -hive_force_init 1

 and start the Beekeeper:

$ beekeeper.pl -url <URL> -loop

 Note that Beekeeper can create local Workers even on the farm (configurable).

Some practical aspects of running the BeekeeperSome practical aspects of running the Beekeeper

$ screen -RD
In real, practical applications we want our Beekeeper session
to stay alive for longer periods. But keeping an SSH connection open
to a farm head node is not always practical or possible.
Use “screen” as a disconnectable/reconnectable session manager.

SELECT * FROM progress;
“progress” is a dynamic view over multiple tables that gives an overview
of how many jobs are in which states.
It gives the freshest data available, but is relatively expensive to run.
Try to avoid using during times of db congestion.

$ beekeeper.pl -dead
“Garbage collection” of Workers that died (MEMLIMIT, RUNLIMIT, etc)
and releasing their jobs

$ beekeeper.pl -sync
Keeping analysis_stats counters up to date with “progress”.
Is run automatically from time to time, but may need to be run manually
if statuses of individual Jobs changed.

Troubleshooting : surpriseTroubleshooting : surprise

 Things can go wrong even in a well-tested pipeline, e.g. on a new farm:
file systems or individual files have moved or disappeared
binaries/libraries need to be recompiled, work differently
person running the pipeline may not have right file permissions
input data from external collaborators wrongly formatted
somebody checked in untested code

 Things to watch out for:
failing analyses (obvious, beekeeper.pl will probably stop)
failing individual jobs (check guiHive, progress or beekeeper.pl output)
failing attempts (retry_count>0). “Transient errors” and why retry may be useful.

nothing running on the farm (although it may be busy)

 Stop the pump?
stop the beekeeper.pl process (we know it is safe)
stop the failing analyses by setting their analysis_capacity to 0
beekeeper.pl -dead and beekeeper.pl -sync
to have a more up-to-date picture of what happened; note the time of running -dead

Troubleshooting : processTroubleshooting : process

 Which Jobs/Analyses were affected?

SELECT * FROM progress;

 Warnings and “last breath” messages from specific Jobs/Attempts :

SELECT * FROM msg; -- only failures from Perl layer captured in log_message

 Run a Worker with just one job (locally or on the farm) :

$ runWorker.pl -url <URL> -job_id <failed_job> [-debug 1]

(among other things -debug 1 protects the "/tmp directory of the process" from removal)

 Capturing STDOUT/STDERR of Workers (per Job) :

$ runWorker.pl -url <URL> -worker_log_dir log_this_worker/
$ runWorker.pl -url <URL> -hive_log_dir log_entire_hive/
$ beekeeper.pl -url <URL> -hive_log_dir log_entire_hive/

 How to reach specific dump files - reverse the worker_id

Troubleshooting : successTroubleshooting : success

 Clean up after your pet (files, entries in database tables, logs, etc)

 Restarting failed jobs :

$ beekeeper.pl -url … -reset_failed_jobs_for_analysis <failed_analysis>

 Unlock the analyses that you have stopped (analysis_capacity := N)

 run beekeeper.pl -loop again

Tuning the pipelineTuning the pipeline

 Changing non-structural parameters of the pipeline/Analyses
to make things run more efficiently.

 Experimental change in the DB vs permanent change in PipeConfig.

 max number of Workers of this Analysis that can run in parallel :
-analysis_capacity => <number_of_Workers>

(make sure the database backend is not overloaded)

 number of Jobs of this analysis that Workers can claim in one go :
-batch_size => <number_of_Jobs>

(increase if average job.runtime_msec or analysis_stats.avg_msec_per_job is too low)

 how many times to attempt running a Job of this Analysis :
-max_retry_count => <number_of_Attempts>

(may increase for analyses flowing to #-1 and failing)

 per-Analysis resources (space+time) :
-rc_name => <resource_class_name>

Resource requirements (Time+Memory)Resource requirements (Time+Memory)

 If we know how much resources each analysis needs,
 we can tune our resource requirements, be nice to other users
 and even potentially speed things up.

 Resource requirements are very much farm-dependent :
“meadow_type” - LSF/SGE/Condor
32bit vs 64bit farms
static/dynamic linking
specific farm tuning idiosyncrasies (measuring megabytes in kilobytes)

but within the same farm things are usually tunable.

 Each Analysis has an associated resource_class, which maps to a specific "resource line" :
'-q normal -C0 -M1000 -R"select[mem>1000] rusage[mem=1000]"'

 resource_class names allow us to separate the logic from implementation;
 you may need to change the implementation for each farm.

 In case of on-Campus farms usually queue (time-limited),
 memory and number of required database connections can be set.

Resource usage estimation - TimingResource usage estimation - Timing

 Time is kept by the Hive internally and doesn’t depend on
 where you run your Workers (LOCAL, LSF, SGE,...)

 timing Jobs:

SELECT * FROM job; -- includes 'runtime_msec' field

SELECT MIN(runtime_msec),
 AVG(runtime_msec),
 MAX(runtime_msec)

FROM job GROUP BY analysis_id;

 timing whole Analyses
 (from the birth of the first Worker to the death of the last Worker) :

CALL time_analysis('%blast%'); -- use patterns creatively

 Exercise:
what was the longest running Analysis of LongMult pipeline?

Resource usage estimation - MemoryResource usage estimation - Memory

 Memory measurements can only be done on the farm.
 Since we mainly use LSF, our scripts/views are LSF-specific.

 At any moment during or after running the pipeline you can run:
$ lsf_report.pl -url <URL>

 (optionally change the user or constrain the time interval)

 The script parses LSF's log entries that match the pipeline's Workers
 and loads the memory usage stats into the database.
 It can be refreshed at a later stage.

 Get a nice per-Analysis report by selecting from a view :
SELECT * FROM lsf_usage;

 both memory and swap units are megabytes.

 Exercise:
find memory usage stats of LongMult pipeline

Resources : case studyResources : case study

 Initialize the MemlimitTest pipeline :

$ init_pipeline.pl MemlimitTest_conf.pm <connection parameters>

and run it on the farm.

 What happened to some Workers?

 How much memory is actually needed?

 Exercise:
 Tune the pipeline so that it would run to the end (non-permanent change).

 Exercise* :
Change the MemlimitTest_conf.pm to fix the pipeline permanently.

AcknowledgementsAcknowledgements

Matthieu Muffato and Miguel Pignatelli

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

