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Abstract

Any scheme has its associated little and big Zariski toposes. These toposes support
an internal mathematical language which closely resembles the usual formal language
of mathematics, but is “local on the base scheme”: For example, from the internal
perspective, the structure sheaf looks like an ordinary local ring (instead of a sheaf of
rings with local stalks) and vector bundles look like ordinary free modules (instead
of sheaves of modules satisfying a local triviality condition). The translation of
internal statements and proofs is facilitated by an easy mechanical procedure.

We investigate how the internal language of the little Zariski topos can be
exploited to give simpler definitions and more conceptual proofs of the basic notions
and observations in algebraic geometry. To this end, we build a dictionary relating
internal and external notions and demonstrate its utility by giving a simple proof
of Grothendieck’s generic freeness lemma in full generality. We also employ this
framework to state a general transfer principle which relates modules with their
induced quasicoherent sheaves, to study the phenomenon that some properties
spread from points to open neighborhoods, and to compare general notions of
spectra.

We employ the big Zariski topos to set up the foundations of a synthetic account
of scheme theory. This account is similar to the synthetic account of differential
geometry, but has a distinct algebraic flavor. Central to the theory is the notion of
synthetic quasicoherence, which has no analogue in synthetic differential geometry.
We also discuss how various common subtoposes of the big Zariski topos can be
described from the internal point of view and derive explicit descriptions of the
geometric theories which are classified by the fppf and by the surjective topology.
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PART I

Basics

1. Introduction

Internal language of toposes. A topos is a category which shares certain categor-
ical properties with the category of sets; the archetypical example is the category of
sets, and the most important example for the purposes of this thesis is the category
of set-valued sheaves on a topological space.

Any topos E supports an internal language. This is a device which allows
one to pretend that the objects of E are plain sets and that the morphisms are
plain maps between sets, even if in fact they are not. For instance, consider a
morphism α : X → Y in E . From the internal point of view, this looks like a map
between sets, and we can formulate the condition that this map is surjective; we
write this as

E |= ∀y :Y. ∃x :X. α(x) = y.

The appearance of the colons instead of the usual element signs reminds us that
this expression is not to be taken literally – X and Y are objects of E and thus not
necessarily sets. The definition of the internal language is made in such a way so that
the meaning of this internal statement is that α is an epimorphism. Similarly, the
translation of the internal statement that α is injective is that α is a monomorphism.

Furthermore, we can reason with the internal language. There is a metatheorem
to the effect that if some statement φ holds from the internal point of view of a
topos E and if φ logically implies some further statement ψ, then ψ holds in E as
well. As a simple example, consider the elementary fact that the composition of
surjective maps is surjective. Interpreting this statement in the internal language
of E , we obtain the more abstract result that the composition of epimorphisms in E
is epic.

There is, however, a slight caveat to this metatheorem. Namely, the internal
language of a topos is in general only intuitionistic, not classical. This means that
internally, one cannot use the law of excluded middle (φ ∨ ¬φ), the law of double
negation elimination (¬¬φ⇒ φ), or the axiom of choice. For instance, one rendition
of the axiom of choice is that any vector space is free. But it need not be the case
that a vector space internal to a topos is free as seen from the internal perspective:
By the technique explained in this thesis, this would imply the absurd statement
that any sheaf of modules on a reduced scheme is locally free.

The restriction to intuitionistic reasoning is not as confining as it might first
appear, in particular because there is a widely applicable metatheorem ensuring that
statements of a certain form are provable classically if and only if they are provable
intuitionistically. We will discuss practical consequences below (on page 23).

Algebraic geometry. We apply the internal language of toposes to algebraic
geometry in two different ways, corresponding to the two different toposes associated
to a scheme X: the little Zariski topos which is just the topos Sh(X) of set-valued
sheaves on X, and the big Zariski topos which we introduce below.

The internal language of the little Zariski topos can be used as follows. The
structure sheaf OX of a scheme X is a sheaf of rings in that its sets of local sections

9



10 I. BASICS

carry ring structures and these ring structures are compatible with restriction.
From the internal point of view of Sh(X), the structure sheaf OX looks much
simpler: It looks just like a plain ring (and not a sheaf of rings). Similarly, a sheaf
of OX -modules looks just like a plain module over that ring.

This allows to import notions and facts from basic linear and commutative algebra
into the sheaf setting. For instance, it turns out that a sheaf of OX -modules is
of finite type if and only if, from the internal perspective, it is finitely generated
as an OX -module. Now consider the following fact of linear algebra: If in a short
exact sequence of modules the two outer ones are finitely generated, then the middle
one is too. The usual proof of this fact is intuitionistically valid and can thus be
interpreted in the internal language. It then automatically yields the following more
advanced proposition: If in a short exact sequence of sheaves of OX -modules the
two outer ones are of finite type, then the middle one is too.

This example was not in any way special: Any (intuitionistically valid) theorem
about modules yields a corresponding theorem about sheaves of modules.

The internal language machinery thus allows us to understand the basic notions
and statements of scheme theory as notions and statements of linear and commutative
algebra, interpreted in a suitable sheaf topos. This brings conceptual clarity and
reduces technical overhead.

In Section 2, we explain how the internal language machinery works, and then
develop in Part II a dictionary relating common notions of scheme theory and
corresponding notions of algebra. Once built, this dictionary can be used arbitrarily
often. We stress that no in-depth knowledge of topos theory or categorical logic is
necessary to apply this apparatus.

In simple cases, the internal language can be regarded as a tool for ensuring that
certain kinds of “fast and loose reasoning” in algebraic geometry can be rigorously
justified. For instance, when trying to quickly gauge whether some plausible-looking
statement holds for schemes and sheaves, we might content ourselves to check that
the statement holds for rings and modules and then trust that it also holds in the
general case. Or when trying to construct a certain sheaf of modules, we might
content ourselves to construct it over affine open subsets and then appeal to some
gluing lemma, without meticulously checking the details.

The internal language apparatus ensures that this kind of reasoning will never
result in wrong conclusions, provided that one can formulate the statements and
constructions in the internal language and that the correctness proof in the affine
setting is intuitionistically valid.

We believe that already this application of the internal language is useful to
working algebraic geometers. However, more advanced applications are also possible.
They result from considering internal statements whose logical form is more com-
plex, in particular from statements which quantify over subsets or which contain
implication and negation signs.

For instance, if X is a reduced scheme, the internal universe of Sh(X) has the
peculiar feature that OX is Noetherian and a field, even if X is not locally Noetherian
and (as will almost always be the case) the local rings OX,x are not fields. This
fact has no simple external counterpart; it’s rather an intricate statement about the
interplay between the rings Γ(U,OX) for varying open subsets U ⊆ X.

Thanks to this particular feature, linear and commutative algebra over OX are
particularly simple from the internal point of view. For instance, Grothendieck’s
generic freeness lemma, which is usually proved using a somewhat involved series of
reduction steps, admits a short, easy, and conceptual proof with this technique.

To briefly indicate a part of this, let F be a sheaf of OX -modules of finite type. A
basic version of Grothendieck’s generic freeness lemma then states that F is locally



1. INTRODUCTION 11

free on some dense open subset of X; this fact is stated in Vakil’s lecture notes as
an “important hard exercise” [137, Exercise 13.7.K]. In fact, this proposition is just
the interpretation of the following basic statement of intuitionistic linear algebra in
the sheaf topos: Any finitely generated vector space is not not free. The proof of
this statement is entirely straightforward.1

It is in this way that the internal language unlocks new approaches: by making
concepts accessible which would otherwise be too unwieldy to manage and by
allowing to import a huge corpus of prior work, namely the entire literature on
constructive algebra.

The internal language also sheds light on the phenomenon that sometimes, truth
of a property at a point x spreads to some open neighborhood of x; and in particular
that sometimes, truth of a property at the generic point spreads to some dense open
subset. For instance, if the stalk of a sheaf of finite type is zero at some point, the
sheaf is even zero on some open neighborhood; but this spreading does not occur
for general sheaves which may fail to be of finite type.

We formalize this by introducing a modal operator □ into the internal language,
such that the internal statement □φ means that φ holds on some open neighborhood
of x. Furthermore, we introduce a simple operation on formulas, the □-translation
φ 7→ φ□, such that φ□ means that φ holds at the point x. This translation is
defined on a purely syntactical level. The question whether truth at x spreads to
truth on a neighborhood can then be formulated in the following way: Does φ□

intuitionistically imply □φ?
This allows to deal with the question in a simpler, logical way, with the technical-

ities of sheaves blinded out. We also give a metatheorem which covers a wide range
of cases. Namely, spreading occurs for all those properties which can be formulated
in the internal language without using “⇒”, “∀”, and “¬”.

To take up the example above, consider the property of a module F being the zero
module. In the internal language, it can be formulated as (∀x :F . x = 0). Because of
the appearance of “∀”, the metatheorem is not applicable to this statement. But if F
is of finite type, there are generators x1, . . . , xn :F from the internal point of view,
and the condition can be reformulated as x1 = 0 ∧ · · · ∧ xn = 0; the metatheorem is
applicable to this statement.

Synthetic algebraic geometry. All of the applications mentioned above employ
the little Zariski topos of the base scheme X, the topos of sheaves on the underlying
topological space of X. Its internal language simplifies the treatment of sheaves
of rings and modules over X, but the treatment of schemes over X is simplified
only a little bit: From the internal point of view of Sh(X), a morphism T → X of
schemes looks like a morphism T → pt. Therefore relative scheme theory is turned
into absolute scheme theory (over the ring OX), but it still requires the machinery
of locally ringed spaces.

1Intuitionistically, the statement that any finitely generated vector space is free is stronger than
the doubly negated version and cannot be shown. It would imply that any sheaf of finite type is
not only locally free on some dense open subset, but locally free on the entire space. We discuss

this example in more detail in Section 5 and in particular in Lemma 5.8. A proof of Grothendieck’s

generic freeness lemma in its full form is given in Section 11.5.
For concreteness, here is the standard intuitionistic proof that any finitely generated vector space V

is not not free. Let (x1, . . . , xn) be a generating family. If n = 0, we are done. Else it’s not not
the case that either some xi can be expressed as a linear combination of the other vectors, or

not. The former implies that (x1, . . . , xi−1, xi+1, . . . , xn) is a generating family, whereby we can

appeal to induction to obtain that V is not not free. The latter implies that (x1, . . . , xn) is linearly
independent and therefore a basis. In both cases it follows that V is not not free, therefore V is

indeed not not free.

In this argument, we used the intuitionistically valid proof scheme ¬¬φ ∧ (φ ⇒ ¬¬ψ) =⇒ ¬¬ψ.
We expand on this in Section 2.4.
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The internal language of the big Zariski topos of X allows for a more far-reaching
change of perspective. It incorporates Grothendieck’s functor-of-points philosophy
in order to cast modern algebraic geometry, relative to the arbitrary base scheme X,
in a naive synthetic language reminiscent of the classical Italian school.

The synthetic approach is best explained by contrasting it with the usual approach
to scheme theory, which is to layer it upon some standard form of set theory: to give
a scheme means to firstly give a set of points; then to describe a topology on this
set; and finally to equip the resulting space with a local sheaf of rings. Basic objects
of study in algebraic geometry, such as closed subschemes of projective spaces, are
in this way encoded using a large amount of machinery.

There is also a somewhat lesser used, but philosophically rewarding and more
“economical” approach within set theory: Grothendieck’s functorial approach. In
this account of scheme theory, to give a scheme means to give a functor from the
category of commutative rings to the category of sets. For instance, the Fermat
scheme is given by the functor

A 7−→ {(x, y, z) ∈ A3 |xn + yn − zn = 0},
that is, by a scheme in the colloquial sense for prescribing a set of solutions for any
ring.

This approach requires fewer preparations and involves only objects of intrinsic
interest to algebraic geometry: A-valued points, where A ranges over all rings. These
tend to be better behaved, for instance in that the set of A-valued points of a product
of schemes is isomorphic to the product of the sets of A-valued points, and are
more fundamental from a geometric point of view. In contrast, the set-theoretical
points of a scheme in the approach using locally ringed spaces actually parameterize
irreducible closed subsets, not points in an intuitive sense.

Canonical references for the functorial approach are lectures notes by Grothen-
dieck [61] and the book by Demazure and Gabriel [47]. A summary in English,
including a proof of the equivalence with the approach using locally ringed spaces,
is contained in the first chapter of [140]. At the Secret Blogging Seminar, there was
an insightful long-running discussion on the merits of the functorial approach [119],
and further philosophical background is contained in [95]. The thesis of Zhen Lin
Low [90] contains recent developments on an abstract theory of gluing local models.

The description of basic objects can still be somewhat involved in the functorial
approach. For instance, while the functor associated to projective n-space is given
on fields by the simple expression

K 7−→ the set of lines through the origin in Kn+1

∼= {[x0 : · · · : xn] |xi ̸= 0 for some i},
on general rings it is given by

A 7−→ the set of quotients An+1 ↠ P , where P is projective of rank 1,
modulo isomorphism.

On the one hand, typically only field-valued points admit a simple description.
On the other hand, the A-valued points for more general rings A are crucial in order
to impart a meaningful sense of cohesion on the field-valued points. They therefore
can’t simply be dropped.2

2For instance, let A1 : A 7→ A be the functor associated to the affine line. The Yoneda lemma
guarantees that the set of morphisms A1 → A1 in the functor category [Ring,Set] is in canonical

bijection with the set Z[U ], as one would expect: Algebraic functions A1 → A1 should be given
by polynomials. (The discussion could also be relativized so that the answer is the polynomial
ring k[U ], where k is some base field.) However, if we compute the set of morphisms in [Field,Set]

we obtain
∫
K∈Field Hom(K,K), a set which contains pathological functions such as some which

permute the elements of the prime fields in arbitrary ways.
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We can resolve the tension by incorporating an automatic management of the
stage of definition, the rings A such that we’re considering A-valued points, into our
language. Such a language is provided by the internal language of the big Zariski
topos. It allows for the Fermat scheme to be given by the naive expression

{(x, y, z) : (A1)3 |xn + yn − zn = 0}
and for projective n-space to be given by either of the expressions

the set of lines through the origin in (A1)n+1 or

{[x0 : · · · : xn] |xi ̸= 0 for some i}.
This is not a specialized trick to give short descriptions of some schemes: Like with
the internal universe of any topos, the full power of intuitionistic logic is available
to reason about the objects constructed in this way.

We can thus add an approach to the list of ways of giving a rigorous foundation
to algebraic geometry, the synthetic approach which layers scheme theory not upon
a classical set theory, but rather directly encodes schemes as sets and morphisms
of schemes as maps of sets in the nonclassical universe provided by the big Zariski
topos of a base scheme. We can therefore use a simple, element-based language to
talk about schemes.

This is similar to synthetic approaches to other fields of mathematics, such as
differential geometry [81], domain theory [69], computability theory [16], and more
recently and very successfully homotopy theory [136] and related subjects [115, 116,
113]. The synthetic approaches allow in each case to encode the objects of study
directly as (nonclassical) sets, with geometric, domain-theoretic, computability-
theoretic, or homotopic structure being automatically provided for.

The implicit algebro-geometric structure has visible consequences on the internal
universe of the big Zariski topos and endows it with a distinctive algebraic flavor.
For instance, the statement “any map A1 → A1 is a polynomial function” holds from
the internal point of view. This is also a property which sets the internal universe
of the big Zariski topos apart from the toposes studied in synthetic differential
geometry.

If one is content with building upon classical scheme theory, the big Zariski
topos Zar(X) of a base scheme X can be constructed as the topos of sheaves on
the Grothendieck site Sch/X of X-schemes.3 Explicitly, an object of Zar(X) is a
functor F : (Sch/X)op → Set satisfying the gluing condition with respect to Zariski
coverings: If T =

⋃
i Ui is a cover of an X-scheme T by open subsets, the diagram

F (T ) −→
∏
i

F (Ui) −−−−→→
∏
j,k

F (Uj ∩ Uk)

should be an equalizer diagram. A premier example of an object of Zar(X) is
the functor Y of points associated to an X-scheme Y , mapping an X-scheme T
to HomX(T, Y ). It satisfies the gluing condition since one can glue morphisms of
schemes in the Zariski topology.

The object A1 which already appeared is the functor of points of the affine line
over X, the X-scheme A1

X := X ×SpecZ Z[U ]. Its value on an X-scheme T is

A1
X(T ) = HomX(T,A1

X) ∼= HomSpecZ(T, SpecZ[U ]) ∼= Γ(T,OT ).
This object has a canonical structure as a ring object in Zar(X). In fact, from the
internal point of view of Zar(X), it is a local ring and even a field in the sense that

3Some care is needed in order to avoid set-theoretical issues of size. We discuss this fine point in
Section 15. If one is interested in foundational questions and doesn’t merely want to use the big
Zariski topos in order to employ its convenient internal language, one can rest assured that there’s
a way to construct it without resorting to classical scheme theory. We sketch this in Section 16.5.
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nonzero elements are invertible. In the case X = SpecZ, this fact was first observed
by Kock [82]. At the same time, it is not a reduced ring – a feat possible only in an
intuitionistic context. This curious interplay is quite important, since the sets

{x :A1
X |x = 0} and {x :A1

X |x2 = 0}

should and do describe two different X-schemes: the first is isomorphic to X while
the second is an infinitesimal thickening of X, the vanishing scheme of U2 in A1

X .

In contrast, the sets {x :A1
X |x ̸= 0} and {x :A1

X |x2 ̸= 0} should and do coincide.
By the field property, both conditions are equivalent to x being invertible.

The synthetic spectrum of an A1
X -algebra A can be defined as

Spec(A) := the set of A1
X -algebra homomorphisms A→ A1

X .

On first sight, this definition seems to overlook potential non-maximal prime ideals
of A, since it only gives the A1

X -valued points. But in fact, this description correctly
reflects the relative spectrum construction. It yields a simple correspondence between
synthetic affine schemes and solution sets of polynomial equations. For instance,
it’s easy to show that there is a canonical isomorphism

Spec(A1
X [U1, . . . , Un]/(f1, . . . , fm)) ∼=

{(u1, . . . , un) : (A1
X)n | f1(u1, . . . , un) = · · · = fm(u1, . . . , un) = 0}.

We give internal descriptions of further constructions of relative scheme theory in
Section 19.

In order to be able to reason internally (in contrast to only using the internal
language to describe X-schemes and more general spaces in a simple language), it’s
crucial to have strong and meaningful axioms available. One such axiom posits
that A1

X is a local and synthetically quasicoherent ring and implies all known ring-
theoretic properties of A1

X . Synthetic quasicoherence is the internal analogue of the
usual condition on a sheaf of modules to be quasicoherent. This notion doesn’t have
a counterpart in synthetic differential geometry and is central to our account of
synthetic algebraic geometry, since we derive all of its basic concepts such as open
and closed immersions and synthetic schemes from it.

Modal operators are useful in the big topos setting as well. For instance, there is
a modal operator □ét in the big Zariski topos such that the internal statement □étφ
roughly means that φ holds on an étale covering and such that the translated
formula φ□ét means that φ holds in the big étale topos familiar from étale cohomology.
In this way, we can access the internal universe of the big étale topos from within
the big Zariski topos. The ring A1

X enjoys additional properties when studied in
the étale topos, where it is separably closed, in the fppf topos, where it is fppf-local,
and in the ph topos, where it satisfies a strong form of algebraic closure.

Limitations. The internal language is local, in the sense that if X =
⋃
i Ui is an

open covering and an internal statement holds in the sheaf toposes Sh(Ui), it holds
in Sh(X) as well. On the one hand, this property is very useful. But on the other
hand, it causes an inherent limitation of the internal language: Global properties
of sheaves of modules like “being generated by global sections”, “being ample”, or
“having vanishing sheaf cohomology” and global properties of schemes like “being
quasicompact” can not be expressed in the internal language.

Thus for global considerations, the internal language of Sh(X) is only useful in
that local subparts can be simplified. Also, some global features reflect themselves
in certain metaproperties of the internal language. For instance, a scheme is
quasicompact if and only if the internal language has a weak version of the so-called
disjunction property of mathematical logic (Section 7).
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The locality limitation only refers to locality with respect to the base scheme.
For instance, the little and big Zariski toposes of X can distinguish between affine
and projective n-space over X, even though these are locally isomorphic.

The internal languages of both toposes can be used on a case-by-case basis,
employing them as part of longer arguments in the context of ordinary scheme
theory where it’s useful to do so. However, if one wants to stay solely in one of the
provided internal universes and not use ordinary scheme theory at all, then one will
of course run into the further limitation that internal scheme theory, as put forward
in this thesis, is only developed to a small extent.

Introductory literature. This text is intended to be self-contained, requiring
only basic knowledge of scheme theory. In particular, we assume no prior familiarity
with topos theory or formal logic.

Nevertheless, a gentle introduction to topos theory is an article by Leinster [87].
Standard references for the internal language of toposes include the book of Mac Lane
and Moerdijk [92, Chapter VI], the book of Goldblatt [59, Chapter 14], Caramello’s
and Streicher’s lecture notes [33, 127], the book of Borceux [26, Chapter 6], and
Part D of Johnstone’s Elephant [72]. Motivation and background on the internal
language can also be found in Chapter 0 of Shulman’s lecture notes [120].

In the 1970s, there was a flurry of activity on applications of the internal language.
An article by Mulvey [100] of this time gives a very accessible introduction to the
topic, culminating in an internal proof of the Serre–Swan theorem (with just one
external ingredient needed).

Related work. The internal language of toposes was applied to algebraic geometry
before. For instance, Wraith used it to construct (and verify the universal property
of) the little étale topos of a scheme by internally developing the theory of strict
henselization [145]. However, to the best of our knowledge, systematically building
a dictionary relating external and internal notions has not been attempted before,
and the use of modal operators to study the spreading of properties from points to
neighborhoods seems to be new as well.

In particular, Tierney remarked in 1976 that a certain property of the internal
universe of the little Zariski topos “is surely important, though its precise significance
is still somewhat obscure” [134, p. 209]. This property can now be recognized as a
small shadow of the internal characterization of quasicoherence. We expand on this
in Section 3.3.

In some regards, this thesis is an extended answer to a MathOverflow question by
Gubkin [62], who inquired about uses of the internal language of toposes in algebraic
geometry.

Brandenburg put forward a related program of internalization in his PhD the-
sis [28]. However, he internalizes constructions of algebraic geometry not in toposes,
but in tensor categories. There is some overlap in working out precise universal
properties, particularly when dealing with the big Zariski topos.

In other branches of mathematics, the internal language of toposes is used as
well. For instance, there is an ongoing effort in mathematical physics to understand
quantum mechanical systems from an internal point of view: To any quantum
mechanical system, one can associate a so-called Bohr topos containing an internal
mirror image of the system. This mirror image looks like a system of classical
mechanics from the internal perspective, and therefore tools like Gelfand duality
can be used to construct an internal phase space for the system [29, 68, 65].

In stochastics, the usefulness of an internal language was recently stressed by
Tao [129]. Such a language makes the common notational practice of dropping
the explicit dependence of the value X(ω) of a random variable on the sample ω
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completely rigorous and simplifies the basic theory. Tao also highlighted how a
suitable language can be used to simplify “ε/δ management” in analysis [128].
Furthermore, there is a topos-theoretic approach to measure theory, in which the
sheaf of measurable real functions on a σ-algebra looks like the ordinary set of real
numbers from an internal point of view [70]; this has applications in noncommutative
geometry [67].

Intuitionistic methods have found many applications in computer science. Re-
cently, the internal language of a topos of trees and a suitable modal operator was
used to study guarded recursion, encompassing, for instance, an internal Banach
fixed-point theorem [22].

In constructive mathematics, the internal language of toposes is routinely used
to obtain models of intuitionistic theories fulfilling certain anti-classical axioms. For
instance, there are toposes in which the axiom “any map R → R is continuous”
(appropriately formulated) holds [81, 99] and toposes in which the Church–Turing
thesis “any map N→ N is computable” holds (certain realizability toposes). The
internal language can also be used to extract computational content out of classical
constructions. To cite just one recent example, Mannaa and Coquand used it to
implement algorithms for working with the algebraic closure of an arbitrary field of
characteristic zero [94].

One way this thesis contributes to the program of constructive mathematics is
that intuitionistic mathematics gains new areas of application. For instance, the
constructive account of the theory of Krull dimension was originally developed
to remove Noetherian hypotheses, extract computational meaning, and simplify
proofs [39, 42]. It can now also be used to reason about the dimension of schemes,
since the topological dimension of a scheme X coincides with the Krull dimension of
the structure sheaf OX regarded as an ordinary ring from the internal perspective
of Sh(X) (Section 3.4).

We obtained a second contribution to constructive mathematics as a byproduct
of deducing transfer principles which relate a module over a ring A with its induced
quasicoherent sheaf on SpecA: Using the internal language of the little Zariski
topos we can algorithmically turn certain non-constructive arguments concerning
prime ideals into constructive ones. We discuss this in Section 11.4; it is related to
the dynamical methods in algebra explored by Coquand, Coste, Lombardi, Roy, and
others [46, 40].

Caramello uses topos theory to build bridges between different mathematical
subjects, in a certain precise sense [32, 30]. She exploits that toposes can admit
presentations by sites of different character. Our contribution is certainly related to
her grand research program in spirit, but since we focus only on specific presentations
of a few specific toposes associated to schemes, there are as yet only few direct
technical connections.

Notational conventions. To stress that a discussion takes place in an intuitionistic
context, we occasionally write “∀x :X” or “∃x :X” instead of “∀x ∈ X” and “∃x ∈ X”
not only in internal statements, where it’s proper to do so, but also when not
reasoning internally.

If X and Y are sets, we mean by “[X,Y ]” the set of all maps from X to Y . This
expression will often occur in internal formulas; its external meaning will then be
the Hom sheaf. We write pairs ⟨a, b⟩ using angle brackets. The preimage of a set M
under a map f is written “f−1[M ]”. Similarly, the image is written “f [N ]”.

The constant sheaf with stalks M is written “M”.
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2. The internal language of a sheaf topos

At its heart, the internal language of a topos provides a coherent way of translating
any mentions of set-theoretical elements to generalized elements, carefully keeping
track of and adapting the stage of definition. We want to illustrate this with a
simple example before giving the formal definition.

A map f : X → Y of sets is injective if and only if

∀x, x′ ∈ X. f(x) = f(x′) =⇒ x = x′. (1)

This condition can not only be interpreted in Set, but in any category C whose
objects are structured sets and whose morphisms are maps between the underlying
sets. If we want to go beyond such kind of categories, we have to restate the
condition in purely category-theoretic language:

∀(1 x−→ X), (1
x′

−→ X). f ◦ x = f ◦ x′ =⇒ x = x′. (2)

This condition makes sense in all categories which contain a terminal object 1, and
is equivalent to condition (1) in the case C = Set. This has a deeper reason: The
one-element set 1 = {⋆} is a separator of Set, that is objects of Set are uniquely
determined by their global elements, morphisms from the terminal object.

However, in categories in which the terminal object is not a separator, condition (2)
is not very meaningful. This is for instance the case if C is the category of vector
spaces over a field or if C is the category Sh(X) of set-valued sheaves on a topological
space X. Global elements of a sheaf F are in natural one-to-one correspondence
with global sections s ∈ F(X) (hence the name), whereby condition (2) only states
that f is injective on global sections. Since many interesting sheaves admit no or
only few global sections, this statement is typically not very substantial.

A basic tenet of category theory is therefore to not only refer to global ele-
ments 1 → X, but also to generalized elements A → X, where A ranges over all
objects. The domain A is called the stage of definition in this context. Bearing this
principle in mind, a better translation of the injectivity condition is the statement

∀objects A in C. ∀(A x−→ X), (A
x′

−→ X) in C. f ◦ x = f ◦ x′ =⇒ x = x′. (3)

This statement expresses that f is a monomorphism and therefore correctly captures
the structural essence of injectivity.

Unlike this manual translation guided by trial and error and categorical philosophy,
the internal language provides a purely mechanical translation scheme. It is fully
formal, can be analyzed rigorously, works smoothly with arbitrarily convoluted
statements, and most importantly can be trusted to support reasoning : If a statement
formulated in a naive element-based language intuitionistically implies a further
such statement, then the translation of the former implies the translation of the
latter.

The power of the internal language doesn’t unfold in basic situations like with the
example above, where one can easily translate statements and even proofs by hand.
It unfolds when considering more complex statements. For instance, the short proof
of Grothendieck’s generic freeness lemma promised in the introduction rests on the
internal statement “any ideal of OSpec(R)[U1, . . . , Un] is not not finitely generated”,
where R is a reduced ring. For the proof of Grothendieck’s generic freeness lemma
it’s not necessary to actually perform the translation of this statement into external
language, but for definiteness we display the translation here nevertheless:

For any element f ∈ R and any (not necessarily quasicoherent) sheaf of
ideals J ↪→ OSpec(R)[U1, . . . , Un]|D(f): If

for any element g ∈ R the condition that
the sheaf J is of finite type on D(g)
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implies that g = 0,
then f = 0.

This statement is obviously quite convoluted, and its proof is even more so; therefore
it probably wouldn’t occur to one to base a proof of Grothendieck’s generic freeness
lemma on this statement. The internal language is thus of real use here. We’ll
expand on this example in Section 3.9 and in Section 11.5.4

2.1. Internal statements. Let X be a topological space. Later, X will be the
underlying space of a scheme. The meaning of internal statements is given by a set
of rules, the Kripke–Joyal semantics of the topos of sheaves on X.

Definition 2.1. The meaning of

U |= φ (“φ holds on U”)

for open subsets U ⊆ X and formulas φ over U is given by the rules listed in Table 1,
recursively in the structure of φ. In a formula over U there may appear sheaves
defined on U as domains of quantifications, U -sections of sheaves as terms, and
morphisms of sheaves on U as function symbols. If V ⊆ U is an open subset, then
formulas over U can be pulled back to formulas over V . The symbols “⊤” and “⊥”
denote truth and falsehood, respectively. The universal and existential quantifiers
come in two flavors: for bounded and unbounded quantification. The translation
of U |= ¬φ does not have to be separately defined, since negation can be expressed
using other symbols: ¬φ :≡ (φ⇒ ⊥). If we want to emphasize the particular topos,
we write

Sh(X) |= φ :⇐⇒ X |= φ.

Remark 2.2. The last two rules in Table 1, concerning unbounded quantification, are
not part of the classical Kripke–Joyal semantics. They are part of Mike Shulman’s
stack semantics [122], a slight but important extension. They are needed so that we
can formulate universal properties in the internal language. (Prior work in the same
direction include the topos models explored by Pitts [109, Section 3] and, in the
context of set theory, work by Awodey, Butz, Simpson, and Streicher [11], which
was carried out independently and published after Shulman’s paper.)

Example 2.3. Let α : F → G be a morphism of sheaves on X. Then α is a
monomorphism of sheaves if and only if, from the internal perspective, α is simply
an injective map:

X |= ⌜α is injective⌝

⇐⇒ X |= ∀s :F . ∀t :F . α(s) = α(t)⇒ s = t

⇐⇒ for all open U ⊆ X, sections s ∈ Γ(U,F):
for all open V ⊆ U , sections t ∈ Γ(V,F):

V |= α(s) = α(t)⇒ s = t

⇐⇒ for all open U ⊆ X, sections s ∈ Γ(U,F):
for all open V ⊆ U , sections t ∈ Γ(V,F):

4The statement can be proven by hand, but it’s much simpler to only verify the case n = 0 (and

even reduce this case to simple other properties which OSpec(R) enjoys from the internal point of

view) and then to apply Hilbert’s basis theorem. Hilbert’s basis theorem is famous for admitting
only a nonconstructive proof, and nonconstructive proofs can’t be translated by the internal
language machinery; but this is only true for the conclusion “any ideal is finitely generated”.
The intuitionistically weaker conclusion “any ideal is not not finitely generated” does admit a
constructive proof, and is all what’s needed here.
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U |= s = t :F :⇐⇒ s|U = t|U ∈ Γ(U,F)
U |= s ∈ G :⇐⇒ s|U ∈ Γ(U,G) (G a subsheaf of F , s a section of F)
U |= ⊤ :⇐⇒ U = U (always fulfilled)

U |= ⊥ :⇐⇒ U = ∅
U |= φ ∧ ψ :⇐⇒ U |= φ and U |= ψ

U |=
∧
j∈J φj :⇐⇒ for all j ∈ J : U |= φj (J an index set)

U |= φ ∨ ψ :⇐⇒ U |= φ or U |= ψ

there exists a covering U =
⋃
i Ui such that for all i:

Ui |= φ or Ui |= ψ

U |=
∨
j∈J φj :⇐⇒ U |= φj for some j ∈ J (J an index set)

there exists a covering U =
⋃
i Ui such that for all i:

Ui |= φj for some j ∈ J
U |= φ⇒ ψ :⇐⇒ U |= φ implies U |= φ

for all open V ⊆ U : V |= φ implies V |= ψ

U |= ∀s :F . φ(s) :⇐⇒ for all sections s ∈ Γ(V,F) on open V ⊆ U : V |= φ(s)

U |= ∃s :F . φ(s) :⇐⇒ there exists a section s ∈ Γ(U,F) such that U |= φ(s)

there exists an open covering U =
⋃
i Ui such that for all i:

there exists si ∈ Γ(Ui,F) such that Ui |= φ(si)

U |= ∀F . φ(F) :⇐⇒ for all sheaves F on open V ⊆ U : V |= φ(F)
U |= ∃F . φ(F) :⇐⇒ there exists an open covering U =

⋃
i Ui such that for all i:

there exists a sheaf Fi on Ui such that Ui |= φ(Fi)
Table 1. The Kripke–Joyal semantics of a sheaf topos.

for all open W ⊆ V :

αW (s|W ) = αW (t|W ) implies s|W = t|W

⇐⇒ for all open U ⊆ X, sections s, t ∈ Γ(U,F):
αU (s|U ) = αU (t|U ) implies s|U = t|U

⇐⇒ α is a monomorphism of sheaves

The corner quotes “⌜. . . ⌝” indicate that translation into formal language is left to
the reader. Similarly, the morphism α is an epimorphism of sheaves if and only
if, from the internal perspective, α is a surjective map. Notice that injectivity
and surjectivity are notions of a simple element-based language. The Kripke–Joyal
semantics takes care to properly handle all sections, not only global ones.

The rules are not all arbitrary. They are finely concerted to make the following
two propositions true, which are crucial for a proper appreciation of the internal
language.

Proposition 2.4 (Locality of the internal language). Let U =
⋃
i Ui be covered by

open subsets. Let φ be a formula over U . Then

U |= φ iff Ui |= φ for each i.

Proof. Induction on the structure of φ. The canceled rules in Table 1 would make
this proposition false. □
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As a corollary, one may restrict the open coverings and universal quantifications
in the definition of the Kripke–Joyal semantics (Table 1) to open subsets of some
basis of the topology. For instance, if X is a scheme, one may restrict to affine open
subsets.

Furthermore, Proposition 2.4 shows that the internal language is monotone in
the following sense: If U |= φ, and V is an open subset of U , then V |= φ. (This
follows by applying the proposition to the trivial covering U = V ∪ U .)

Proposition 2.5 (Soundness of the internal language). If a formula φ implies a
further formula ψ in intuitionistic logic, then U |= φ implies U |= ψ.

Proof. Proof by induction on the structure of formal intuitionistic proofs; we are to
show that any inference rule of intuitionistic logic is satisfied by the Kripke–Joyal
semantics. For instance, there is the following rule governing disjunction:

If φ∨ψ holds, and both φ and ψ imply a further formula χ, then χ
holds.

So we are to prove that if U |= φ∨ψ, U |= (φ⇒ χ), and U |= (ψ ⇒ χ), then U |= χ.
This is done as follows: By assumption, there exists a covering U =

⋃
i Ui such

that for each index i, Ui |= φ or Ui |= ψ. Again by assumption, we may conclude
that Ui |= χ for each i. The statement follows because of the locality of the internal
language.

A complete list of which rules are to prove is in Appendix 24. □

In particular, if a formula ψ has an unconditional intuitionistic proof, then U |= ψ.
The restriction to intuitionistic logic is really necessary at this point. We will

encounter many examples of classically equivalent internal statements whose trans-
lations using the Kripke–Joyal semantics are wildly different. To anticipate just one
example, the statement

X |= ⌜F is finite free⌝,

referring to a sheaf F of OX -modules, means that F is finite locally free. The
statement

X |= ¬¬(⌜F is finite free⌝)

instead means that F is finite locally free on a dense open subset of X.
In particular, our treatment of modal operators to understand spreading of

properties from points to neighborhoods depends on having the ability to make
finer distinctions – distinctions which are not visible in classical logic. In Section 2.4
there is a discussion of what the restriction to intuitionistic logic amounts to in
practice.

Because of the multitude of quantifiers, literal translations of internal statements
can sometimes get slightly unwieldy. There are simplification rules for certain
often-occurring special cases:

Proposition 2.6.

U |= ∀s :F . ∀t :G. φ(s, t) ⇐⇒ for all open V ⊆ U ,

sections s ∈ Γ(V,F), t ∈ Γ(V,G): V |= φ(s, t)

U |= ∀s :F . φ(s)⇒ ψ(s) ⇐⇒ for all open V ⊆ U , sections s ∈ Γ(V,F):
V |= φ(s) implies V |= ψ(s)

U |= ∃!s :F . φ(s) ⇐⇒ for all open V ⊆ U ,

there is exactly one section s ∈ Γ(V,F) with:
V |= φ(s)
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Proof. Straightforward. By way of example, we prove the existence claim in the
“only if” direction of the last rule. (This rule formalizes the saying “unique existence
implies global existence”.) By definition of ∃!, it holds that

U |= ∃s :F . φ(s) and U |= ∀s, t :F . φ(s) ∧ φ(t)⇒ s = t.

Let V ⊆ U be an arbitrary open subset. Then there exist local sections si ∈ Γ(Vi,F)
such that Vi |= φ(si), where V =

⋃
i Vi is an open covering. By the locality of the

internal language, on intersections it holds that Vi∩Vj |= φ(si), so by the uniqueness
assumption, it follows that the local sections agree on intersections. They therefore
glue to a section s ∈ Γ(V,F). Since Vi |= φ(s) for all i, the locality of the internal
language allows us to conclude that V |= φ(s). □

Remark 2.7. Note that Sh(X) |= ¬φ is in general a much stronger statement
than merely saying that Sh(X) |= φ does not hold: The former always implies the
latter (unless X = ∅, in which case any internal statement is true), but the converse
does not hold: The former statement means that U = ∅ is the only open subset on
which φ holds, that is that φ holds nowhere. In contrast, the statement Sh(X) ̸|= φ
only means that φ does not hold everywhere.

For instance, let X be a scheme and let f ∈ Γ(X,OX) be a global function on X.
We will see in Section 3 that “Sh(X) ̸|= ⌜f is invertible⌝” means that f is not an
invertible element in the ring Γ(X,OX). In contrast, “Sh(X) |= ¬(⌜f is invertible⌝)”
means that f is nowhere invertible, not even on smaller nonempty open subsets.
This implies that f is nilpotent.

It’s instructive to consider the special case that X is the one-point space. In
this case Sh(X) ≃ Set, by taking constant sheaves. Let φ be a formula in which
arbitrary sets and elements may occur as parameters. Then we can regard φ as
a formula over the open set X by substituting any occuring set by the induced
constant sheaf and any occuring element by the induced global section, whereby it’s
meaningful to write “Set |= φ”. One can check that

Set |= φ iff φ in the usual mathematical sense.

(A proof is presented in Lemma 11.1.) Hence the internal language of the topos Set
is just the ordinary mathematical language.5

2.2. Internal constructions. The Kripke–Joyal semantics defines the interpreta-
tion of internal statements. The interpretation of internal constructions is given by
the following definition.

Definition 2.8. The interpretation of an internal construction T is denoted by JT K ∈
Sh(X) and is given by the following rules.

• If F and G are sheaves, JF × GK is the categorical product of F and G (i. e.
their product as presheaves).
• If F and G are sheaves, JF ⨿ GK is the categorical coproduct of F and G,
i. e. the sheafification of the presheaf U 7→ Γ(U,F)⨿ Γ(U,G).

5Readers familiar with Tarski’s theorem on undefinability of truth will recognize that we’re sweeping
a subtle issue under the rug, as it’s not actually possible, within the confines of a chosen formal

system as foundation of mathematics, to formally define what it means for a formula to “hold
in the usual mathematical sense”. This issue can be solved in a number of ways, for instance by

performing the Kripke–Joyal translation at the meta level (at the price of not having arbitrary
set-indexed conjunctions and disjunctions available in the internal language, at least if the meta
level is taken to be something like PRA) or by choosing a universe U and replacing Set by the full
subcategory of those sets contained in U . The latter option can even be carried out without an
increase in consistency strength, by employing a system like Feferman’s ZFC/S [121, 53].
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• If F is a sheaf, the interpretation JP(F)K of the power set construction is
the sheaf given by

U ⊆ X open 7−→ {G ↪→ F|U},
i. e. sections on an open set U are subsheaves of F|U (either literally or
isomorphism classes of arbitrary monomorphisms into F|U ).

• If F is a sheaf and φ(s) is a formula containing a free variable s :F , the
interpretation J{s :F |φ(s)}K is given by the subpresheaf of F defined by

U ⊆ X open 7−→ {s ∈ Γ(U,F) | U |= φ(s)}.
By the locality of the internal language, this presheaf is in fact a sheaf.

The definition is made in such a way that, from the internal perspective, the
constructions enjoy their expected properties. For instance, it holds that

Sh(X) |=
(
∀x : J{s :F |φ(s)}K. ψ(x)

)
⇐⇒

(
∀x :F . φ(x)⇒ ψ(x)

)
.

We gloss over several details here. See [72, Section D4.1] for a proper treatment.
Morphisms can internally be constructed by appealing to the principle of unique

choice: Let φ(s, t) be a formula with free variables of type s :F , t :G. Assume

Sh(X) |= ∀s :F . ∃!t :G. φ(s, t).
Then there is one and only one morphism α : F → G of sheaves such that for any
local section s ∈ Γ(U,F), Sh(X) |= φ(s, α(s)). This follows from the meaning of
unique existence with the Kripke–Joyal semantics (Proposition 2.6).

An important application is showing that two sheaves F and G are isomorphic
(usually as objects with more structure, for instance sheaves of modules). To this
end, it suffices to give a formula φ(s, t) satisfying, in addition to the condition
above, the condition Sh(X) |= ∀t :G. ∃!s :F . φ(s, t), expressing that the induced
morphism α is a bijective map from the internal perspective. This implies the
statement

Sh(X) |= ∃α :Hom(F ,G). ⌜α is bijective⌝,

but this statement is strictly weaker: Its interpretation with the Kripke–Joyal
semantics is that the sheaves F and G are locally isomorphic.

2.3. Geometric formulas and constructions. In formal and categorical logic
so-called geometric formulas play a special role. They are named that way because,
in a sense which can be made precise, their meaning is preserved under pullback
along geometric morphisms.

Definition 2.9. A formula is geometric if and only if it consists only of

= ∈ ⊤ ⊥ ∧ ∨
∨

∃,

but not “
∧
” nor “⇒” nor “∀” (and thus not “¬” either, since negation is defined

using “⇒”). A geometric implication is a formula of the form

∀ · · · ∀. (· · · )⇒ (· · · )
with the bracketed subformulas being geometric.

The parameters of a formula φ are the sheaves being quantified over, sections
of sheaves appearing as terms, and morphisms of sheaves appearing as function
symbols in φ. We say that a formula φ holds at a point x ∈ X if and only if the
formula obtained by substituting all parameters in φ with their stalks at x holds in
the usual mathematical sense.

Lemma 2.10. Let x ∈ X be a point. Let φ be a geometric formula (over some
open neighborhood V of x). Then φ holds at x if and only if there exists an open
neighborhood U ⊆ X of x (contained in V) such that φ holds on U .
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Proof. This is a very general instance of the phenomenon that sometimes, truth at
a point spreads to truth on a neighborhood. It can be proven by induction on the
structure of φ, but we will give a more conceptual proof later (Corollary 6.33). □

This lemma is a very useful metatheorem. We will properly discuss its significance
in Section 6.7. For now, we just use it to prove a simple criterion for the internal
truth of a geometric implication; we will apply this criterion many times.

Corollary 2.11. A geometric implication holds on X if and only if it holds at every
point of X.

Proof. For notational simplicity, we consider a geometric implication of the form

∀s :F . φ(s)⇒ ψ(s).

For the “only if” direction, assume that this formula holds on X and let x ∈ X be
an arbitrary point. Let sx ∈ Fx be the germ of an arbitrary local section s of F
and assume that φ(s) holds at x. By Lemma 2.10, it follows that φ(s) holds on
some open neighborhood of x. By assumption, ψ(s) holds on this neighborhood as
well. Again by the lemma, ψ(s) holds at x.

For the “if” direction, assume that the geometric implication holds at every point.
Let U ⊆ X be an arbitrary open subset and let s ∈ Γ(U,F) be a local section such
that φ(s) holds on U . By the lemma and the locality of the internal language, to
show that ψ(s) holds on U , it suffices to show that ψ(s) holds at every point of U .
This is clear, since again by the lemma, φ(s) holds at every point of U . □

Example 2.12. Injectivity and surjectivity are geometric implications (surjectivity
can be spelled ∀y :G. (⊤ ⇒ ∃x :F . α(x) = y)). Thus Corollary 2.11 gives a deeper
reason for the well-known fact that a morphism of sheaves is a monomorphism resp.
an epimorphism if and only if it is stalkwise injective resp. surjective.

A construction is geometric if and only if it commutes with pullback along
arbitrary geometric morphisms. We do not want to discuss the notion of geometric
morphisms here; suffice it to say that calculating the stalk at a point x ∈ X is
an instance of such a pullback. Among others, the following constructions are
geometric:

• finite product: (F × G)x ∼= Fx × Gx
• finite coproduct: (F ⨿ G)x ∼= Fx ⨿ Gx
• arbitrary coproduct: (

∐
i Fi)x ∼=

∐
i(Fi)x

• set comprehension with respect to a geometric formula φ:

J{s :F |φ(s)}Kx ∼= {[s] ∈ Fx |φ(s) holds at x}
• free module: (R⟨F⟩)x ∼= Rx⟨Fx⟩ (R a sheaf of rings, F a sheaf of sets)
• localization of a module: F [S−1]x ∼= Fx[S−1

x ]

Compatibility with taking stalks is not sufficient for geometricity. It is just the
most easily visualized requirement. The following constructions are not in general
geometric:

• arbitrary product
• set comprehension with respect to a non-geometric formula
• powerset
• internal Hom: Hom(F ,G)x ̸∼= Hom(Fx,Gx)

2.4. Appreciating intuitionistic logic. The principal (and only) difference
between classical and intuitionistic logic is that in classical logic, the axioms schemes
of excluded middle and double negation elimination are added.

φ ∨ ¬φ ¬¬φ⇒ φ
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A classically trained mathematician might legitimately wonder why one should drop
these axioms: Are they not obviously true? The pragmatic answer to this question
is that the translations of these axioms with the Kripke–Joyal semantics are, except
for uninteresting special cases of the base space X, plainly false – irrespective of
one’s philosophical convictions. Therefore the internal language is in general only
sound with respect to intuitionistic logic and not with respect to classical logic.
Concretely, there is the following proposition.

Proposition 2.13. The internal language of a T1-space X is Boolean, i. e. it
verifies the classical axiom schemes displayed above, if and only if X is discrete.
The internal language of an irreducible or locally Noetherian scheme X is Boolean
if and only if X has dimension ≤ 0.

Proof. The internal language of Sh(X) is Boolean if and only if for any open
subset U ⊆ X it holds that U is the only dense open subset of U . This can be
checked manually, by using the definition of the Kripke–Joyal semantics, but we’ll be
able to give a more conceptual proof later (Lemma 6.19). The first claim is then an
exercise in point-set topology, while the second is more difficult (Corollary 3.15). □

However, there is also a more satisfying answer, which furthermore illuminates how
to intuitively picture intuitionistic mathematics. Namely, when doing intuitionistic
mathematics, we use the same formal symbols as classically, but with a different
intended meaning. For instance, the classical reading of an existential statement
like ∃x :A. φ(x) is that there exists some element x :A with the property φ(x). In
contrast, its intuitionistic reading is that such an element can actually be constructed,
i. e. explicitly given in some form. This is a much stronger statement. Classically,
a proof that it is not the case that such an element does not exist – formally
¬¬∃x :A. φ(x) (or, equivalently even in intuitionistic mathematics, ¬∀x :A. ¬φ(x))
– suffices to demonstrate the existential statement; this is not so in intuitionistic
mathematics.

Similarly, the intuitionistic meaning of a disjunction φ ∨ ψ is not only that one
of the disjuncts is true, but that one can explicitly state which case holds. It is in
general not enough to show that it is impossible that both φ and ψ fail.

In this picture, it is obvious that one should not adopt the law of excluded middle
or the principle of double negation elimination as axioms. But we don’t reject
those axioms in the sense of postulating their converses, we simply don’t use them.
Therefore any intuitionistically true result is also true classically. In fact, for some
special instances, these two classical axioms do hold intuitionistically. For example,
any natural number is zero or is not zero – this is not a triviality, but can be proven
by induction.6

A consequence of not adopting these axioms is that proofs by contradiction are
not generally justified; they are intuitionistically valid only for those statements
which can be proven to be true or false. A proof of a negated formula is not the same
as a proof by contradiction. For instance, the usual proof that

√
2 is not rational

is intuitionistically perfectly fine: From the assumption that
√
2 is rational one

deduces a contradiction (⊥). This is exactly the definition of ¬(⌜
√
2 is rational⌝).

A more positive consequence of not adopting the law of excluded middle and
the principle of double negation elimination is that intuitionistically, we can make

6The analogous statement about real numbers cannot be shown. Intuitively, for a number given by

a decimal expansion starting with 0.0000 . . . one cannot decide whether the string of zeros will
continue indefinitely or whether eventually a non-zero digit will occur. This argument can be
made rigorous. The analogous statement about algebraic numbers can be proven; the information
contained in a witness of algebraicity (a monic polynomial which the given number is a zero of)
suffices to make the case distinction [98, Chapter VI.1, p. 140].



2. THE INTERNAL LANGUAGE OF A SHEAF TOPOS 25

finer distinctions. For instance, for a formula φ, the doubly negated formula ¬¬φ
(“not not φ”) is a certain kind of weakening of φ: If φ holds, then ¬¬φ does as
well, while the converse can not be shown in general.7 An example from everyday
life runs as follows: If in the morning you can’t find the key for your apartment,
but you know that it must hide somewhere since you used it to open the door in
the evening before, you intuitionistically know (¬¬∃x. ⌜the key is at position x⌝),
but you cannot claim the unnegated proposition. One cannot model this distinction
with pure classical logic.

Double negation also has a concrete geometric meaning with the Kripke–Joyal
semantics. Namely, X |= ¬¬φ holds if and only if there is a dense open subset U
of X such that U |= φ. This is of course a weaker statement than X |= φ. In
Section 6, we will discuss this fact and other modal operators in more detail. For
instance, there is a similarly defined modal operator □ such that X |= □φ if and
only if there is an open neighborhood U of a given point x such that U |= φ. Also
there is a different operator □ such that X |= □φ if and only if φ holds on a
scheme-theoretically dense open subset.

For future reference, we remark that if φ ⇒ ψ, then also ¬¬φ ⇒ ¬¬ψ; that
weakening twice has no further effect, i. e. ¬¬¬¬φ ⇔ ¬¬φ;8 and that the double
negation of the law of excluded middle, ¬¬(φ ∨ ¬φ), holds.

A classical mathematician might then ask which classical results are valid intu-
itionistically. Firstly, in linear and commutative algebra, most of the basic theorems
stay valid, provided one exercises some caution in formulating them (for instance,
one should not arbitrarily weaken assumptions by introducing double negations).
This is because the proofs of these statements are usually direct; if intuitionistically
unacceptable case distinctions do occur, they can often be eliminated by streamlining
the proof.

Consider as a simple example the proposition that the kernel of a linear map is
a linear subspace. The case distinction “either the kernel consists just of the zero
vector, in which case the claim is trivial, or otherwise . . . ” is not intuitionistically
acceptable, but can be entirely dispensed with: The proof for the general case works
in the special case just as well.

Secondly, there is Barr’s theorem. This metatheorem states that, if a geometric
implication has a proof using classical logic and the axiom of choice (from certain
axioms which too can be formulated as geometric implications), then it also has a
proof using intuitionistic logic. For instance, the Nullstellensatz (any finite system
of polynomial equations over an algebraically closed geometric field either possesses
a solution or a certificate that there can’t be any solutions) is typically proven using
maximal ideals and therefore using some forms of the axiom of choice. By Barr’s
theorem, there is also an intuitionistically valid proof.

Barr’s theorem only requires restrictions on the form of the statement and the
axioms; the given classical proof can be of any form whatsoever and can freely
use statements which are not geometric implications. The proof of Barr’s theorem
itself is not intuitionistically valid, which puts us in the curious situation that we
nonconstructively know that there exists a constructive proof. Because I strive, as
far as possible, that these notes can be interpreted in a constructive metatheory, and
because I personally prefer direct intuitionistic proofs, we won’t use Barr’s theorem
in what follows. However, it’s useful to quickly assess whether a classically known
proposition also has an intuitionistic proof.

7A detailed proof of the correct implication goes as follows: Assume φ. We are to show ¬¬φ, i. e.
(¬φ⇒ ⊥). So assume ¬φ, we are to show ⊥. Since φ and φ⇒ ⊥, ⊥ indeed follows.
8In fact, negating thrice is the same as negating once: Assume ¬¬¬φ. We are to show ¬φ. So
assume φ, we are to show ⊥. Since φ, ¬¬φ. By ¬¬¬φ, ⊥ follows.
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Finally, we should clarify the status of the axiom of choice. This axiom, which
is strictly speaking not part of classical logic, but of a classical set theory, is not
accepted in an intuitionistic context: By Diaconescu’s theorem, it implies the law of
excluded middle in presence of the other axioms of set theory.

Standard references for intuitionistic algebra are a textbook by Mines, Richman
and Ruitenburg [98] and a textbook by Lombardi [89]. The standard reference for
intuitionistic analysis is a book by Bishop and Bridges [23]. Further explanations
and pointers to relevant literature can be found in an expository article and a
recorded lecture by Bauer [18, 17]. A recent survey of intuitionistic logic from a
historical and logical point of view is [97].

Remark 2.14. For much of this text, we work in a classical metatheory. This
means that we allow ourselves to occasionally use the law of excluded middle and
the axiom of choice when reasoning about the internal language. In particular, we
have the theory of schemes as commonly presented at our disposal. This decision
has two reasons.

Firstly, we want to connect the internal world with the usual external framework
of algebraic geometry, in order to be directly useful to working algebraic geometers
who work in a classical metatheory. We want to prove statements like “a scheme X
as classically defined has this-or-that property if and only if, from the internal point
of view of Sh(X), this-or-that holds”.

Secondly, as of yet, there is no full constructive account of the theory of schemes
with which we could establish a link with the internal language. We sketch how
such an account could be developed, and also why one might want to do that, in
Section 12.9.

2.5. A fine point on internal natural numbers. The internal world of Sh(X)
contains an object which behaves like the set of natural numbers. For instance, it’s
possible to prove statements about internal natural numbers by induction and to
construct functions on the internal natural numbers by recursion. Externally, this
object is the constant sheaf N of locally constant N-valued functions on X.

On the other hand, we can utilize that the internal language supports infinite
conjunctions and disjunctions; therefore we may include expressions like “

∨
n∈N”,

where n ranges over all external natural numbers, in internal formulas.
The two approaches are related as follows. Any external natural number n ∈ N

gives rise to a global section n of the sheaf N, thus to an internal natural number.
If φ(n) is a formula of the internal language depending on a parameter n :N, then

Sh(X) |= ∃n :N. φ(n) if and only if Sh(X) |=
∨
n∈N

φ(n),

and similarly for “∀” and “
∧
”. In practice we can therefore often ignore the subtle

difference. A proof of the equivalence rests on the observation

Sh(X) |= ∀n :N.
∨
m∈N

n = m,

which can be checked by translating this statement using the Kripke–Joyal semantics.
A similar relation holds for internal polynomials. If R is a sheaf of rings over X,

then we can construct, internally in Sh(X), the ring of polynomials over R. This will
yield a certain sheaf JR[T ]K. If φ(f) is a formula of the internal language containing
a free variable f :R[T ], then

Sh(X) |= ∃f :R[T ]. φ(f) if and only if

Sh(X) |=
∨
n∈N
∃a0 :R. . . .∃an :R. φ(anTn + · · ·+ a1T + a0).



PART II

The little Zariski topos

3. Sheaves of rings

Recall that a sheaf of rings can be categorically described as a sheaf of sets R
together with maps of sheaves +, · : R×R → R, − : R → R, and global elements 0, 1
such that certain axioms hold. For instance, the axiom on the commutativity of
addition is rendered in diagrammatic form as follows:

R×R
swap //

+
##

R×R

+
{{

R
From the internal perspective, a sheaf of rings looks just like a plain ring. This is

the content of the following proposition.

Proposition 3.1. Let X be a topological space. Let R be a sheaf of sets on X.
Let +, · : R × R → R and − : R → R be maps of sheaves and let 0, 1 be global
elements of R. Then these data define a sheaf of rings if and only if, from the
internal perspective, these data fulfill the usual equational ring axioms.

Proof. We only discuss the commutativity axiom. The internal statement

Sh(X) |= ∀x, y :R. x+ y = y + x

means that for any open subset U ⊆ X and any local sections x, y ∈ Γ(U,R), it
holds that x+ y = y + x ∈ Γ(U,R). This is precisely the external commutativity
condition. □

Lemma 3.2. Let X be a topological space. Let R be a sheaf of rings on X. Let f
be a global section of R. Then the following statements are equivalent:

(1) f is invertible from the internal point of view, i. e. Sh(X) |= ∃g :R. fg = 1.
(2) f is invertible in all stalks Rx.
(3) f is invertible in Γ(X,R).

Proof. Since invertibility is a geometric implication, the equivalence of the first two
statements is clear. Also, it is obvious that the third statement implies the other
two. For the remaining direction, note that the uniqueness of inverses in rings can
be proven intuitionistically. Therefore, if f is invertible from the internal point of
view, it actually holds that

Sh(X) |= ∃!g :R. fg = 1.

Since unique internal existence implies global existence (Proposition 2.6), this shows
that the first statement implies the third. □

3.1. Reducedness. Recall that a scheme X is reduced if and only if all stalks OX,x
are reduced rings. Since the condition on a ring R to be reduced is a geometric
implication,

∀s :R.
(∨
n≥0

sn = 0
)
=⇒ s = 0,

27
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we immediately obtain the following characterization of reducedness in the internal
language:

Proposition 3.3. A scheme X is reduced iff, from the internal point of view, the
ring OX is reduced.

3.2. Locality. Recall the usual definition of a local ring: a ring possessing exactly
one maximal ideal. This is a so-called higher-order condition since it involves
quantification over subsets. It is also not of a geometric form. Therefore, for our
purposes, it is better to adopt the following elementary definition of a local ring.

Definition 3.4. A local ring is a ring R such that 1 ̸= 0 in R and for all x, y :R

x+ y invertible =⇒ x invertible ∨ y invertible.

In classical logic, it is an easy exercise to show that this definition is equivalent to
the usual one. In intuitionistic logic, we would need to be more precise in order to
even state the question of equivalence, since intuitionistically, the notion of a maximal
ideal bifurcates into several non-equivalent notions.9 This is a common phenomenon
in intuitionistic mathematics: Classically equivalent notions may bifurcate into
related but inequivalent notions intuitionistically, each having a unique character
and yielding slightly different theories.

Proposition 3.5. In the internal language of a scheme X (or a locally ringed
space), the ring OX is a local ring.

Proof. The condition in Definition 3.4 is a conjunction of two geometric implications
(the first one being 1 = 0⇒ ⊥, the second being the displayed one) and holds on
each stalk. □

Remark 3.6. When first exposed to locally ringed spaces, one might ask why the
requirement is that the stalks OX,x are local rings, instead of the easier-to-define
sets of sections OX(U). This question has of course a good geometric answer. Using
the internal language, it also has a purely formal answer: The requirement that the
stalks are local rings is precisely the requirement that the ring OX is a local ring
from the perspective of the internal language of X.

3.3. Field properties. From the internal point of view, the structure sheaf OX of
a scheme X is almost a field, in the sense that any element which is not invertible is
nilpotent. This is a genuine property of schemes, not shared with arbitrary locally
ringed spaces. It is also a specific feature of the internal universe: Neither the local
rings OX,x nor the rings of local sections Γ(U,OX) have this property in general.

Proposition 3.7. Let X be a scheme. Then

Sh(X) |= ∀s :OX . ¬(⌜s invertible⌝)⇒ ⌜s nilpotent⌝.

Proof. By the locality of the internal language and since X can be covered by open
affine subsets, it is enough to show that for any affine scheme X = SpecA and any
global function s ∈ Γ(X,OX) = A it holds that

X |= ¬(⌜s invertible⌝) implies X |= ⌜s nilpotent⌝.

The meaning of the antecedent is that any open subset on which s is invertible is
empty. This implies in particular that the standard open subset D(s) is empty. This
means that s is an element of any prime ideal of A, thus nilpotent, and therefore
implies the a priori weaker statement X |= ⌜s nilpotent⌝ (which would allow s to
have different indices of nilpotency on an open covering). □

9For instance, should a maximal ideal m be such that if n is any ideal with m ⊆ n ⊊ (1), then m = n?
Or should the condition be that if n is any ideal with m ⊆ n, then m = n or n = (1)? Intuitionistically,
the latter condition is stronger than the former.



3. SHEAVES OF RINGS 29

Remark 3.8. In classical logic, the statement “not invertible implies nilpotent” is
equivalent to “any element is invertible or nilpotent”. However, in intuitionistic
logic, the latter is strictly stronger than the former. We will see in the next section
(Corollary 3.14) that the structure sheaf of a scheme fulfills the latter condition if
and only if the scheme is zero-dimensional (or empty). An overview of the basic
properties of the intuitionistically different field conditions is contained in [71].

Corollary 3.9. Let X be a scheme. If X is reduced, the ring OX is a field from
the internal point of view, in the sense that

Sh(X) |= ∀s :OX . ¬(⌜s invertible⌝)⇒ s = 0.

Conversely, if OX is a field in this internal sense, then X is reduced.

Proof. We can prove this purely in the internal language: It suffices to give an
intuitionistic proof of the fact that a local ring which satisfies the condition of the
previous proposition fulfills the stated field condition if and only if it is reduced.
This is straightforward. □

This field property is very useful. We will put it to good use when giving a simple
proof of the fact that OX -modules of finite type on a reduced scheme are locally free
on a dense open subset (Lemma 5.8). The field property only holds in the precise
form as stated; the classically equivalent condition that any element is invertible or
zero is intuitionistically stronger. This is an instance of the already remarked upon
phenomenon of intuitionistic bifurcation of notions.

The observation that the structure sheaf is (almost) a field is attributed by
Tierney to Mulvey [134, p. 209]. Tierney also states that “[it] is surely important,
though its precise significance is still somewhat obscure” (ibid). We think that it’s
significant as a special case of the following more general proposition, which states
that we can deduce a certain unconditional statement from the premise that, under
the assumption that some element f :OX is invertible, an element s :OX is zero.
This is interesting on its own, but will be of particular importance in understanding
quasicoherence from the internal point of view (Section 8) and interpreting the
relative spectrum as an internal spectrum (Section 12).

Proposition 3.10. Let X be a scheme. Then

Sh(X) |= ∀f :OX . ∀s :OX . (⌜f inv.⌝⇒ s = 0) =⇒
∨
n≥0 f

ns = 0.

Proof. It is enough to show that for any affine scheme X = SpecA and any global
functions f, s ∈ A such that

X |= (⌜f inv.⌝⇒ s = 0),

it holds that X |=
∨
n≥0 f

ns = 0. This indeed follows, since by assumption such a

function s is zero on D(f), i. e. s is zero as an element of A[f−1]. □

Proposition 3.7 follows from this proposition by setting s := 1.

3.4. Krull dimension. Recall that the Krull dimension of a ring is usually defined
as the supremum of the lengths of strictly ascending chains of prime ideals. As with
the classical definition of a local ring, this definition does not lead to a well-behaved
notion in an intuitionistic context. Furthermore, it is a higher-order condition, so
interpreting it with the Kripke–Joyal semantics is a bit unwieldy.

Luckily, there is an elementary definition of the Krull dimension which works
intuitionistically and which is classically equivalent to the usual notion. It was found
by Coquand and Lombardi, building upon work by Joyal and Español [39, 42], and
can be used to give a short proof that dim k[X1, . . . , Xn] = n, where k is a field [41].
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Definition 3.11. LetR be a ring. A complementary sequence for a sequence (a0, . . . , an)
of elements of R is a sequence (b0, . . . , bn) such that the following inclusions of radical
ideals hold: 

√
(1) ⊆

√
(a0, b0)√

(a0b0) ⊆
√

(a1, b1)√
(a1b1) ⊆

√
(a2, b2)

...√
(an−1bn−1) ⊆

√
(an, bn)√

(anbn) ⊆
√

(0)

The ring R is of Krull dimension ≤ n if and only if for any sequence (a0, . . . , an)
there exists a complementary sequence. (The ring R is trivial if and only if it is of
Krull dimension ≤ −1.)

Unlike the usual definition, this definition posits only a condition on elements
and not on ideals. It is thus of a simpler logical form. (The radical ideals appear
only for convenience. We will eliminate them in the proof of Proposition 3.13.) Also
note that we do not define the Krull dimension of a ring as some natural number
(this is intuitionistically not possible for general rings). Instead, we only define what
it means for the Krull dimension to be less than or equal to a given natural number.

For the following, no intuition about the definition is needed; however, we feel that
some motivation might be of use. Recall that we can picture inclusions of radical
ideals geometrically by considering standard open subsets D(f) = {p ∈ SpecR | f ̸∈
p}: The inclusion

√
(f) ⊆

√
(g, h) holds if and only if D(f) ⊆ D(g) ∪D(h), and

intersections are calculated by products, i. e. D(f) ∩D(g) = D(fg).
The condition that (b0, . . . , bn) is complementary to (a0, . . . , an) thus means

that D(a0) and D(b0) cover all of SpecR; that their intersection is covered by D(a1)
and D(b1); that in turn their intersection is covered by D(a2) and D(b2); . . . ; and
that finally, the intersection of D(an) and D(bn) is empty.

For the special case n = 0, the condition that R is of Krull dimension ≤ 0
means that for any element a0 there exists an element b0 such that D(a0) and D(b0)
cover SpecR and are disjoint.

The definition of the Krull dimension can be written in such a way as to mimic
the definition of the inductive Menger–Urysohn dimension of topological spaces [39,
Section 1]. For an internal characterization of the dimension of smooth manifolds,
we refer the reader to a result of Fourman [54, Section 3].

Theorem 3.12. Let R be a ring.

(1) In classical logic, the ring R is of Krull dimension ≤ n if and only if its
Krull dimension as usually defined using chains of prime ideals is less than
or equal to n.

(2) If the ring R is of Krull dimension ≤ n, the radical of any finitely generated
ideal is equal to the radical of some ideal which can be generated by n+ 1
elements. This holds intuitionistically, and there is an explicit algorithm for
computing the reduced set of generators from the given ones. (Kronecker’s
theorem)

Proof. See [39, Theorem 1.2] for the first statement. The proof relies on the
observation that dimR ≤ n if and only if dimR[S−1

x ] ≤ n − 1 for all x ∈ R,
where Sx = xN(1 + xR) ⊆ R. We put the second statement only to demonstrate
that the definition of the Krull dimension is constructively sensible. It follows from
the identity

√
(x, a0, . . . , an) =

√
(a0 − xb0, . . . , an − xbn), where (b0, . . . , bn) is a

complementary sequence for (a0, . . . , an). □
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We can apply the constructive theory of Krull dimension to the structure sheaf OX
of a scheme X as follows. The condition that a scheme X has dimension exactly n
(in the usual sense using ascending chains of closed irreducible subsets) is not local –
the dimension may vary on an open cover; hence it isn’t possible to characterize
this condition in the internal language. However, the condition that the dimension
of X is less than or equal to n is local, thus there is hope that it can be internalized.
And indeed, this is the case.

Proposition 3.13. Let X be a scheme. Then:

dimX ≤ n ⇐⇒ Sh(X) |= ⌜OX is of Krull dimension ≤ n⌝

Proof. A condition of the form “
√
(f) ⊆

√
(g, h)” like in the constructive definition

of the Krull dimension is not a geometric formula when taken on face value. However,
it is equivalent to a geometric condition, namely to

∃a, b :OX .
∨
m≥0

fm = ag + bh.

Therefore the condition ⌜OX is of Krull dimension ≤ n⌝ is (equivalent to) a geomet-
ric implication and thus holds internally if and only if it holds at every point x ∈ X.
This in turn means that the Krull dimension of any stalk OX,x is less than or equal
to n. This is equivalent to the (Krull) dimension of X being less than or equal
to n. □

We will state and prove a generalization of this lemma about the dimension of
closed subschemes later, as Lemma 10.10.

If X is a reduced scheme, we have seen in Corollary 3.9 that OX is a field from
the internal perspective, in the sense that non-invertible elements are zero. But
fields are well-known to be of Krull dimension zero. Why is this not a contradiction
to the proposition just proven? Intuitionistically, the notion of a field bifurcates
into several non-equivalent notions:

(1) “Any element which is not invertible is zero.”
(2) “Any element which is not zero is invertible.”
(3) “Any element is either zero or invertible.”

Only fields in the sense (3) are automatically of Krull dimension zero. Fields in the
weaker senses can have higher Krull dimension, as exhibited by the structure sheaf
of reduced schemes with positive dimension.

With our conventions, a scheme X is of dimension ≤ 0 if and only if it is empty
or if it’s nonempty and of dimension zero.

Corollary 3.14. Let X be a scheme. Then:

dimX ≤ 0 ⇐⇒ Sh(X) |= ∀s :OX . ⌜s inv.⌝ ∨ ⌜s nilpotent⌝.

If furthermore X is reduced, this is further equivalent to OX being a field in the
strong sense that any element of OX is invertible or zero.

Proof. By Proposition 3.13 and the fact that OX is a local ring from the internal
perspective, this is an immediate consequence of interpreting the following standard
fact of ring theory in the internal language of Sh(X): A local ring R is of Krull
dimension ≤ 0 if and only if any element of R is invertible or nilpotent.

It is well-known that this holds classically; to make sure that it holds intuitionis-
tically as well (so that it can be used in the internal universe), we give a proof of the
“only if” direction. Let a :R be arbitrary. By assumption on the Krull dimension,
there exists an element b :R such that

√
(1) ⊆

√
(a, b) and

√
(ab) =

√
(0). The

latter means that ab is nilpotent. Since R is local, the former implies that a is
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invertible or that b is invertible. In the first case, we are done. In the second case,
it follows that a is nilpotent, so we are done as well. □

As a further corollary we note the curious fact that the classicality of the internal
language of Sh(X), where X is a scheme, is tightly coupled with the properties of the
ring OX : Internally, the law of excluded middle and the principle of double negation
elimination are “almost equivalent” to the Krull dimension of OX being ≤ 0.

Corollary 3.15. Let X be a scheme. If the internal language of Sh(X) is Boolean,
then dimX ≤ 0. The converse holds if X is irreducible or locally Noetherian.

Proof. We show that any element of OX is invertible or nilpotent, therefore verifying
the hypothesis of the previous corollary. Let s :OX be given. By assumption, either s
is invertible or s is not invertible. In the latter case s is nilpotent by Proposition 3.7.

We defer the converse direction to Proposition 9.19 since we don’t want to
interrupt the exposition here with a certain necessary technical condition. □

3.5. Integrality. In intuitionistic logic, the notion of an integral domain bifurcates
into several inequivalent notions. The following two are important for our purposes:

Definition 3.16. A ring R is an integral domain in the weak sense if and only
if 1 ̸= 0 in R and

∀x, y :R. xy = 0 =⇒ (x = 0) ∨ (y = 0).

A ring R is an integral domain in the strong sense if and only if 1 ̸= 0 in R and

∀x :R. x = 0 ∨ ⌜x is regular⌝,

where ⌜x is regular⌝ means that xy = 0 implies y = 0 for any y :R.

For the following result, recall that a scheme X (or a ringed space) is integral at
a point x ∈ X if and only if OX,x is an integral domain (in either sense, since we
have adopted a classical metatheory).

Proposition 3.17. Let X be a ringed space. Then:

(1) X is integral at all points if and only if, internally, OX is an integral domain
in the weak sense.

(2) If X is even a locally Noetherian scheme, then OX is an integral domain
in the weak sense iff it is an integral domain in the strong sense from the
internal point of view.

Proof. The condition on a ring to be an integral domain in the weak sense is
a conjunction of two geometric implications, “1 = 0 ⇒ ⊥” and the implication
displayed in the definition. Therefore the first statement is obvious.

For the second statement, we observe the condition on a function f ∈ Γ(U,OX)
to be regular from the internal perspective is open: It holds at a point x ∈ U if and
only if it holds on some open neighborhood of x. We will give a proof of this specific
feature of locally Noetherian schemes later on, when we have developed appropriate
machinery to do so easily (Proposition 9.4). In any case, this openness property
was the essential ingredient for the equivalence between “holding internally” and
“holding at every point” (Corollary 2.11). Therefore OX is an integral domain in the
strong sense from the internal point of view if and only if all local rings OX,x are
integral domains. By the first statement, this is equivalent to OX being an integral
domain in the weak sense from the internal point of view. □

We record the following lemma for later use. The proof presented here is already
simple, but a more conceptual proof is also possible (see Section 11.3).
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Lemma 3.18. Let X = SpecA be an affine scheme. Let f ∈ A. Then f is a
regular element of A if and only if f is a regular element of OX from the internal
perspective.

Proof. The Kripke–Joyal translation of internal regularity is:

For any (without loss of generality: standard) open subset U ⊆ X
and any function g ∈ Γ(U,OX), fg = 0 in Γ(U,OX) implies g = 0
in Γ(U,OX).

So the “if” direction is clear (use U := X). For the “only if” direction, we use
that Γ(U,OX) is a localization of A and that regular elements remain regular in
localizations. □

3.6. Bézout property. Recall that a Bézout ring is a ring in which any finitely
generated ideal is a principal ideal. In intuitionistic mathematics, this is a better
notion than that of a principal ideal ring: The requirement that any ideal is
a principal ideal is far too strong. Intuitively, this is because without any given
generators to begin with, one cannot hope to explicitly pinpoint a principal generator.
One can (provably) not even verify this property for the ring Z.10

Proposition 3.19. Let X be a scheme (or a ringed space).

(1) OX is a Bézout ring from the internal perspective if and only if all rings OX,x
are Bézout rings.

(2) OX is such that, from the internal perspective, of any two elements, one
divides the other, if and only if all rings OX,x are such.

Proof. Both properties can be formulated as geometric implications:

(1) ∀f, g :OX . ⊤ ⇒ ∃d :OX . (∃a, b :OX . d = af + bg) ∧
(∃u :OX . f = ud) ∧ (∃v :OX . g = vd)

(2) ∀f, g :OX . ⊤ ⇒ (∃u :OX . f = ug) ∨ (∃u :OX . g = uf) □

Corollary 3.20. Let X be a Dedekind scheme, i. e. a locally Noetherian normal
scheme of dimension ≤ 1. Then, from the internal perspective, any matrix over OX
can be put into Smith canonical form, i. e. is equivalent to a (rectangular) diagonal
matrix with diagonal entries a1|a2| · · · |an successively dividing each other.

Proof. It is well-known that such a scheme has principal ideal domains as local
rings OX,x. For local domains, the Bézout condition is equivalent to the property
that of any two elements, one divides the other. Therefore all local rings have this
property, and by the previous proposition, the internal ring OX has it as well. The
statement thus follows from interpreting the following fact of linear algebra in the
internal universe: Let R be a ring such that of any two elements, one divides the
other. Then any matrix over R can be put into Smith canonical form.

10Assume that any ideal of Z is finitely generated. Let φ be an arbitrary statement; we want to

intuitionistically deduce φ ∨ ¬φ. Consider the ideal a := {x ∈ Z | (x = 0) ∨ φ} ⊆ Z. The definition
is such that φ holds if and only if a contains an element other than zero; and that ¬φ holds if
and only if zero is the only element of a. By assumption, a is finitely generated. Since Z is a
Bézout ring, it is therefore even principal: a = (x0) for some x0 ∈ Z. Even intuitionistically we

have (x0 = 0) ∨ (x0 ≠ 0) (for the natural numbers, this can be proven by induction). In the first
case, it follows that a contains only zero; in the second case, it follows that a contains an element

other than zero. Thus ¬φ ∨ φ.
This kind of reasoning is called exhibiting a Brouwerian counterexample. The definition of a may
look slightly dubious, considering that φ does not depend on x; but we will see that such definitions
actually have a clear geometric meaning – they can be used to define extensions of sheaves by zero
in the internal language (Lemma 10.2).
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The usual proof of this fact is indeed intuitionistically valid: Let a matrix over R
be given. By induction, one can show that for any finite family of ring elements,
one divides all the others. Hency some matrix entry is a factor of all the others. We
move this entry to the upper left by row and column transformations and then kill
the other entries of the first row and the first column. After these operations, it
is still the case that the entry in the first row and column is a factor of all other
entries. Continuing in this fashion, we obtain a diagonal matrix. Its diagonal entries
already fulfill the divisibility condition and thus do not have to be sorted. □

Phrases such as “if by chance the entry in the upper left divides all the others,
we can directly proceed with the next step; otherwise, some other entry must be
a factor of all entries, so . . . ” may not be included in a proof which is intended
to be intuitionistically valid. Those phrases assume that one may make the case
distinction that for any two ring elements x, y, either x divides y or not. Fortunately,
those case distinctions are in fact superfluous.

A consequence of the corollary is that internally to the sheaf topos of a Dedekind
scheme, the usual structure theorem on finitely presented OX -modules is available.
We will exploit this in Lemma 4.26, where we give an internal proof of the fact that
on Dedekind schemes, torsion-free OX -modules are locally free.

3.7. Normality. We will discuss the property of a ring to be normal, i. e. to be
integrally closed in its total field of fractions, in Section 9.3, after giving an internal
characterization of the sheaf of rational functions.

3.8. Special properties of constant sheaves of rings. Let R be an ordinary ring
and R the associated sheaf of locally constant R-valued functions on a topological
space. If R is reduced, local, or a field, then R is so as well, from the internal point
of view.

We will prove this in greater generality: Appropriately formulated, a constant
sheaf R has some property φ from the internal point of view if and only if R has
the property φ externally (Lemma 11.1).

3.9. Noetherian conditions. Recall the usual notion of a Noetherian ring: Any
sequence a0 ⊆ a1 ⊆ · · · of ideals should stabilize, i. e. there should exist a natural
number n such that an = an+1 = · · · .

Intuitionistically, this definition has two problems. Firstly, without the axiom of
dependent choice, it is often not possible to construct a sequence of ideals: Often, it
is only possible to show that there exists a suitable ideal an+1 depending on an. But
since in general there is no canonical choice for this successor ideal, the axiom of
dependent choice would be required to collect those into a sequence, i. e. a function
from N to the set of ideals.

Secondly, the conclusion that the sequence stabilizes is too strong. Intuitionisti-
cally, one cannot even show that a weakly descending sequence of natural numbers
stabilizes in this sense; the statement that one could is equivalent to the limited
principle of omniscience for N. Intuitionistically, it is only true that a weakly
descending sequence a0 ≥ a1 ≥ · · · of natural numbers eventually stalls in the sense
that there exists an index n such that an = an+1 (but an+1 > an+2 is allowed).11

We give two constructively inequivalent notions of Noetherian rings. The first one
is of independent constructive interest and enjoys the property that the structure
sheaf of a scheme X satisfies the Noetherian condition from the internal point of
view of Sh(X) if and only if all stalks OX,x are Noetherian.

11Classically, the following three statements about a ring are equivalent: (1) Every ascending chain
of ideals stabilizes. (2) Every ascending chain of finitely generated ideals stabilizes. (3) Every
ascending chain of finitely generated ideals stalls.
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The second one is quite weak from a constructive point of view, but still interesting
from a geometric point of view and useful enough to derive nontrivial consequences.
It is satisfied by the structure sheaf of any (not necessarily locally Noetherian)
reduced scheme.

There are several proposals for a constructively sensible definition of Noetherian
rings in the literature on constructive algebra, each with unique advantages and
disadvantages [112, 98, 106, 105, 107, 131]. Insightful comments on why this is so
can be found in the introduction and more specifically on page 27 of the textbook
by Lombardi and Quitté [89].

Processly Noetherian rings.

Definition 3.21. Let M be a partially ordered set. An ascending process with
values in M consists of an initial value x0 ∈M and a function f :M → P(M) such
that for any x ∈M and any y ∈ f(x), x ⪯ y, and such that:

• The set f(x0) is inhabited.
• For any x1 ∈ f(x0), the set f(x1) is inhabited.
• For any x1 ∈ f(x0) and any x2 ∈ f(x1), the set f(x2) is inhabited.
• And so on.

Such a process stalls if and only if there exists a step n and elements x1, . . . , xn
such that xi+1 ∈ f(xi) for i = 0, . . . , n− 1 and such that xn ∈ f(xn). The set M
satisfies the ascending process condition if and only if every ascending process with
values in M stalls.

Intuitively, we picture f(x) as the set of all possible results of running the process
for a single step, starting with the value x. This set could be a singleton, in case
that the process deterministically produces a single value, but it may also contain
more than one element, for instance if the process cannot provide the next value in
a canonical way. Instead of arbitrarily choosing a definitive value for its result, the
process may instead collect all the possible values in the set f(x).

Remark 3.22. The usual term for what we call “to stall” is “to halt” [112, 107].
However, this choice of wording is slightly unfortunate, since the phrase “the process
halts” intuitively suggests that the process stops and won’t produce further results
in the future, even though this is not what is mathematically meant. We are grateful
to Matthias Hutzler for proposing “to stall”, which seems quite appropriate.

Definition 3.23. A ring A is processly Noetherian if and only if the set of finitely
generated ideals in A satisfies the ascending process condition.

An ascending chain of elements a0 ⪯ a1 ⪯ · · · in a partially ordered set gives rise
to an ascending process by setting x0 := a0 and f(x) := {y | ∃n. x = an ∧ y = an+1}.
(This process stalls iff there is an index n such that an = an+1.) Conversely, the
axiom of dependent choice would allow to construct an ascending chain from an
ascending process. In a classical context, a ring is therefore processly Noetherian if
and only if it is Noetherian in the usual sense.

The notion of a processly Noetherian ring works well in an intuitionistic context:
Important rings such as Z and more generally OK for any algebraic number field K
are processly Noetherian, and matrices over Bézout rings which are integral domains
in the weak sense and processly Noetherian can be put into Smith canonical form.12

12In the algorithm to put a matrix into Smith canonical form, one has to repeatedly choose gener-
ators for principal ideals and associated Bézout representations (see for instance [112, Section 4]).
Since these choices are not unique, the algorithm doesn’t produce a sequence of intermediate ideals,
but only a process. This example was our main motivation for the notion of processly Noetherian
rings.
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Richman also studied Noetherian rings in a constructive context without de-
pendent choice [112]. His notion of ascending tree condition is equivalent to our
ascending process condition. His condition emphasizes the branching nature of a
non-deterministic computation, while ours emphasizes the step-for-step picture of
computation.

There are three reasons why we did not define a ring to be processly Noetherian
if and only if the set of all (not necessarily finitely generated) ideals satisfies the
ascending process condition. Firstly, this stricter condition excludes rings as Z.13
Secondly, restricting to finitely generated ideals in this context is a well-established
procedure in constructive mathematics [98, 112] and suffices for the applications of
the Noetherian condition one typically expects. Thirdly, our definition provides a
link to the external condition on a scheme to be locally Noetherian, as shown by
the following proposition.

Proposition 3.24. Let X be a scheme. The following statements are equivalent:

(1) All stalks OX,x are Noetherian.
(2) From the internal point of view of Sh(X), the ring OX is processly Noether-

ian.

Proof. Statement (1) can be reformulated in a way so it doesn’t refer to stalks: For
any open affine subscheme U ⊆ X and any ascending chain a0 ⊆ a1 ⊆ · · · of finitely
generated ideals in Γ(U,OX) there is a partition of unity 1 =

∑
i fi ∈ Γ(U,OX) such

that for each i there exists an index j such that aj = aj+1 as ideals of Γ(U,OX)[f−1
i ].

We’ll verify the equivalence using this formulation. For proving the direction
“(1) ⇒ (2)”, we may assume that X = SpecA is affine and that internally, we are
given an ascending process on the set of finitely generated ideals of OX . Externally,
this is a finite type sheaf of ideals I together with a morphismM→ P(M) whereM
is the sheaf whose U -sections are finite type ideal sheaves of OX |U .

Since X |= ⌜f(I) is inhabited⌝, there exists an open covering X =
⋃
i Ui and

finite type sheaves of ideals Ii ↪→ OX |Ui such that Ui |= Ii ∈ f(I). Without loss of
generality, we may assume that the open sets Ui are standard open sets D(fi) and
that the covering is finite. Since the sheaves Ii are quasicoherent (being of finite
type, they are images of morphisms of the form OX |nUi

→ OX |Ui
), they correspond

to ideals Ji ⊆ A[f−1
i ]. We note for future reference that for D(g) ⊆ D(fi), the

restricted sheaf of ideals Ii|D(g) corresponds to the extension of Ji in the further

localized ring A[g−1].
For each i, D(fi) |= ⌜f(Ii) is inhabited⌝. Hence there exists an open cover-

ing D(fi) =
⋃
j D(fij) and finite type sheaves of ideals Iij ↪→ OX |D(fij); these

correspond to ideals Jij ⊆ A[f−1
ij ] such that Ji ⊆ Jij (where we have suppressed

the localization morphism A[f−1
i ] → A[f−1

ij ] in the notation). Equivalently, writ-

ing J ′
i := A∩Ji and J ′

ij := A∩Jij for the contractions, we have the inclusions J ′
i ⊆ J ′

ij

of ideals of A.
Continuing in this fashion, we obtain an infinite tree of ideals J ′

i1···in . We now
prune this tree in the following fashion: If the node at position (i1, . . . , in) has the

property that D(fi1···in) |=
∨n−1
m=0(Ii1···im = Ii1···im+1

), then we cut of all children
of this node.

13The main ingredient in the proof that Z is Noetherian is that any ideal of Z is a principal ideal,

since (looking at the prime factor decomposition) one can give explicit bounds on the length of
strictly ascending chains of principal ideals. However, as detailed in the footnote on page 33,
constructively one cannot show that every ideal of Z is a principal ideal; one can only verify
that finitely generated ideals are principal. Geometrically, ideals which are not finitely generated
correspond to sheaves of ideals which may fail to be quasicoherent.
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The resulting tree doesn’t contain an infinite path, since any sequence J ′
i1
⊆

J ′
i1i2
⊆ · · · locally stalls by assumption on A. Because only finitely many subtrees

branch off at each node, the tree is finite (this is an application of the graph-
theoretical Kőnig’s lemma).

The outermost nodes then yield an open covering of X such that, on each member
of the covering, the internal statement ⌜f stalls⌝ holds. By the locality of the
internal language, this statement holds on X.

For the converse direction, let an affine open subset U ⊆ X and an ascending
sequence a0 ⊆ a1 ⊆ · · · of finitely generated ideals in Γ(U,OX) be given. Internally,
we construct the process

f :M−→ P(M), I 7−→ {J :M|
∨
n≥0

(I = a∼n ∧ J = a∼n+1)}

with initial value a∼0 . The assumption that f stalls yields an open covering U =⋃
iD(fi) such that for each i, there is an index n such that a∼n = a∼n+1 on D(fi),

that is an = an+1 as ideals of Γ(U,OX)[f−1
i ]. □

Remark 3.25. The proof shows that, if the base scheme fulfills the stronger
condition that it is locally Noetherian, then internally speaking even the set of
all quasicoherent ideals (instead of merely the finitely generated ones) fulfills the
ascending process condition. We have not taken this property as the definition of a
processly Noetherian ring since it is a notion not usually studied in constructive
mathematics (compare Remark 8.9).

Proposition 3.24 looks like it could be a shadow of a deeper result, since it
states that, for the property of being a processly Noetherian ring, the same relation
between truth at every point and internal truth holds as for geometric implications
– even though being a processly Noetherian ring is a emphatically a higher-order
condition, hence not a geometric implication. It’s conceivable that a metatheorem
explaining this phenomenon is hidden in the background.

There is also an internal characterization of the property that X is locally
Noetherian (in contrast to the property that all stalks are Noetherian). However, as
described above, the corresponding internal notion is of limited usefulness.

Proposition 3.26. Let X be a scheme. The following statements are equivalent:

(1) The scheme X is locally Noetherian.
(2) From the internal point of view of OX , any ascending chain of finitely

generated ideals stabilizes.

Proof. Similar to, but easier than, the proof of Proposition 3.24. □

Anonymously Noetherian rings. Classically, there is a characterization of
Noetherian rings which doesn’t involve ascending sequences: A ring is Noetherian
if and only if any of its ideals is finitely generated. We mentioned in the footnote
on page 33 that this condition is far too strong from a constructive point of view;
not even the ring Z verifies it. However, it can be weakened to yield an interesting
notion:

Definition 3.27. A ring A is anonymously Noetherian if and only if any ideal of A
is not not finitely generated. A module M is anonymously Noetherian if and only if
any submodule of M is not not finitely generated.

Example 3.28. There is an intuitionistic proof that the ring Z is anonymously
Noetherian: Let a ⊆ Z be any ideal. Under the assumption that either there exists
a nonzero element in a or not, the ideal a is not not finitely generated, even not not
principal: For in the first case, a minimal element d of a ∩ N+ (which not not
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exists) witnesses a = (d). In the second case the ideal a is the zero ideal. Since the
assumption is not not satisfied, the ideal a is not not not not finitely generated, so
not not finitely generated. (We remark on this proof scheme on page 54.)

It appears that this Noetherian condition has not been studied in the literature
on constructive algebra. Indeed, from the philosophical and the computational point
of view on constructive mathematics, the notion of an anonymously Noetherian ring
is not very useful: From an intuitionistic proof that a given ideal is finitely generated
one can mechanically extract explicit generators, thereby satisfying computational
or philosophical demands (“the generators are really there”). In contrast, an
intuitionistic proof that a given ideal is not not finitely generated doesn’t contain
computational content in general.

Along the same lines, one could dismiss the fact (proved below) that Hilbert’s
basis theorem, stating that A[X] is Noetherian if A is, holds for the notion of
anonymously Noetherian rings. In fact, one could feel mocked by this version of
Hilbert’s basis theorem: It promises that any ideal of A[X] “has” finitely many
generators in some Platonic sense (without providing any clue on how one might go
on to find the generators – they remain anonymous), provided that any ideal of A
“has” finitely many generators in the same sense.14

However, applications in the internal universe of toposes provide a further mo-
tivation for constructive reasoning, related but distinct from computational or
philosophical considerations. A first indication that the notion of anonymously
Noetherian rings is useful is that the structure sheaf OX of any reduced scheme is
anonymously Noetherian from the internal point of view of Sh(X). We exploit this
observation in Section 11.5 to give a short proof of Grothendieck’s generic freeness
lemma.

Secondly, internal universes of toposes may satisfy certain classicality principles
which are not generally satisfied in constructive mathematics. If a topos is set up
in an intuitionistically sensible manner, one might then even be able to extract
constructive results. For instance, the structure sheaf of a reduced scheme satisfies
the principle

Sh(X) |= ∀s :OX . ¬¬(s = 0) =⇒ s = 0.

This principle can be put to use as follows. Let’s consider the situation that we have
an intuitionistic proof that some ring element s is zero under the assumption that
some ideal a is finitely generated. Hence we also have an intuitionistic proof that s
is not not zero under the assumption that a is not not finitely generated. This
assumption could be validated by the anonymously Noetherian property, yielding an
unconditional proof that s is not not zero. Usually in constructive mathematics, we
would be stuck at this point; but internally in Sh(X), we may continue and deduce
that s is actually zero.

This observation is the basis for a fully constructive proof of Grothendieck’s
generic freeness lemma and puts our work in line of the general research program of
extracting constructive content from classical proofs [38, 52, 83, 79].

Theorem 3.29. Let A be an anonymously Noetherian ring. Then the polynomial
algebra A[X] is anonymously Noetherian as well, intuitionistically.

Proof. Classically, this is precisely the statement of Hilbert’s basis theorem, whose
usual accounts do not care about the sensibilities of constructive mathematics.
However, a careful reading of for instance the proof given in [7, Theorem 7.5] shows
that the theorem holds intuitionistically as stated. □

14We borrowed the term “anonymous” from type theory, where it is used with a similar meaning
(see for instance [84]). However, there is a subtle difference: Unique and anonymous-in-the-sense-
of-type-theory existence implies existence, but not not existence does not.
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Lemma 3.30. Let 0 → M ′ → M → M ′′ → 0 be a short exact sequence of
modules. Intuitionistically, the module M is anonymously Noetherian if and only
if M ′ and M ′′ are.

Proof. The usual proof applies. □

Proposition 3.31. Let X be an arbitrary reduced scheme (not necessarily locally
Noetherian). Then OX is anonymously Noetherian from the internal point of view
of Sh(X).

Proof. By Corollary 3.9, the ring OX fulfills a suitable field condition from the
internal point of view. Therefore it suffices to give an intuitionistic proof of the
following statement: Let k be a ring such that any element of k which is not
invertible is zero. Then any ideal of k is not not finitely generated.

Let a ⊆ k be an arbitrary ideal. We have ¬¬(1 ∈ a ∨ 1 ̸∈ a). Therefore ¬¬(a =
(1) ∨ a = (0)). Thus a is not not finitely generated (even not not principal). □

The external translation of the statement that OX [U1, . . . , Un] is anonymously
Noetherian was displayed on page 17, as an example of a convoluted statement
which profits from the simpler internal account.

4. Sheaves of modules

From the internal perspective, a sheaf of R-modules, where R is a sheaf of rings,
looks just like a plain module over the plain ring R. This is proven just as the
correspondence between sheaf of rings and internal rings (Proposition 3.1).

4.1. Finite local freeness. Recall that an OX -module F is finite locally free if
and only if there exists a covering of X by open subsets U such that on each such U ,
the restricted module F|U is isomorphic as an OX |U -module to (OX |U )n for some
natural number n (which may depend on U).

Proposition 4.1. Let X be a scheme (or a ringed space). Let F be an OX-module.
Then F is finite locally free if and only if, from the internal perspective, F is a finite
free module, i. e.

Sh(X) |=
∨
n≥0

⌜F ∼= (OX)n⌝,

or more elementarily

Sh(X) |=
∨
n≥0

∃x1, . . . , xn :F . ∀x :F . ∃!a1, . . . , an :OX . x =
∑
i

aixi.

Proof. By the expression “(OX)n” in the internal language we mean the internally
constructed object OX × · · · × OX with its componentwise OX -module structure.
This coincides with the sheaf (OX)n as usually understood.

It is clear that the two stated internal conditions are equivalent, since the
corresponding proof in linear algebra is intuitionistically valid. The equivalence
with the external notion of finite local freeness follows because the interpretation of
the first condition with the Kripke–Joyal semantics is the following: There exists a
covering of X by open subsets U such that for each such U , there exists a natural
number n and a morphism of sheaves φ : F|U → (OX |U )n such that

U |= ⌜φ is OX -linear⌝ and U |= ⌜φ is bijective⌝.

The first subcondition means that φ is a morphism of sheaves of OX |U -modules and
the second one means that φ is an isomorphism of sheaves. □
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Remark 4.2. There are intuitionistic proofs of the following facts: An R-module
is a dualizable object in the monoidal category of all R-modules if and only if it
is finitely generated and projective. If R is local, then an R-module is finitely
generated and projective if and only if it is finite free. Therefore an OX -module is
internally dualizable if and only if is finite locally free.

4.2. Finite type, finite presentation, coherence. Recall the conditions of
an OX -module F on a scheme X (or a ringed space) to be of finite type, of finite
presentation, and to be coherent:

(1) F is of finite type if and only if there exists a covering of X by open subsets U
such that for each such U , there exists an exact sequence

(OX |U )n −→ F|U −→ 0

of OX |U -modules.
(2) F is of finite presentation if and only if there exists a covering of X by open

subsets U such that for each such U , there exists an exact sequence

(OX |U )m −→ (OX |U )n −→ F|U −→ 0.

(3) F is coherent if and only if F is of finite type and the kernel of any OX |U -
linear morphism (OX |U )n → F|U , where U ⊆ X is any open subset, is of
finite type.

The following proposition gives translations of these definitions into the internal
language.

Proposition 4.3. Let X be a scheme (or a ringed space). Let F be an OX-module.
Then:

(1) F is of finite type if and only if F , considered as an ordinary module from
the internal perspective, is finitely generated, i. e. if

Sh(X) |=
∨
n≥0

∃x1, . . . , xn :F . ∀x :F . ∃a1, . . . , an :F . x =
∑
i

aixi.

(2) F is of finite presentation if and only if F is a finitely presented module
from the internal perspective, i. e. if

Sh(X) |=
∨

n,m≥0

⌜there is a short exact sequence OmX → OnX → F → 0⌝.

(3) F is coherent if and only if F is a coherent module from the internal
perspective, i. e. if

Sh(X) |= ⌜F is finitely generated⌝∧∧
n≥0

∀φ :HomOX
(OnX ,F). ⌜kerφ is finitely generated⌝.

Proof. Straightforward – the translations of the internal statements using the Kripke–
Joyal semantics are precisely the corresponding external statements. □

Remark 4.4. We believe that Proposition 4.3 settles a question Lawvere raised
on the category theory mailing list [86]: “What concept of finiteness is appropriate
for those important mathematical applications in topology for which [Kuratowski-
finiteness] doesn’t seem right? [. . .] Especially, a suitably ‘finite’ module should be
a vector bundle or a [coherent sheaf] in the sense of Serre so that our simplified
topos theory could apply more directly to those things it should.”
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Recall that an OX -module F is generated by global sections if and only if there
exist global sections si ∈ Γ(X,F) such that for any x ∈ X, the stalk Fx is generated
by the germs of the si. This condition is of course not local on the base. Therefore
there cannot exist a formula φ such that for any space X and any OX -module F it
holds that F is generated by global sections if and only if Sh(X) |= φ(F). But still,
global generation can be characterized by a mixed internal/external statement:

Proposition 4.5. Let X be a scheme (or a ringed space). Let F be an OX-
module. Then F is generated by global sections if and only if there exist global
sections si ∈ Γ(X,F), i ∈ I such that

Sh(X) |= ∀x :F .
∨

J = {i1, . . . , in} ⊆ I finite
∃a1, . . . , an :OX . x =

∑
j

ajsij .

Furthermore, F is generated by finitely many global sections if and only if there
exist global sections s1, . . . , sn ∈ Γ(X,F) such that

Sh(X) |= ∀x :F . ∃a1, . . . , an :OX . x =
∑
j

ajsj .

Proof. The given internal statements are geometric implications, their validity can
thus be checked stalkwise. □

Remark 4.6. The analogue of Proposition 4.3 for sheaves of algebras instead of
sheaves of modules holds. More precisely, let A be a sheaf of OX -algebras on a
scheme X (or a ringed space). Then:

(1) A is of finite type if and only if A, considered as an ordinary algebra from
the internal perspective, is finitely generated, i. e. if

Sh(X) |=
∨
n≥0

∃x1, . . . , xn :A. ∀x :F . ∃p :OX [X1, . . . , Xn]. x = p(x1, . . . , xn).

(2) A is of finite presentation if and only if A is a finitely presented algebra
from the internal perspective, i. e. if

Sh(X) |=
∨

n,m≥0

∃f1, . . . , fm :OX [X1, . . . , Xn].

⌜A ∼= OX [X1, . . . , Xn]/(f1, . . . , fm)⌝.

4.3. Tensor product and flatness. The tensor product of OX -modules F and G
on a scheme X (or a ringed space) is usually constructed as the sheafification of the
presheaf

U ⊆ X open 7−→ Γ(U,F)⊗Γ(U,OX) Γ(U,G).
From the internal point of view, F and G look like ordinary modules, so that we
can consider their tensor product as usually constructed in commutative algebra, as
a certain quotient of the free module on the elements of F × G:

OX⟨x⊗ y |x :F , y :G⟩/R,

where R is the submodule generated by

(x+ x′)⊗ y − x⊗ y − x′ ⊗ y,
x⊗ (y + y′)− x⊗ y − x⊗ y′,

(sx)⊗ y − s(x⊗ y),
x⊗ (sy)− s(x⊗ y)

with x, x′ :F , y, y′ :G, s :OX . This internal construction gives rise to the same sheaf
of modules as the externally defined tensor product:
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Proposition 4.7. Let X be a scheme (or a ringed space). Let F and G be OX-
modules. Then the internally constructed tensor product F ⊗OX

G coincides with
the external one.

Proof. Since the proof of the corresponding fact of commutative algebra is intu-
itionistically valid, the internally defined tensor product F ⊗OX

G has the following
universal property: For any OX -module H, any OX -bilinear map F × G → H
uniquely factors over the canonical map F × G → F ⊗OX

G.
Interpreting this property with the Kripke–Joyal semantics, we see that the

internally constructed tensor product has the following external property: For
any open subset U ⊆ X and any OX |U -module H on U , any OX |U -bilinear mor-
phism F|U × G|U → H uniquely factors over the canonical morphism F|U × G|U →
(F ⊗OX

G)|U .
In particular, for U = X, this property is well-known to be the universal property

of the externally constructed tensor product. Therefore the claim follows. □

A description of the stalks of the tensor product follows purely by considering
the logical form of the construction:

Corollary 4.8. Let X be a scheme (or a ringed space). Let F and G be OX-modules.
Then the stalks of the tensor product coincide with the tensor products of the stalks:
(F ⊗OX

G)x ∼= Fx ⊗OX,x
Gx.

Proof. We constructed the tensor product using the following operations: product
of two sets, free module on a set, quotient module with respect to a submodule;
submodule generated by a set of elements given by a geometric formula. All of these
operations are geometric, so the tensor product construction is geometric as well (see
Section 2.3). Hence taking stalks commutes with performing the construction. □

Recall that an OX -module F is flat if and only if all stalks Fx are flat OX,x-
modules. We can characterize flatness in the internal language.

Proposition 4.9. Let X be a scheme (or a ringed space). Let F be an OX-module.
Then F is flat if and only if, from the internal perspective, F is a flat OX-module.

Proof. Recall that flatness of an A-moduleM can be characterized without reference
to tensor products by the following condition (using suggestive vector notation):
For any natural number p, any p-tuple m :Mp of elements of M and any p-tuple
a :Ap of elements of A, it should hold that

aTm = 0 =⇒
∨
q≥0

∃n :Mq, B :Ap×q. Bn = m ∧ aTB = 0.

The equivalence of this condition with tensoring being exact holds intuitionistically
as well [98, Theorem III.5.3]. This formulation of flatness has the advantage that it
is the conjunction of geometric implications (one for each p ≥ 0); therefore it holds
internally if and only if it holds at any point. □

4.4. Support. Recall that the support of an OX -module F is the subset suppF :=
{x ∈ X | Fx ̸= 0} ⊆ X. If F is of finite type, this set is closed, since its complement
is then open by a standard lemma. (We will give an internal proof of this fact in
Lemma 6.40.)

Proposition 4.10. Let X be a scheme (or a ringed space). Let F be an OX-module.
Then the interior of the complement of the support of F can be characterized as the
largest open subset of X on which the internal statement F = 0 holds.
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Proof. For any open subset U ⊆ X, it holds that:

U ⊆ int(X \ suppF)
⇐⇒ U ⊆ X \ suppF
⇐⇒ U ⊆ {x ∈ X | ∀s ∈ Fx. s = 0}
⇐⇒ U |= ∀s :F . s = 0

⇐⇒ U |= ⌜F = 0⌝

The second to last equivalence is because “∀s :F . s = 0” is a geometric implication
and can thus be checked stalkwise. □

Remark 4.11. The support of a sheaf of sets F is defined as the subset {x ∈
X | Fx is not a singleton}. A similar proof shows that the interior of its comple-
ment can be characterized as the largest open subset of X where the internal
statement ⌜F is a singleton⌝ holds.

4.5. Torsion. Let R be a ring. Recall that the torsion submodule Mtors of an R-
module M is defined as

Mtors := {x :M | ∃a :R. ⌜a regular⌝ ∧ ax = 0} ⊆M.

This definition is meaningful even if R is not an integral domain. An R-module M is
torsion-free if and only if Mtors is the zero submodule; an R-module M is a torsion
module if and only if Mtors =M .

Recall also that if F is a sheaf of OX -modules on an integral scheme X, there is
a unique subsheaf Ftors ⊆ F with the property that Γ(U,Ftors) = Γ(U,F)tors for
all affine open subsets U ⊆ X. The content of the following proposition is that
internally constructing the torsion submodule of F , regarded as a plain module from
the internal perspective, gives exactly this subsheaf. There is therefore no harm in
using the same notation “Ftors” for the result of the internal construction.

Proposition 4.12. Let X be an integral scheme. Let F be an OX-module. Let U =
SpecA ⊆ X be an affine open subset. Let s ∈ Γ(U,F) be a local section. Then

s ∈ Γ(U,F)tors if and only if U |= s ∈ Ftors.

Proof. The “only if” direction is trivial in view of Lemma 3.18: If s is a torsion
element of Γ(U,F), there exists a regular element a ∈ Γ(U,OX) such that as = 0.
By the lemma, this element is regular from the internal perspective as well, so U |=
⌜a regular⌝ ∧ as = 0.

For the “if” direction, we may assume that there exists an open coveringX =
⋃
i Ui

by standard open subsets Ui = D(fi) such that there are sections ai ∈ Γ(Ui,OX) =
A[f−1

i ] with Ui |= ⌜ai regular⌝∧ais = 0. Without loss of generality, we may assume
that the denominators of the ai’s are ones, that the fi are finite in number, and that
the fi are regular (i. e. nonzero, since A is an integral domain). By Lemma 3.18,
the ai are regular in A[f−1

i ] and by regularity of the fi also regular in A. Therefore
their product

∏
i ai ∈ A is regular in A as well and annihilates s. □

Proposition 4.13. Let X be a locally Noetherian scheme. Let F be an OX-module.
Let x ∈ X be a point. Then (Ftors)x = (Fx)tors.

Proof. This would be obvious if the condition on an element s :F to belong to Ftors

were a geometric formula. Because of the universal quantifier, it is not:

s ∈ Ftors ⇐⇒ ∃a :OX . (∀b :OX . ab = 0⇒ b = 0) ∧ as = 0.

But since X is assumed to be locally Noetherian, regularity is an open property
nonetheless (see Proposition 9.4 for an internal proof of this fact). Thus the claim
still follows, just like in the proof of Proposition 3.17. □
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4.6. Kähler differentials. Let A → B be a homomorphism of rings. The B-
module Ω1

B|A of Kähler differentials can be constructed as the free B-module on the

basis (db)b∈B consisting of formal symbols modulo appropriate relations ensuring
that the map b 7→ db is A-linear and satisfies the Leibniz rule; it verifies the universal
property that the map B → Ω1

B|A is the initial A-linear derivation of B.

For constructing the sheaf of Kähler differentials for a morphism of schemes, one
often resorts to the alternative construction as I/I2, where I ⊆ B⊗AB is the kernel
of the multiplication map B ⊗A B → B. The verification of the universal property
is slightly harder for this construction. Gathmann comments on this situation as
follows [56, p. 134]:

Of course, if f : X → Y is a morphism of general (not necessarily
affine) schemes, we want to consider the relative differentials of
every restriction of f to affine opens of X and Y , and glue them
together to get a quasi-coherent sheaf ΩX|Y . To do this, we have
to give a different description of the relative differentials, as the
construction [via the free module] does not glue very well.

After having constructed a global sheaf of Kähler differentials using the alternative
description (only in the case that f is separated, though with a little bit of more work
this assumption can be dispensed with), he goes on as follows [56, Remark 7.4.8]:

It should be stressed that [the definition using the alternative con-
struction] is essentially useless for practical computations. Its
only use is to show that a global object ΩX|Y exists that re-
stricts to the old definition on affine open subsets. For applica-
tions, we will always use [the definition using the free module and
the calculation of the Kähler differentials of a morphism of the
form k → k[x1, . . . , xn]/(f1, . . . , fm)] on open subsets.

Vakil chooses a similar route [137, Section 21.2].
Regarding the sheaf of Kähler differentials as the conormal sheaf of the diagonal

embedding (and hence using the alternative construction) is of course essential
for further developments and hence very useful. However, if the goal is just to
construct a global sheaf of Kähler differentials, we can employ the internal language
to construct it using only the formal construction via the free module.

Specifically, if f : X → S is a morphism of schemes, we can construct, in the
internal universe of Sh(X), the module of Kähler differentials of the morphism f ♯ :
f−1OS → OX . A number of basic properties then follow purely formally:

Proposition 4.14. Let f : X → S be a morphism of schemes (or of locally
ringed spaces). Let Ω1

X|S be defined as the interpretation of the internal construc-

tion Ω1
OX |f−1OS

.

(1) The sheaf of Kähler differentials has the following universal property: For
any open subset U ⊆ X, any (f−1OS)|U -linear derivation OX |U → E over U
uniquely factors over OX |U → Ω1

X|S |U .
(2) The stalks (Ω1

X|S)x are canonically isomorphic to Ω1
OX,x|OS,f(x)

.

(3) The sheaf Ω1
X|S is quasicoherent.

Proof. The first claim is just the interpretation of the internal universal prop-
erty using the Kripke–Joyal semantics and using the simplification rule given in
Proposition 2.6.

The second claim is immediate because the construction of Kähler differentials
via the free module is geometric (page 23). Therefore the operations “taking Kähler
differentials” and “taking the stalk at x” commute.
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For verifying the third claim, it suffices to verify that Ω1
X|S is quasicoherent in

the case that X = Spec(B) and S = Spec(A) are affine. Let φ : A → B be the
homomorphism of rings given by f . We employ the technique and notation of
Section 11.2:

(Ω1
B|A)

∼ ∼= Ω1
B|A[F

−1] ∼= Ω1
B|A[F

−1]

∼= Ω1
B[F−1]|A[(φ−1[F ])−1]

∼= Ω1
OSpec(B)|f−1OSpec(A)

.

The first isomorphism is by Proposition 11.6, the second because the geometric
construction “taking Kähler differentials” commutes with “taking constant sheaves”
(since it can be expressed as pullback along a geometric morphism), the third by [126,
Tag 00RT], and the fourth by Proposition 11.6. □

Incidentally, the Stacks Project too uses the construction via the free module [126,
Tag 08RL], however because the Stacks Project doesn’t employ the internal language
they have to manually sheafify and keep track of open subsets.

4.7. Internal proofs of common lemmas.

Lemma 4.15. Let X be a scheme (or a ringed space). Let

0 −→ F −→ G −→ H −→ 0

be a short exact sequence of OX-modules. If F and H are of finite type, so is G;
similarly, if F and H are finite locally free, so is G.

Proof. From the internal perspective, we are given a short exact sequence of modules
with the outer ones being finitely generated (resp. finite free) and we have to show
that the middle one is finitely generated (resp. finite free) as well. It is well-known
that this follows; and since the usual proof of this fact is intuitionistically valid, we
are done. □

The proof works very generally, in the context of arbitrary ringed spaces, and is
still very simple. This is common to proofs using the internal language. Particular
features of schemes enter only at clearly recognizable points, for instance when
an internal property specific to the structure sheaf of schemes is used (such as in
Proposition 3.7).

Lemma 4.16. Let X be a scheme (or a ringed space).

(1) Let 0→ F → G → H → 0 be an exact sequence of OX-modules. If two of
the three modules are coherent, so is the third.

(2) Let F → G be a morphism of OX-modules such that F is of finite type and G
is coherent. Then its kernel is of finite type as well.

(3) If F is a finitely presented OX-module and G is a coherent OX-module,
the OX-modules HomOX

(F ,G) and F ⊗OX
G are coherent as well.

Proof. These statements follow directly from interpreting the corresponding standard
proofs of commutative algebra in the internal language. For those standard proofs,
see for instance the lecture notes of Ravi Vakil [137, Section 13.8], where they are
given as a series of exercises. □

Lemma 4.17. Let X be a scheme (or a locally ringed space). Let α : G → H be an
epimorphism of finite locally free OX-modules. Then the kernel of α is finite locally
free as well.

Proof. It suffices to give an intuitionistic proof of the following statement: The
kernel of a matrix over a local ring, which as a linear map is surjective, is finite free.

Let M :Rn×m be such a matrix. Since by the surjectivity assumption some linear
combination of the columns is e1 (the first canonical basis vector), some linear

https://stacks.math.columbia.edu/tag/00RT
https://stacks.math.columbia.edu/tag/08RL
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combination of the entries of the first row of M is 1. By locality of R, at least
one entry of the first row is invertible. By applying appropriate column and row
transformations, we may therefore assume that M is of the form

1 0 · · · 0
0

M̃
...

0


with the submatrix M̃ fulfilling the same condition as M . Continuing in this way, it
follows that m ≥ n and that we may assume that M is of the form 1

0
. . .

1

.
The kernel of such a matrix is obviously freely generated by the canonical basis
vectors corresponding to the zero columns. In particular, the rank of the kernel
is m− n. □

Remark 4.18. The internal language machinery gives no reason to believe that the
dual statement is true, i. e. that the cokernel of a monomorphism of finite locally
free OX -modules is finite locally free. This would follow from an intuitionistic proof
of the statement that the cokernel of an injective map between finite free modules
over a local ring is finite free. But this statement is of course false (consider the

exact sequence 0 −→ Z(2)
·2−→ Z(2) −→ F2 −→ 0 of Z(2)-modules).

Lemma 4.19. Let X be a scheme (or a locally ringed space). Let α : G → H be
an epimorphism of finite locally free OX-modules of the same rank. Then α is an
isomorphism.

Proof. It suffices to give an intuitionistic proof of the following statement: A square
matrix over a local ring, which as a linear map is surjective, is invertible.

This follows from the proof of the previous lemma, since it shows that the kernel
of such a matrix is finite free of rank zero. □

Remark 4.20. The conclusion of Lemma 4.19 also holds if X is only assumed to
be a ringed space. To show this, it suffices to give an intuitionistic proof of the
following statement: A square matrix over a (not necessarily local) ring, which as
a linear map is surjective, is invertible. Such a matrix A possesses a right inverse.
Therefore detA is invertible. Thus A is invertible with inverse (detA)−1 · adA.

Lemma 4.21. Let X be a scheme (or a locally ringed space). Let α : G → H be a
morphism of finite locally free OX-modules. If α is a monomorphism, then the rank
of G is less than or equal to the rank of H.

Proof. It suffices to give an intuitionistic proof of the following statement: A matrix
over a nontrivial ring, which as a linear map is injective, has a smaller or equal
number of columns than rows. Such a proof can for instance be found in [111,
p. 1013]. □

Lemma 4.22. Let X be a scheme (or a ringed space). Let 0→ F → G → H → 0
be a short exact sequence of OX-modules. Then for the closures of the supports there
holds the equation cl suppG = cl suppF ∪ cl suppH.

Proof. Switching to complements, we have to prove that

int(X \ suppG) = int(X \ suppF) ∩ int(X \ suppH).
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By Proposition 4.10, it suffices to prove

Sh(X) |= (G = 0 ⇐⇒ F = 0 ∧H = 0);

this is a basic observation in linear algebra, valid intuitionistically. □

Of course, a stronger version of this lemma – about the supports themselves
instead of their closures – is easily proven without using the internal language. We
included this example only for illustrative purposes.

Lemma 4.23. Let X be a scheme (or a locally ringed space). Let L be a line bundle
on X, i. e. an OX-module locally free of rank 1. Let s1, . . . , sn ∈ Γ(X,L) be global
sections. Then these sections globally generate F if and only if

Sh(X) |=
∨
i

⌜α(si) is invertible for some isomorphism α : L → OX⌝.

Proof. It suffices to give an intuitionistic proof of the following fact: Let R be a
local ring. Let L be a free R-module of rank 1. Let s1, . . . , sn :L be given elements.
Then L is generated as an R-module by these elements if and only if for some i, the
image of si under some isomorphism L→ R is invertible.

The choice of such an isomorphism does not matter, since any two such isomor-
phisms α, β : L → R differ by a unit of R: α(x) = α(β−1(1)) · β(x) for any x :L,
and α(β−1(1)) · β(α−1(1)) = 1 in R.

For the “if” direction, we have that some α(si) is a generator of R. Since α is
an isomorphism, it follows that si generates L, and thus that in particular, the
family s1, . . . , sn generates L.

For the “only if” direction, we have that the unit of R can be expressed as a linear
combination of the α(si), where α : L→ R is some isomorphism (whose existence is
assured by the assumption on the rank of L). Since R is a local ring, it follows that
one of the summands and thus one of the α(si) is invertible. □

Remark 4.24. The canonical ring homomorphism OX,x ↠ k(x) is local. Therefore
a germ in OX,x is invertible if and only if its image in k(x) is not zero. From this
one can conclude that global sections s1, . . . , sn ∈ Γ(X,F) generate F if and only if,
for any point x ∈ X, the images si ∈ F|x in the fibers do not vanish simultaneously.

Lemma 4.25. Let X be a scheme (or a ringed space). Let L be a locally free OX-
module of rank 1. Then L∨ ⊗OX

L ∼= OX .

Proof. Recall that the dual is defined by L∨ := HomOX
(L,OX). Since “Hom”

looks like “Hom” from the internal point of view, the dual sheaf L∨ looks just
like the ordinary dual module. However, to prove the claim, it does not suffice
to give an intuitionistic proof of the following fact of linear algebra: “Let L be a
free R-module of rank 1. Then there exists an isomorphism L∨ ⊗R L→ R.” Since
the interpretation of “∃” using the Kripke–Joyal semantics is local existence, this
would only show that L∨ ⊗OX

L is locally isomorphic to OX .
Instead, we have to actually write down (i. e. explicitly give) a linear map in

the internal language – not using the assumption that L is free of rank 1, as this
would introduce an existential quantifier again (see Section 2.2). So we have to
prove the following fact: Let L be an R-module. Then there explicitly exists a linear
map L∨ ⊗R L→ R such that this map is an isomorphism if L is free of rank 1.

This is done as usual: Define α : L∨ ⊗R L → R by λ ⊗ x 7→ λ(x). Since L is
free of rank 1, there is an isomorphism L ∼= R. Precomposing α with the induced
isomorphism R∨ ⊗R R → L∨ ⊗R L, we obtain the linear map R∨ ⊗R R → R
given by the same term: λ ⊗ x 7→ λ(x). One can check that an inverse is given
by x 7→ idR ⊗ x. □
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Lemma 4.26. Let X be a scheme (or a ringed space). Let F be an OX-module.

(1) Assume X to be a locally Noetherian scheme. Then F is torsion-free
(meaning Ftors = 0) if and only if all stalks Fx are torsion-free.

(2) The quotient sheaf F/Ftors is torsion-free and the torsion submodule Ftors

is a torsion module.
(3) The dual sheaf F∨ is torsion-free.
(4) If F is reflexive (meaning that the canonical morphism F → F∨∨ is an

isomorphism), then F is torsion-free.
(5) If F is finite locally free, then F is reflexive.
(6) Assume X to be a Dedekind scheme and F to be of finite presentation. If F

is torsion-free, then F is finite locally free.

Proof. The first statement follows from the observation that (Ftors)x = (Fx)tors
(Proposition 4.13). All the others follow simply by interpreting the corresponding
facts of linear algebra in the internal universe. For concreteness, we give intuitionistic
proofs of the last three statements.

So let M be a reflexive R-module. We have to show that M is torsion-free. To
this end, let an element x :M and a regular element a :R such that ax = 0 be given.
For any ϑ :M∨, it follows that ϑ(x) = 0, since aϑ(x) = ϑ(ax) = ϑ(0) = 0 and a
is regular. Thus the image of x under the canonical map M → M∨∨ is zero. By
reflexivity, this implies that x is zero.

For statement (5), we have to prove that R-modules of the form Rn are reflexive.
This is obvious, the required inverse map is (Rn)∨∨ → Rn, λ 7→

∑
i λ(ϑi) where ϑi :

Rn → R, (xj)j 7→ xi.
In view of Corollary 3.20 we can put matrices over OX into Smith canonical

form if X is a Dedekind scheme. Therefore it suffices to give an intuitionistic proof
of the following fact: Let R be an integral domain in the strong sense such that
matrices over R can be put into Smith canonical form. LetM be a finitely presented
torsion-free R-module. Then M is finite free.

Such a proof can proceed as follows: SinceM is finitely presented, it is the cokernel
of some matrix. Without loss of generality, we may assume that the presentation
matrix is diagonal, soM is isomorphic to some finite direct sum

⊕
iR/(ai). SinceM

is torsion-free, all the summands R/(ai) are torsion-free as well. Since R is an
integral domain in the strong sense, the ai are either zero or invertible. Thus R/(ai)
is isomorphic to R or to the zero module. In any case, R/(ai) is finite free and
therefore M is finite free as well. □

5. Upper semicontinuous functions

5.1. Interlude on natural numbers. In classical logic, the natural numbers are
complete in the sense that any inhabited set of natural numbers possesses a minimal
element. This statement cannot be proven intuitionistically – intuitively, this is
because one cannot explicitly pinpoint the (classically existing) minimal element of
an arbitrary inhabited set;15 see below for a sheaf-theoretic interpretation.

In intuitionistic logic, the completeness principle can be salvaged in two essentially
different ways: either by strengthening the premise, or by weakening the conclusion.

Lemma 5.1. Let U ⊆ N be an inhabited subset of the natural numbers.

15Let φ be an arbitrary formula. Assuming that any inhabited subset of the natural numbers

possesses a minimal element, we want to show that φ ∨ ¬φ. Define the subset U := {n ∈ N | (n =
1) ∨ φ} ⊆ N, which surely is inhabited by 1 ∈ U . So by assumption, there exists a number z ∈ N
which is the minimum of U . We have z = 0 or z > 0. If z = 0, we have 0 ∈ U , so (0 = 1) ∨ φ, so φ
holds. If z > 0, then ¬φ holds: If φ were true, zero would be an element of U , contradicting the
minimality of z.
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(1) Assume U to be detachable, i. e. assume that for any natural number n,
either n ∈ U or n ̸∈ U . Then U possesses a minimal element.

(2) In any case, U does not not possess a minimal element.

Proof. The first statement can be proven by induction on the witness of inhabitation,
i. e. the given number n such that n ∈ U . We omit further details, since we will not
need this statement in our applications.

For the second statement, we give a careful proof since logical subtleties matter.
To simplify the exposition, we assume that U is upward-closed, i. e. that any number
larger than some element of U lies in U as well. Any subset can be closed in this
way (by considering {n ∈ N | ∃m ∈ U. n ≥ m}) and a minimal element of the closure
will be a minimal element for U as well.

We induct on the number n ∈ U given by the assumption that U is inhabited. In
the case n = 0 we are done since 0 is a minimal element of U . For the induction
step n→ n+ 1, the intuitionistically valid double negation of the law of excluded
middle gives

¬¬(n ∈ U ∨ n ̸∈ U).

Because of the tautologies (φ ⇒ ψ) ⇒ (¬¬φ ⇒ ¬¬ψ) and ¬¬¬¬φ ⇒ ¬¬φ (see
Section 2.4), it suffices to show that n ∈ U ∨ n ̸∈ U implies the conclusion. So
assume n ∈ U ∨ n ̸∈ U . If n ∈ U , then U does not not possess a minimal element
by the induction hypothesis. If n ̸∈ U , then n+ 1 is a minimal element (and so, in
particular, U does not not possess a minimal element): If m is any element of U ,
we have m ≥ n+ 1 or m ≤ n. In the first case, we’re done. In the second case, it
follows that n ∈ U because U is upward-closed and so we obtain a contradiction.
From this contradiction we can trivially deduce m ≥ n+ 1 as well. □

If we want to work with a complete partially ordered set (poset) of natural
numbers in intuitionistic logic, we have to construct a suitable completion. The
idea of the following definition is to encode numbers as the (not necessarily existing)
minimum of inhabited upward-closed subsets.

Definition 5.2. The completed poset of natural numbers is the set N̂ of all inhabited

upward-closed subsets of N, ordered by reverse inclusion. The elements of N̂ are
called generalized natural numbers.

Lemma 5.3. The completed poset of natural numbers is the least poset containing N
and possessing minima of arbitrary inhabited subsets.

Proof. The embedding N ↪→ N̂ is given by

n ∈ N 7−→ ↑(n) := {m ∈ N |m ≥ n}.

If M ⊆ N̂ is an inhabited subset, its minimum is

minM =
⋃
M ∈ N̂.

We omit the proof of the universal property. □

Remark 5.4. In classical logic, the map N̂ → N, U 7→ minU is a well-defined
isomorphism of partially ordered sets. In fact, it is the inverse of the canonical

embedding N ↪→ N̂. In intuitionistic logic, this embedding is still injective, but it

cannot be shown to be surjective: It is only the case that any element of N̂ does
not not possess a preimage (by Lemma 5.1).
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5.2. A geometric interpretation. We are interested in the completed natural
numbers for the following reason: A generalized natural number in the topos of
sheaves on a topological space X is the same as an upper semicontinuous func-
tion X → N.

Lemma 5.5. Let X be a topological space. The sheaf N̂ of generalized natural
numbers on X is canonically isomorphic to the sheaf of upper semicontinuous N-
valued functions on X.

Proof. When referring to the natural numbers in the internal language, we actually
refer to the constant sheaf N on X. (This is because the sheaf N fulfills the axioms
for a natural numbers object, cf. [92, Section VI.1].) Recall that its sections on an
open subset U ⊆ X are continuous functions U → N, where N is equipped with the
discrete topology.

Therefore, a section of N̂ on an open subset U ⊆ X is given by a subsheafA ↪→ N|U
such that

U |= ∃n :N. n ∈ A and U |= ∀n,m :N. n ≥ m ∧ n ∈ A ⇒ m ∈ A.

Since these conditions are geometric implications, they are satisfied if and only if
any stalk Ax is an inhabited upward-closed subset of Nx ∼= N. The association

x ∈ X 7−→ min{n ∈ N |n ∈ Ax}

thus defines a map X → N. This map is indeed upper semicontinuous, since
if n ∈ Ax, there exists an open neighborhood V of x such that the constant function
with value n is an element of Γ(V,A) and therefore n ∈ Ay for all y ∈ V .

Conversely, let α : U → N be an upper semicontinuous function. Then

V ⊆ U open 7−→ {f : V → N | f continuous, f ≥ α on V }

is a subobject of N|U which internally is inhabited and upward-closed. Further
details are left to the reader. □

Under the correspondence given by Lemma 5.5, locally constant functions map
precisely to the (image of the) ordinary internal natural numbers (in the completed
natural numbers). In a similar vein, the sheaf given by the internal construction of
the set of all upward-closed subsets of the natural numbers (not only the inhabited
ones) is canonically isomorphic to the sheaf of upper semicontinuous functions with
values in N ∪ {+∞}.

The correspondence can be used to understand classical facts about upper
semicontinuous functions as features of intuitionistic number theory. For instance,
it is well-known that any upper semicontinuous N-valued function on an arbitrary
topological space is locally constant on a dense open subset. This can be explained as
follows: The generalized natural number associated to such a function is not not an
ordinary natural number from the internal point of view. Since “not not” translates
to “holding on a dense open subset” (Proposition 6.5), it follows that there is a
dense open subset on which the function corresponds to an ordinary internal natural
number, i. e. is locally constant.

5.3. The upper semicontinuous rank function. Recall that the rank of an OX -
module F on a scheme X (or locally ringed space) at a point x ∈ X is defined as
the k(x)-dimension of the vector space Fx ⊗OX,x

k(x). If we assume that F is of
finite type around x, this dimension is finite and equals the minimal number of
elements needed to generate Fx as an OX,x-module by Nakayama’s lemma.
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In the internal language, we can define an element of N̂ by

rankF := min{n ∈ N |

⌜there is a gen. family for F consisting of n elements⌝} ∈ N̂.
If the module F is finite locally free, it will be a finite free module from the internal
point of view and the rank defined in this way will be an actual natural number
(see below); but in general, the rank is really an element of the completion.

Proposition 5.6. Let F be an OX-module of finite type on a scheme X (or a
locally ringed space). Under the correspondence given by Lemma 5.5, the internally
defined rank maps to the rank function of F .

Proof. We have to show that for any point x ∈ X and natural number n, there
exists a generating family for Fx consisting of n elements if and only if there exists
an open neighborhood U of x such that

U |= ⌜there exists a generating family for F consisting of n elements⌝.

The “if” direction is obvious. For the “only if” direction, consider (liftings to local
sections of a) generating family s1, . . . , sn of Fx. Since F is of finite type, there also
exist sections t1, . . . , tm on some neighborhood V of x which generate any stalk Fy,
y ∈ V . Since the ti can be expressed as a linear combination of the sj in Fx, the
same is true on some open neighborhood U ⊆ V of x. On this neighborhood, the sj
generate any stalk Fy, y ∈ U , so by geometricity we have

U |= ⌜s1, . . . , sn generate F⌝. □

Once we understand when properties spread from points to neighborhoods in logi-
cal terms, we will be able to give a simpler proof of Proposition 5.6 (see Lemma 6.42).

Lemma 5.7. Let X be a scheme (or a locally ringed space). Let F be an OX-module
of finite type. If F is finite locally free, its rank function is locally constant. The
converse holds if X is a reduced scheme.

Proof. The rank function is locally constant if and only if internally, the rank of F
is an actual natural number. Also recall that the structure sheaf fulfills a certain
field condition if X is a reduced scheme (Corollary 3.9). Therefore it suffices to give
a proof of the following fact of intuitionistic linear algebra: Let R be a local ring.
Let M be a finitely generated R-module. If M is finite free, its rank is an actual
natural number. The converse holds if R fulfills the field condition that any element
which is not invertible is zero.

So assume that such a module M is finite free. Then it is isomorphic to Rn for
some actual natural number n; by the internal proof in Lemma 4.17, the rank of M
is therefore this number n (for any surjection Rm ↠ Rn it holds that m ≥ n).

Conversely, assume that the rank of M is an actual natural number. Then
there exists a minimal generating family x1, . . . , xn :M . We can verify that this
family is indeed linearly independent (and thus a basis, demonstrating that M
is finite free): Let

∑
i aixi = 0 with ai :R. If any ai were invertible, the fam-

ily x1, . . . , xi−1, xi+1, . . . , xn would too generate M , contradicting the minimality.
So each ai is not invertible. By the field property of R, each ai is zero. □

Lemma 5.8. Let X be a reduced scheme. Let F be an OX-module of finite type.
Then F is finite locally free on a dense open subset.

Proof. Since “dense open” translates to “not not” in the internal language (Propo-
sition 6.5), it suffices to give an intuitionistic proof of the following fact: Let R
be a local ring which fulfills an appropriate field condition. Let M be a finitely
generated R-module. Then M is not not finite free.
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By Remark 5.4, the rank of such a module M is not not an actual natural
number. By the last part of the previous proof, it thus follows that M is not not
finite free. □

Remark 5.9. Besides basics on natural numbers in an intuitionistic setting and
some dictionary terms (“reduced”, “finite locally free”, “finite type“, “dense open”),
this proof does not depend on any further tools. In particular, it doesn’t depend
on Nakayama’s lemma or on facts about semicontinuous functions. For the (more
complex) standard proof of this fact, see for instance [137], where the claim is
dubbed an “important hard exercise” (Exercise 13.7.K).

5.4. The upper semicontinuous dimension function. Recall that the dimen-
sion of a topological space X at a point x ∈ X is defined as the infimum

dimxX := inf{dimU |U open neighborhood of x}.
The map X → N ∪ {+∞}, x 7→ dimxX is upper semicontinuous and thus

corresponds to an internal generalized (possibly unbounded) natural number. The
following proposition shows that this number has an explicit description.

Proposition 5.10. Let X be a scheme. Then the upper semicontinuous func-
tion associated to the internal number “Krull dimension of OX” is the dimension
function x 7→ dimxX.

Proof. Internally, we define the Krull dimension of OX as the infimum over all
natural numbers n such that OX is of Krull dimension ≤ n. This infimum need not
exist in the natural numbers, of course; so we really mean the upward-closed set A
of all those numbers. (It is inhabited if and only if, from the external perspective,
the dimension of X is locally finite. In this case, it defines a generalized natural
number.)

We thus have to show for any point x ∈ X:

inf{n ∈ N ∪ {+∞} |n ∈ Ax} = dimxX.

The condition on n can be expressed as follows, where we write “n” to denote the
constant function with value n:

n ∈ Ax
⇐⇒ for some open neighborhood U of x, n ∈ Γ(U,A)
⇐⇒ for some open neighborhood U of x,

U |= ⌜OX is of Krull dimension ≤ n⌝
⇐⇒ for some open neighborhood U of x,

dimU ≤ n
The second equivalence follows from the external description of internally-defined
subsheaves given in Section 2.2. We thus have:

inf{n |n ∈ Ax} = inf{dimU |U open neighborhood of x} = dimxX. □

6. Modalities

Philosophers and logicians do not only study what is true, but also what is known,
what is believed, what is possible, and so on. Such modalities are absent from the
usual mathematical practice. However, it turns out that a specific kind of such
modalities plays a role in understanding when properties spread from points to
neighborhoods.

Briefly, this is because for any point x of a topological space X, there exists
a modal operator □ such that for any formula φ of the internal language of the
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sheaf topos Sh(X), the internal statement □φ means that φ holds on some open
neighborhood of the given point x. In this way, we can reduce sheaf-theoretic
questions to questions of modal intuitionistic (non-sheafy) mathematics.

The techniques developed in this section also enable us to use the internal language
of Sh(X) to talk about sheaves on subspaces of X (and more general sublocales
of X).

Topological interpretations of modal logic were studied before, for instance by
Awodey and Kishida [12]. However, they study a different kind of modal operators,
not corresponding to the Lawvere–Tierney topologies of topos theory, and pursue
different goals.

6.1. Basics on truth values and modal operators.

Definition 6.1. The set of truth values Ω is the powerset of the singleton set 1 :=
{⋆}, where ⋆ is a formal symbol.

In classical logic, any subset of {⋆} is either empty or inhabited, so that Ω contains
exactly two elements, the empty set (“false”) and {⋆} (“true”). But in intuitionistic
logic, this cannot be shown; indeed, if we interpret the definition in the topos of
sheaves on a space X, we obtain a (rather large) sheaf Ω with

U ⊆ X open 7−→ Γ(U,Ω) = {V ⊆ U |V open}.

(This is because by definition of Ω as the power object of the terminal sheaf 1,
sections of Ω on an open subset U correspond to subsheaves F ↪→ 1|U , and those
are given by the greatest open subset V ⊆ U such that Γ(V,F) is inhabited.)
Obviously, in general, this sheaf has many sections, in particular more than the
binary coproduct 1⨿ 1 (unless any open subset of X is also closed).

The truth value of a formula φ is by definition the subset {x : 1 |φ} ∈ Ω, where “x”
is a fresh variable not appearing in φ. This subset is inhabited if and only if φ holds
and is empty if and only if ¬φ holds. Conversely, we can associate to a subset F ⊆ 1
the proposition ⌜F is inhabited⌝.

By the above description of Ω in a sheaf topos Sh(X), the interpretation of the
truth value of a formula φ in the internal language of Sh(X) is a certain open
subset of X. Tracing the definitions, we see that this open subset is precisely the
largest open subset on which φ holds, i. e. the union of all open subsets U ⊆ X such
that U |= φ.

Under the correspondence of formulas with truth values, logical operations like ∧
and ∨ map to set-theoretic operations like ∩ and ∪ – for instance, we have

{x : 1 |φ} ∩ {x : 1 |ψ} = {x : 1 |φ ∧ ψ}.

This justifies a certain abuse of notation: We will sometimes treat elements of Ω as
propositions and use logical instead of set-theoretic connectives. In particular, if φ
and ψ are elements of Ω, we will write “φ ⇒ ψ” to mean φ ⊆ ψ; “⊥” to mean ∅;
and “⊤” to mean 1.

Definition 6.2. A modal operator (or Lawvere–Tierney topology) is a map □ : Ω→
Ω such that for all φ,ψ ∈ Ω,

(1) φ =⇒ □φ,
(2) □□φ =⇒ □φ,
(3) □(φ ∧ ψ)⇐⇒ □φ ∧□ψ.

Syntactically, the symbol “□” binds stronger than any other logical connective.
For instance, axiom (2) is shorthand for “(□(□(φ)))⇒ (□(φ))” and axiom (3) is
shorthand for “(□(φ ∧ ψ))⇔ ((□(φ)) ∧ (□(ψ)))”.
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The intuition is that □φ is a certain weakening of φ, where the precise meaning
of “weaker” depends on the modal operator. By the second axiom, weakening twice
is the same as weakening once.

In classical logic, where Ω = {⊥,⊤}, there are only two modal operators: the
identity map and the constant map with value ⊤. Both of these are not very
interesting: The identity operator does not weaken propositions at all, while the
constant operator weakens every proposition to the trivial statement ⊤.

In intuitionistic logic, there can potentially exist further modal operators. For
applications to algebraic geometry, the following four operators will have a clear
geometric meaning and be of particular importance:

(1) □φ :≡ (α⇒ φ), where α is a fixed proposition.
(2) □φ :≡ (φ ∨ α), where α is a fixed proposition.
(3) □φ :≡ ¬¬φ (the double negation modality).
(4) □φ :≡ ((φ⇒ α)⇒ α), where α is a fixed proposition.

Lemma 6.3. Any modal operator □ is monotonic, i. e. if φ⇒ ψ, then □φ⇒ □ψ.
Furthermore, a modus ponens rule holds: If □φ holds, and if φ implies □ψ, then □ψ
holds as well.

Proof. Assume φ⇒ ψ. This is equivalent to supposing φ ∧ ψ ⇔ φ. We are to show
that □φ⇒ □ψ, i. e. that □φ ∧□ψ ⇔ □φ. This follows since by the third axiom on
a modal operator, we have □φ ∧ □ψ ⇔ □(φ ∧ ψ), and □ respects equivalence of
propositions.

For the second statement, consider that if φ ⇒ □ψ, by monotonicity and the
second axiom on a modal operator it follows that □φ⇒ □□ψ ⇒ □ψ. □

The modus ponens rule justifies the following proof scheme: When trying to show,
given that some boxed statement □φ holds, that some further boxed statement □ψ
holds, we may give a proof of □ψ under the stronger assumption φ. Symbolically:

(□φ⇒ □ψ)⇐⇒ (φ⇒ □ψ).

Remark 6.4. There is some contention on what symbol one should use for modal
operators in the sense of Definition 6.2. This is because, in the modal logic community,
the symbol “□” usually refers to the modal operator “it is necessary that”. For this
modal operator, one often imposes the reflexivity axiom □φ⇒ φ which we don’t
impose (and which would trivialize the theory). Conversely, our axiom φ ⇒ □φ
isn’t meaningful in the necessity interpretation. This axiom is meaningful for the
modal operator “it is possible that”, commonly denoted “♢”; but for this modal
operator, the axiom ♢(φ ∧ ψ)⇔ ♢φ ∧ ♢ψ isn’t meaningful.

A classical modal operator which matches our axioms is “I believe that” under
the proviso of ultimate knowledge (“I believe every true statement”).

Goldblatt chooses the symbol “∇” for the modal operators in our sense [59,
Section 14.5], [58]. The symbol “,” is also common, particularly in the hardware
verification community. A discussion of the relationship between these three kinds
of operators is contained in [108]. We are grateful to Tadeusz Litak for valuable
comments and references pertaining to this topic.

6.2. Geometric meaning. Let X be a topological space. As discussed above, an
open subset U ⊆ X defines an internal truth value (a global section of the sheaf Ω).
We also denote it by “U”, such that

V |= U ⇐⇒ V ⊆ U
for any open subset V ⊆ X. (Shortcutting the various intermediate steps, this can
also be taken as a definition of “V |= U”.) If A ⊆ X is a closed subset, there is thus
an internal truth value Ac corresponding to the open subset Ac = X \A. If x ∈ X
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is a point, we define “!x” to denote the truth value corresponding to int(X \ {x}),
such that

V |= !x ⇐⇒ V ⊆ int(X \ {x}) ⇐⇒ x ̸∈ V.

Proposition 6.5. Let U ⊆ X be a fixed open and A ⊆ X be a fixed closed subset.
Let x ∈ X. Then, for any open subset V ⊆ X, it holds that:

V |= (U ⇒ φ) ⇐⇒ V ∩ U |= φ.

V |= (φ ∨Ac) ⇐⇒ there is an open subset W ⊆ V
containing A ∩ V such that W |= φ.

V |= ¬¬φ ⇐⇒ there is a dense open subset W ⊆ V s. th. W |= φ.

V |= ((φ⇒ !x)⇒ !x) ⇐⇒ x ̸∈ V or there is an open neighborhood W ⊆ V
of x such that W |= φ.

Proof. (1) Omitted.
(2) Let V |= φ ∨ Ac. Then there exists an open covering V =

⋃
i Vi such

that for each i, Vi |= φ or Vi ⊆ Ac. Let W ⊆ V be the union of those Vi
such that Vi |= φ. Then W |= φ by the locality of the internal language
and A ∩ V ⊆W .

Conversely, letW ⊆ V be an open subset containing A∩V such thatW |=
φ. Then V =W ∪ (V ∩Ac) is an open covering attesting V |= φ ∨Ac.

(3) For the “only if” direction, letW ⊆ V be the largest open subset on which φ
holds, i. e. the union of all open subsets of V on which φ holds. For the
“if” direction, we may assume that the given set W is also the largest open
subset on which φ holds (by enlarging W if necessary). The claim then
follows by the following chain of equivalences:

V |= ¬¬φ

⇐⇒ ∀Y ⊆ V open.
(
∀Z ⊆ Y open. (Z |= φ)⇒ Z = ∅

)
=⇒ Y = ∅

⇐⇒ ∀Y ⊆ V open.
(
∀Z ⊆ Y open. Z ⊆W ⇒ Z = ∅

)
=⇒ Y = ∅

⇐⇒ ∀Y ⊆ V open. Y ∩W = ∅ =⇒ Y = ∅
⇐⇒ W is dense in V .

(4) Straightforward, since the interpretation of the internal statement with the
Kripke–Joyal semantics is

∀Y ⊆ V open.
(
∀Z ⊆ Y open. Z |= φ⇒ x ̸∈ Z

)
=⇒ x ̸∈ Y. □

6.3. The subspace associated to a modal operator. Any modal operator □ :
Ω→ Ω in the sheaf topos of X induces on global sections a map

j : T (X)→ T (X),

where T (X) = Γ(X,Ω) is the set of open subsets of X. Explicitly, it is given by

j(U) = largest open subset of X on which □U holds

=
⋃
{V ⊆ X | V open, V |= □U}.

By the axioms for a modal operator, the map j fulfills similar such axioms: For any
open subsets U, V ⊆ X,

(1) U ⊆ j(U),
(2) j(j(U)) ⊆ j(U),
(3) j(U ∩ V ) = j(U) ∩ j(V ).
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Modal operator associated nucleus j(V ) = X iff . . . subspace

□φ ≡ (U ⇒ φ) j(V ) = int(U c ∪ V ) U ⊆ V U

□φ ≡ (φ ∨Ac) j(V ) = V ∪Ac A ⊆ V A

□φ ≡ ¬¬φ j(V ) = int(cl(V )) V is dense in X smallest
dense
sublo-
cale
of X

□φ ≡ ((φ⇒ !x)⇒ !x)
j(V ) = X \ cl{x}, if x ̸∈ V
j(V ) = X, if x ∈ V

x ∈ V {x}

Table 2. List of important modal operators and their associated
nuclei (notation as in Proposition 6.5).

Such a map is called a nucleus on T (X). Table 2 lists the nuclei associated to the
four modal operators of Proposition 6.5.

Any nucleus j defines a subspace Xj of X, to be described below, with a small
caveat: In general, the subspace Xj cannot be realized as a topological subspace,
but only as a so-called sublocale; the notion of a locale is a slight generalization of
the notion of a topological space, in which an underlying set of points is not part of
the definition. Instead, a locale is simply given by a frame (a partially ordered set
with certain properties) of arbitrary opens satisfying some axioms – these opens
may, but do not necessarily have to, be sets of points. Sheaf theory carries over to
locales essentially unchanged, since the notions of presheaves and sheaves only refer
to open sets and coverings, but not points.

Accessible introductions to the theory of locales include two notes by John-
stone [73, 74]. Locales are also well-known for a curious application in the theory of
randomness [124, 123].

Definition 6.6. Let j be a nucleus on T (X). Then the sublocale Xj of X is given
by the frame of opens T (Xj) := {U ∈ T (X) | j(U) = U}.

If j is induced by a modal operator □, we also write “X□” for Xj . In three
of the four cases listed in Table 2, the sublocale X□ can indeed be realized as a
topological subspace. The only exception is the sublocale X¬¬ associated to the
double negation modality. It can also be described as the smallest dense sublocale
of X; this is obviously a genuine locale-theoretic notion, since there is (in general) no
smallest dense topological subspace (consider R and its dense subsets Q and R \Q).

The inclusion i : Xj ↪→ X cannot in general be described on the level of points,
since Xj might not be realizable as a topological subspace. But for sheaf-theoretic
purposes, it suffices to describe i on the level of opens. This is done as follows:

i−1 : T (X) −→ T (Xj), U 7−→ j(U).

Thus we can relate the toposes of sheaves on Xj and X by the usual pullback and
pushforward functors.

i−1F = sheafification of (U 7→ colim
U⪯i−1V

Γ(V,F))

i∗G = (U 7→ Γ(i−1U,G)) = (U 7→ Γ(j(U),G))
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As familiar from honest topological subspace inclusions, the pushforward functor i∗ :
Sh(Xj)→ Sh(X) is fully faithful and the composition i−1 ◦ i∗ : Sh(Xj)→ Sh(Xj)
is (canonically isomorphic to) the identity.

6.4. Internal sheaves and sheafification. It turns out that the image of the
pushforward functor i∗ : Sh(X□)→ Sh(X), where □ is a modal operator in Sh(X),
can be explicitly described. Namely, it consists exactly of those sheaves which from
the internal point of view are so-called □-sheaves, a notion explained below.

Furthermore, if we identify Sh(X□) with its image in Sh(X), the pullback functor
is given by an internal sheafification process with respect to the modality □. Thus
the external situation of pushforward/pullback translates to forget/sheafify. This
broadens the scope of the internal language of Sh(X): It cannot only be used to
talk about sheaves on X in a simple, element-based language, but also to talk about
sheaves on arbitrary subspaces of X.

To describe the notion of □-sheaves and related ones, we switch to the internal
perspective and thus forget that we’re working over a base space X; we are simply
given a modal operator □ : Ω → Ω and have to take care that our proofs are
intuitionistically valid. A reference for the material in this subsection is a preprint
by de Vries [144].16

Recall that a set S is a subsingleton if and only if ∀x, y :S. x = y, and that a set S
is a singleton if and only if it is a subsingleton and it is inhabited (i. e. ∃x :S. ⊤);
this amounts to ∃!x :S. ⊤.

Definition 6.7. A set F is □-separated if and only if

∀x, y :F. □(x = y) =⇒ x = y.

A set F is a □-sheaf if and only if it is □-separated and

∀S ⊆ F. □(⌜S is a singleton⌝) =⇒ ∃x :F. □(x ∈ S).

The two conditions can be combined: A set F is a □-sheaf if and only if

∀S ⊆ F. □(⌜S is a singleton⌝) =⇒ ∃!x :F. □(x ∈ S).

Intuitively, reading “□φ” as “locally φ”, a set is □-separated if elements which
are locally equal are in fact equal. A set is a □-sheaf if furthermore for any set S of
elements which locally contains just a single element there is an element which is
locally contained in S.

This phrasing is reminiscent of the usual gluing condition, which demands that
any family of sections which locally is just a single section (in that the sections of
the family agree on their common domain of definition) gives rise to a global section
which coincides with the given sections on their respective domain. Remark 6.9
below sketches how to make this relation precise.

Definition 6.8. The plus construction of a set F with respect to □ is the set

F+ := {S ⊆ F |□(⌜S is a singleton⌝)}/∼,

where the equivalence relation is defined by S ∼ T :⇔ □(S = T ). There is a
canonical map F → F+ given by x 7→ [{x}]. The □-sheafification of a set F is the
set F++.

If F is □-separated, then for any subset S ⊆ F it holds that

□(⌜S is a singleton⌝) ⇐⇒ ⌜S is a subsingleton⌝ ∧□(⌜S is inhabited⌝).

16On page 5 of that preprint there is a slight typing error: Fact 2.1(i) gives the characterization
of j-closedness, not j-denseness. The correct characterization of j-denseness in that context
is ∀b ∈ B. j(b ∈ A).
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Remark 6.9. The topos of presheaves on a topological space X admits an internal
language as well [92, Section VI.7, discussion after Theorem 1]. In it, there exists
a modal operator □ reflecting the topology of X. A presheaf on X is separated
in the usual sense if, from the internal perspective of PSh(X), it is □-separated;
and it is a sheaf if, from the internal perspective, it is a □-sheaf. Furthermore,
the □-sheafification of a presheaf (considered as a set from the internal perspective)
coincides with the usual sheafification.

Example 6.10. Any singleton set is a □-sheaf. The empty set is always □-separated
(trivially) and is a □-sheaf if and only if □⊥ ⇒ ⊥.

We will see geometric examples of □-sheaves in further sections. For instance, on
an integral or locally Noetherian scheme X, the structure sheaf OX is ¬¬-separated
and its ¬¬-sheafification is the sheaf KX of rational functions (Proposition 9.9).

Lemma 6.11. For any set F , it holds that:

(1) F+ is □-separated.
(2) The canonical map F → F+ is injective if and only if F is □-separated.
(3) If F is □-separated, then F+ is a □-sheaf.
(4) If F is a □-sheaf, then the canonical map F → F+ is bijective.

Let Sh□(Set) be the full subcategory of Set consisting of the □-sheaves. Then it
holds that:

(5) The functor ( )+ : Set→ Set is left exact.
(6) The functor ( )++ : Set → Sh□(Set) is left exact and left adjoint to the

forgetful functor Sh□(Set)→ Set, F 7→ F .

Proof. These are all straightforward, and in fact simpler than their classical coun-
terparts, since there are no colimit formulas which would have to be dealt with. □

Remark 6.12. As is to be expected from the familiar inclusion of sheaves in
presheaves on topological spaces, the forgetful functor Sh□(Set)→ Set does not in
general preserve colimits. It is instructive to see why epimorphisms in Sh□(Set)
need not be epimorphisms in Set: A map f : A → B between □-sheaves is an
epimorphism in Sh□(Set) if and only if

∀y :B. □(∃x :X. f(x) = y),

that is preimages do not need to exist, it suffices for them to “□-exist”. (Using
results about the □-translation, to be introduced below, this characterization will be
obvious.) This condition is intuitionistically weaker than the condition that f is an
epimorphism in Set, i. e. that f is surjective. This should be compared to the failure
of the forgetful functor Sh(X)→ PSh(X) to preserve epimorphisms: A morphism
of sheaves does not need to have preimages for any local section in order to be an
epimorphism. Instead, it suffices for any local section to locally have preimages.

Proposition 6.13. Let X be a topological space. Let □ be a modal operator
in Sh(X). Let i : X□ ↪→ X be the inclusion of the associated sublocale. Corestricting
the pushforward functor i∗ : Sh(X□)→ Sh(X) to its essential image, it induces an
equivalence Sh(X□) ≃ Sh□(Sh(X)) between the category of sheaves on X□ and the
category of □-sheaves in Sh(X).

Proof. For the further development of the theory, we need the statement of this
proposition, but not the proof, which really is routine in dealing with subtoposes and
modal operators. Nevertheless, a proof can proceed by combining Example A4.6.2(a)
and Theorem C1.4.7 of [72], observing that for a topos of sheaves on a locale Y it
holds that T (Y ) = Γ(Y,ΩSh(Y )), and that the subobject classifier of Sh□(Sh(X))
is {φ : ΩSh(X) |□φ⇔ φ}. □
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Remark 6.14. It’s possible to rewrite the sheaf condition in the following form.
A set F is □-separated if and only if, for any truth value φ : Ω such that □φ, the
canonical map

F −→ Fφ,

which maps an element x :F to the constant map φ→ X with value x (where φ is
considered as a subset of the terminal set 1), is injective. The set F is a □-sheaf if
and only if furthermore this map is surjective for all such truth values.

6.5. Sheaves for the double negation modality. Recall that if □ is the modal
operator associated to a subspace Y of a topological space X, then the sheaves
on X which are □-sheaves are easy to describe: These are precisely the sheaves in
the essential image of the pushforward functor Sh(Y ) → Sh(X). For the double
negation modality, the same is true, only that Y is then the perhaps unfamiliar
smallest dense sublocale of X.

The following proposition gives a characterization of ¬¬-separated presheaves
and ¬¬-sheaves in explicit terms.

Proposition 6.15. Let X be a topological space. Let F be a sheaf on X. Then:

(1) F is ¬¬-separated if and only if any two local sections of F , which are
defined on a common domain and which agree on a dense open subset of
their domain, are already equal.

(2) F is a ¬¬-sheaf if and only if it is ¬¬-separated and for any open U ⊆ X
and any open V ⊆ U dense in U , any V -section of F extends to an U -section
of F .

(3) If F is ¬¬-separated, the sections of F+ on an open subset U ⊆ X can
be described by pairs ⟨V, s⟩, where V is a dense open subset of U and s is
a section of F on V . Two such pairs ⟨V, s⟩, ⟨V ′, s′⟩ determine the same
element in Γ(U,F+) if and only if s and s′ agree on V ∩ V ′.

Proof. The first statement is obvious from the definition of ¬¬-separatedness (Defi-
nition 6.7 for □ = ¬¬) and the geometric interpretation of double negation (Propo-
sition 6.5).

For the second statement, we need to show that, assuming that F is ¬¬-separated,
the sheaf F has the extension property if and only if

Sh(X) |= ∀S :P(F). ⌜S is a subsingleton⌝ ∧ ¬¬(⌜S is inhabited⌝) =⇒
∃x :F . ¬¬(x ∈ S).

A section S ∈ Γ(U,P(F)) which internally is a subsingleton and not not inhabited is
precisely a subsheaf S ↪→ F|U such that all stalks Sx, x ∈ U are subsingletons and
such that for some dense open subset V ⊆ U , the stalks Sx, x ∈ V are inhabited.
This is precisely the datum of a section of F defined on some dense open subset
of U , considering the gluing of the unique germs in Sx for those points x such
that Sx is inhabited. (Conversely, a section s ∈ Γ(V,F) defines a subsheaf S by
setting Γ(W,S) := {s|W |W ⊆ V }.)

In view of this explicit description and the observation that the asserted exis-
tence (“∃x :F . ¬¬(x ∈ S)”) is actually a question of unique existence, the second
statement follows.

For the third statement, one can check that the presheaf on X defined by

U ⊆ X open 7−→ {⟨V, s⟩ |V ⊆ U dense open, s ∈ Γ(V,F)}/∼

is in fact a sheaf (with respect to the topology of X), internally a ¬¬-sheaf, and
that it has the universal property of the ¬¬-sheafification of F . □



60 II. THE LITTLE ZARISKI TOPOS

The conditions (1) and (2) of Proposition 6.15 can be summarized as follows: A
sheaf F on a topological space is a ¬¬-sheaf if and only if, for any open subset U ⊆ X,
the restriction map Γ(int clU,F)→ Γ(U,F) is bijective [70, Lemma 36].

In the case thatX contains a generic point, that is a point ξ ∈ X such that cl{ξ} =
X, we can describe the sublocale X¬¬ in simple terms: In this case, it coincides
with the subspace {ξ}. For instance, such a generic point exists and is unique if X
is an irreducible scheme.

Lemma 6.16. Let X be a topological space and ξ ∈ X be a point such that cl{ξ} = X.
Then the modal operator □ :≡ (( ⇒ !ξ)⇒ !ξ) coincides with the double negation
modality and X¬¬ = {ξ} as sublocales of X.

Proof. The semantics of the formula !ξ was defined by the equivalence

U |= !ξ ⇐⇒ ξ ̸∈ U.

By the assumption on ξ, this is equivalent to requiring U = ∅. Thus for any open
subset U the formulas !ξ and ⊥ have the same meaning; they are therefore logically
equivalent from the internal point of view. The given modal operator thus simplifies:

□φ ≡ ((φ⇒ !ξ)⇒ !ξ) ⇔ ((φ⇒ ⊥)⇒ ⊥) ⇔ ¬¬φ.

The second claim follows from Table 2. □

Corollary 6.17. Let X be a topological space and let ξ ∈ X be a point such
that cl{ξ} = X. Since X¬¬ = {ξ}, the category of ¬¬-sheaves in Sh(X) coincides
with the category of sheaves on {ξ} and can therefore be identified with the category
of sets. Under this identification,

(1) sheafifying an object F ∈ Sh(X) with respect to the double negation modality
(i. e. pulling back to X¬¬) is the same as calculating its generic stalk Fξ and

(2) pushing forward a set M along X¬¬ ↪→ X is the same as calculating the
constant sheaf associated to M .

Proof. The first statement follows because pulling back to X¬¬ is the same as pulling
back to {ξ}. The pushforward of a set M , considered as a sheaf on X¬¬, to X is
explicitly given by

U 7−→

{
M, if U ̸= ∅,
{⋆}, else.

We omit the routine verification that this sheaf coincides with the constant sheaf M
associated to M . □

The following technical lemma will occasionally be handy. It is an internal
reflection of the fact that an open subset of an affine scheme can always be written
as the union of standard open subsets. We will generalize it to schemes which are
not necessarily integral in Section 9 (see Lemma 9.18).

Lemma 6.18. Let X be an integral scheme. Let φ be any formula over X. Then

Sh(X) |= ¬¬φ =⇒ ∃f :OX . ¬¬(⌜f inv.⌝) ∧ (⌜f inv.⌝⇒ φ).

Proof. We may assume that X is the spectrum of an integral domain A and that
there is a dense open subset U ⊆ X on which φ holds. The open set U may be
covered by standard open subsets D(fi); since X is irreducible, at least one of these
is itself dense. We may take this fi as the sought f . □

We can now also follow up on a promise made in Section 2.4 and prove the
following somewhat tangential lemma.
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Lemma 6.19. Let X be a topological space. The internal language of Sh(X) is
Boolean if and only if for any open subset U ⊆ X it holds that U is the only dense
open subset of U .

Proof. That the internal language of Sh(X) is Boolean amounts to

Sh(X) |= ∀φ : Ω. ¬¬φ⇒ φ.

This is equivalent to the external statement that for any open subset U ⊆ X and for
any open subset V ⊆ U it holds that: If V is dense in U , then V is equal to U . □

6.6. The □-translation. In logic, there is certain well-known transformation φ 7→
φ¬¬ on formulas, the double negation translation, with the following curious property:
A formula φ is derivable in classical logic if and only if its translation φ¬¬ is derivable
in intuitionistic logic. The translation φ¬¬ is obtained from φ by putting “¬¬”
before any subformula, i. e. before any “∃” and “∀”, around any logical connective,
and around any atomic statement (“x = y”, “x ∈ A”). For instance, the double
negation translation of “f is surjective” is

¬¬∀y :Y. ¬¬∃x :X. ¬¬f(x) = y.

We will describe a slight generalization of the double negation translation, the □-
translation for any modal operator □. It will be pivotal for using the internal
language of a space X to express internal statements about sheaves defined on
subspaces of X. The □-translation has been studied in other contexts before [1, 50].
To the best of our knowledge, this application – expressing the internal language of
subtoposes in the internal language of the ambient topos – is new.

Definition 6.20. The □-translation is recursively defined as follows.

(f = g)□ :≡ □(f = g)

(x ∈ A)□ :≡ □(x ∈ A)

⊤□ :≡ □⊤ (⇔ ⊤)

⊥□ :≡ □⊥

(φ ∧ ψ)□ :≡ □(φ□ ∧ ψ□) (
∧
i φi)

□ :≡ □(
∧
i φ

□
i )

(φ ∨ ψ)□ :≡ □(φ□ ∨ ψ□) (
∨
i φi)

□ :≡ □(
∨
i φ

□
i )

(φ⇒ ψ)□ :≡ □(φ□ ⇒ ψ□)

(∀x :X. φ)□ :≡ □(∀x :X. φ□) (∀X. φ)□ :≡ □(∀X. φ□)

(∃x :X. φ)□ :≡ □(∃x :X. φ□) (∃X. φ)□ :≡ □(∃X. φ□)

Definition 6.21. A formula φ is □-stable if and only if □φ implies φ.

Lemma 6.22. (1) Formulas in the image of the □-translation are □-stable, i. e.
for any formula φ it holds that □(φ□) =⇒ φ□.

(2) In the definition of the □-translation, one may omit the boxes printed in
gray.

Proof. The first statement is obvious, since one of the axioms for a modal operator
demands that □□φ⇒ □φ for any formula φ. The second statement follows by an
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induction on the formula structure. By way of example, we prove the case for “⇒”:

(φ⇒ ψ)□ with the gray parts

⇐⇒ □(φ□ with the gray parts ⇒ ψ□ with the gray parts)

⇐⇒ (φ□ with the gray parts ⇒ ψ□ with the gray parts)

⇐⇒ (φ□ without the gray parts ⇒ ψ□ without the gray parts)

⇐⇒ (φ⇒ ψ)□ without the gray parts

The first step is by definition; the second by □-stability of ψ□ with the gray parts and
the intuitionistic tautology □(α⇒ β)⇔ (α⇒ β) for □-stable formulas β; the third
by the induction hypothesis; and the fourth by definition. □

Lemma 6.23. The □-translation is sound with respect to intuitionistic logic: Assume
that there exists an intuitionistic proof of an implication φ⇒ ψ. Then there is also
an intuitionistic proof of the translated implication φ□ ⇒ ψ□.

Proof. This follows by an induction on the structure of intuitionistic proofs. We
have to verify that we can mirror any inference rule of intuitionistic logic in the
translation. For instance, one of the disjunction rules justifies the following proof
scheme: In order to prove φ∨ψ ⇒ χ, it suffices to give proofs of φ⇒ χ and ψ ⇒ χ.
We have to justify the translated proof scheme: In order to prove (φ ∨ ψ)□ ⇒ χ□,
it suffices to give proofs of φ□ ⇒ χ□ and ψ□ ⇒ χ□.

So assume that proofs of the two implications are given. Further assume (φ∨ψ)□,
i. e. □(φ□ ∨ ψ□). We want to show χ□. Since this is a □-stable statement, we may
assume that in fact φ□ ∨ ψ□ holds. Then the claim is obvious by the two given
proofs.

The cases for the other rules (see Appendix 24 for a list) are similar and left to
the reader. □

Remark 6.24. The reader well-versed in formal logic will have noticed that we
are mixing syntax and semantics here. The proper way to state Lemma 6.23
would be to formally adjoin a box operator to the language of intuitionistic logic,
governed by three inference rules which are modeled on the three axioms for a modal
operator. This formal box operator could then be instantiated by any concrete
modal operator □ : Ω→ Ω.

Soundness of the □-translation is important for the following reason. If φ and φ′

are equivalent formulas, we are accustomed to be able to freely substitute φ by φ′

anywhere we want. Since a modal operator□ is semantically defined as a map Ω→ Ω,
it is trivially justified that □φ and □φ′ are equivalent: The formulas φ and φ′ give
rise to the same element {x : 1 |φ} = {x : 1 |φ′} of Ω, and therefore their images
under □ are equal as well.

However, it is not clear and in fact wrong in general that the translated formu-
las φ□ and (φ′)□ are equivalent. This follows only if the soundness lemma can
be applied (two times, once for each direction). We should stress that to apply
this lemma, it is not enough to merely know that φ and φ′ are equivalent; instead,
there has to be an intuitionistic proof of this equivalence. This is really a stronger
requirement, since an equivalence φ⇔ φ′ might hold in a particular model, i. e. in
the internal language of some particular topos, without possessing an intuitionistic
proof, i. e. holding in any topos. We give an explicit example of this situation below
(Example 6.39).

Lemma 6.25. Let φ be a formula such that for any subformulas ψ appearing as
antecedents of implications, it holds that ψ□ ⇒ □ψ. (In particular, this condition is
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satisfied if there are no “⇒” signs in φ or if φ is a geometric implication.) Then
□φ⇒ φ□.

Proof. We prove this by an induction on the formula structure. All cases except
for “⇒” are obvious. For this case, assume □(ψ ⇒ χ); we are to show that (ψ□ ⇒
χ□). Since this is a □-stable statement, we can in fact assume that (ψ ⇒ χ). We
then have

ψ□ =⇒ □ψ =⇒ □χ =⇒ χ□,

with the first step being by the requirement on antecedents, the second by the
monotonicity of □, and the third by the induction hypothesis. □

Lemma 6.26. Let φ be a geometric formula. Then φ□ ⇔ □φ.

Proof. The “⇐” direction is by Lemma 6.25. The “⇒” direction is an induction
on the formula structure. By way of example, we verify the case of “

∨
”. So

assume □(
∨
i φ

□
i ); we are to show that □(

∨
i φi). Since this is a boxed statement,

we may in fact assume
∨
i φ

□
i , so for some index j, it holds that φ□

j . By the
induction hypothesis, it follows that □φj . By φj ⇒

∨
i φi and the monotonicity

of □, it follows that □(
∨
i φi). □

An analogous argument for infinite conjunctions is not valid: Assume (
∧
i φi)

□.

So for all j, φ□
j holds. By the induction hypothesis, □φj holds for any j. But

from this we may not deduce □
∧
i φi, since the axioms for a modal operator only

require commutativity with finite conjunctions. This failure also has a geometric
interpretation, for instance in the special case □ = ¬¬: Given dense open subsets Ui
on which formulas φi hold, we may not conclude that there exists a single dense
open subset U on which all the formulas φi hold.

Remark 6.27. In the special case that□ is the double negation modality, Lemma 6.26
holds with slightly weaker hypotheses: Namely, implications may occur in φ, pro-
vided that for their antecedents ψ it holds that ψ ⇒ ψ□. This is because for the
double negation modality, the formula □(ψ ⇒ χ) is equivalent to ψ ⇒ □χ. (In gen-
eral, for an arbitrary modality, only the former implies the latter, but not vice versa.)
The case for “⇒” in the inductive proof then goes as follows: Assume (ψ ⇒ χ)□.
Then ψ ⇒ ψ□ ⇒ χ□ ⇒ □χ, so □(ψ ⇒ χ).

Lemma 6.28. Let φ,φ′, ψ be formulas. Assume that:

(1) The formula φ′ is geometric. (More generally, it suffices for (φ′)□ to
imply □φ′.)

(2) There is an intuitionistic proof that φ and φ′ are equivalent under the (only)
hypothesis ψ.

(3) Both □ψ and ψ□ hold.

Then φ□ ⇒ □φ.

Proof. Assume φ□. Since ψ□, (φ ∧ ψ)□. Because the □-translation is sound with
respect to intuitionistic logic (Lemma 6.23) it follows that (φ′)□. As φ′ is geometric,
it follows that □φ′. Since □ψ holds, it follows that □φ. □

Example 6.29. Let M be an R-module. The statement that M is zero is not
geometric: φ :≡ (∀x :M. x = 0). But if M is generated by some finite fam-
ily x1, . . . , xn :M , then φ is equivalent to the statement φ′ :≡ (x1 = 0∧· · ·∧xn = 0)
which is geometric; and there is an intuitionistic proof of this equivalence. Since
no implication signs occur in ψ :≡ ⌜M is generated by x1, . . . , xn⌝, Lemma 6.28
is applicable and shows that φ□ implies □φ. This example will gain geometric
meaning in Lemma 6.40.
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Lemma 6.30. For the modality □ defined by □φ :≡ ((φ ⇒ α) ⇒ α), where α
is a fixed proposition, the □-translation of the law of excluded middle holds. In
particular, this applies to the double negation modality □ = ¬¬, where α = ⊥.

Proof. We are to show that (φ ∨ ¬φ)□, i. e. that

((φ□ ∨ (φ□ ⇒ α)) =⇒ α) =⇒ α.

So assume that the antecedent holds. If φ□ holds, then in particular φ□ ∨ (φ□ ⇒ α)
and thus α hold. Therefore it follows that (φ□ ⇒ α). This implies φ□ ∨ (φ□ ⇒ α)
and thus α. □

6.7. Truth at stalks vs. truth on neighborhoods. We now state the crucial
property of the □-translation. Recall that “X□” denotes the sublocale of X induced
by □ (Definition 6.6).

Theorem 6.31. Let X be a topological space. Let □ be a modal operator in Sh(X).
Let φ be a formula over X. Then

Sh(X) |= φ□ iff Sh(X□) |= φ,

where on the right hand side, all parameters occurring in φ were pulled back to X□

along the inclusion X□ ↪→ X.

We have not yet explicitly stated the Kripke–Joyal semantics for a sheaf topos
over a locale, which X□ is in general. The definition is exactly the same as in the
case for sheaf toposes over a topological space, only that any mention of “open
sets” has to be substituted by the more general “opens” and any mention of the
union operator “

⋃
” has to be interpreted by the supremum operator in the frame

of opens of the locale. For X□, this is supUi = j(
⋃
i Ui). Before giving a proof of

Theorem 6.31, we want to discuss some of its consequences.

Corollary 6.32. Let X be a topological space.

(1) Let U ⊆ X be an open subset and let □φ :≡ (U ⇒ φ). Then

Sh(X) |= φ□ iff Sh(U) |= φ.

(2) Let A ⊆ X be a closed subset and let □φ :≡ (φ ∨Ac). Then

Sh(X) |= φ□ iff Sh(A) |= φ.

(3) Let □φ :≡ ¬¬φ. Then

Sh(X) |= φ□ iff Sh(X¬¬) |= φ.

(4) Let x ∈ X be a point and let □φ :≡ ((φ⇒ !x)⇒ !x). Then

Sh(X) |= φ□ iff φ holds at x.

Proof. Combine Theorem 6.31 and Table 2. □

We want to discuss the last case of Corollary 6.32 in more detail. Let x be a
point of a topological space X and let φ be a formula. Let □ be the modal operator
given in the corollary. Then φ holds at x if and only if, from the internal perspective
of Sh(X), the translated formula φ□ holds; and φ holds on some open neighborhood
of x if and only if, from the internal perspective, the formula □φ holds.

Thus the question whether the truth of φ at the point x spreads to some open
neighborhood can be formulated in the following way:

Does φ□ imply □φ in the internal language of Sh(X)?
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Phrased this way, technicalities like appropriately shrinking open neighborhoods are
blinded out. A purposefully trivial example to illustrate this is the following. Let X
be a scheme (or a ringed space). Let f, g ∈ Γ(X,OX) be global functions. Suppose
that the germs of f and g are zero in some stalk OX,x; we want to show that they
are zero on a common open neighborhood of x.

Usual proof. Since the germ of f vanishes in OX,x, there is an open neighborhood U1

of x such that f |U1
= 0 in Γ(U1,OX). Since furthermore the germ of g vanishes

in the same stalk, there exists an open neighborhood U2 of x such that g|U2
= 0.

The intersection of both neighborhoods is still an open neighborhood of x; on this
neighborhood both f and g vanish. □

Proof in the internal language. We may suppose that (f = 0 ∧ g = 0)□, that is
□(f = 0) ∧□(g = 0), and have to prove that □(f = 0 ∧ g = 0). (To this end, we
could simply invoke the third axiom on a modal operator, but we want to stay close
to the given external proof.) So by assumption, both □(f = 0) and □(g = 0) hold.
Since our goal is to prove a boxed statement, we may in fact assume that f = 0
and g = 0. Thus f = 0 ∧ g = 0. □

By using the internal language with its modal operators, we can thus reduce
basic facts of scheme theory which deal with stalks and neighborhoods to facts
of algebra in a modal intuitionistic context. As with using the internal language
in its basic form without modalities, this brings conceptual clarity and reduced
technical overhead. There are, however, two more distinctive advantages. Firstly,
many internal proofs do not require specific properties of the modal operator and
thus work with any modal operator. By interpreting such a proof using different
operators, one obtains an entire family of external statements without any additional
work (see Lemma 6.40 for an example).

Secondly, the following corollary gives a general metatheorem which is applicable
to a wide range of cases. It allows to decide whether spreading will occur (or is likely
not to occur) simply by looking at the logical form of the statement in question.

Corollary 6.33. Let X be a topological space. Let φ be a formula. If φ is geometric,
truth of φ at a point x ∈ X implies truth of φ on some open neighborhood of x, and
vice versa.

Proof. By the purely logical lemmas of Section 6.6, it holds that φ□ ⇔ □φ. □

Corollary 6.34. Let X be a topological space. Let φ be a formula. If φ is geometric,
the property “φ holds at a point x ∈ X” is open.

Proof. This is just a reformulation of the previous corollary: If φ holds at a point x ∈
X, it holds on some open neighborhood U of x as well. Going back to stalks, it
follows that φ holds at every point of U . □

Example 6.35. Let X be a scheme (or a ringed space). Since the condition for a
function f :OX to be nilpotent is geometric (it is

∨
n≥0 f

n = 0), nilpotency of f at
a point is equivalent to nilpotency on some open neighborhood.

Combined with Lemma 6.28, this metatheorem is quite useful. We will illustrate
it with several examples in the next subsection.

An important special case of spreading from stalks to neighborhoods is the case of
spreading from the generic point (should it exist) to a dense open subset. Whether
this occurs can be phrased by Lemma 6.16 as follows:

Does φ¬¬ imply ¬¬φ in the internal language of Sh(X)?

This question is a question of ordinary (non-modal) intuitionistic algebra.
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Example 6.36. We have seen in Remark 6.12 that a morphism f : A → B
in Sh(X□) ≃ Sh□(Sh(X)) is an epimorphism if and only if

Sh(X) |= ∀y :B. □(∃x :X. f(x) = y).

We can now understand a simple proof of this fact:

f is an epimorphism in Sh□(Sh(X))

⇐⇒ Sh□(Sh(X)) |= ⌜f is surjective⌝

⇐⇒ Sh(X) |= (⌜f is surjective⌝)□

⇐⇒ Sh(X) |= ∀y :B. □(∃x :X. □(f(x) = y))

⇐⇒ Sh(X) |= ∀y :B. □(∃x :X. f(x) = y).

The ultimate equivalence is by Lemma 6.26, applied to the geometric subfor-
mula “∃x :X. f(x) = y”.

Remark 6.37. Theorem 6.31 can also be motivated by purely logical considerations.
Namely, one can check that interpreting a formula φ by Sh(X) |= φ□ gives rise to
a model of intuitionistic logic – if φ intuitionistically implies ψ, then Sh(X) |= φ□

implies Sh(X) |= ψ□. It is therefore a natural question whether there exists a
topos E such that E |= φ if and only if Sh(X) |= φ□. Theorem 6.31 gives an
affirmative answer to this question, explicitly stating that E := Sh(X□) is such a
topos.

Proof of Theorem 6.31. A fancy proof goes as follows. First, one shows intuitionis-
tically that for a modal operator □ in Set, it holds that

Set |= φ□ ⇐⇒ Sh□(Set) |= φ.

This can be verified by induction on the structure of formulas φ. Then one interprets
this result in the sheaf topos Sh(X):

Sh(X) |= φ□

⇐⇒ Sh(X) |= ⌜Set |= φ□⌝ by idempotency

⇐⇒ Sh(X) |= ⌜Sh□(Set) |= φ⌝ by the first step

⇐⇒ Sh□(Sh(X)) |= φ by idempotency

⇐⇒ Sh(X□) |= φ since Sh□(Sh(X)) ≃ Sh(X□)

By idempotency, we mean that internally employing the Kripke–Joyal semantics to
interpret doubly-internal statements is the same as using the Kripke–Joyal semantics
once. However, we do not want to discuss this here any further; some details can
be found in the original article on the stack semantics [122, Lemma 7.20], but the
statement given there is not general enough to justify the second use of idempotency
above. For this, one would have to extend the stack semantics to support internal
statements about locally internal categories like Sh(X□) ↪→ Sh(X) (which then look
like locally small categories from the internal point of view). This is worthwhile for
other reasons too, but shall not be pursued here.

Therefore, we give a more explicit proof. By induction, we are going to prove
that for any open subset U ⊆ X and any formula φ over U , it holds that

U |=X φ□ ⇐⇒ j(U) |=X□
φ,

where the internal statements are to be interpreted by the Kripke–Joyal semantics
of X and X□ respectively and j is the nucleus associated to □. We may assume
that any sheaves occurring in φ as domains of quantifications are in fact □-sheaves;
we justify this with a separate lemma below.
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The cases φ ≡ ⊤, φ ≡ (ψ ∧ χ), and φ ≡
∧
i ψi are trivial. For φ ≡ ⊥, the claim

is that U |=X □⊥ if and only if j(U) |=X□
⊥. The former means U ⊆ j(∅) and the

latter means j(U) ≤ sup ∅ = j(∅), so the claim follows from the first two axioms for
a nucleus.

We omit the verification of the remaining cases. □

Lemma 6.38. Let □ be a modal operator. Let φ be a formula. Let ψ :≡ φ□ be
the □-translation of φ. Let ψ′ be the formula obtained from ψ by substituting any
occurring domain of quantification by its □-sheafification, as syntactically defined in
Definition 6.8. Then ψ and ψ′ are intuitionistically equivalent.

Proof. For any formula φ, we denote by “φ⊞” the result of first applying the □-
translation to φ and then substituting any set F occurring in φ as a domain of
quantification by the plus construction F+. Recall that for any such F there is a
canonical map F → F+, x 7→ [{x}]. We are going to show by induction that for
any formula φ(x1, . . . , xn) in which elements xi :Fi may occur as terms, it holds
that φ□(x1, . . . , xn) is equivalent to φ

⊞([{x1}], . . . , [{xn}]). This suffices to prove
the lemma.

The cases for

⊤ ⊥ ∧
∧

∨
∨

=⇒

are trivial. The cases for unbounded “∀” and “∃” are trivial as well. The case
for “=” is slightly more interesting; let φ(x, y) ≡ (x = y). Then we are to show
that φ□(x, y) ≡ □(x = y) (equality in some set F ) is equivalent to φ⊞([{x}], [{y}]) ≡
□([{x}] = [{y}]) (equality in F+). This follows by the definition of the plus
construction. The case for “∈” is similar.

Let φ ≡ (∃x :F. ψ(x)), where we have dropped further variables occurring in ψ
for simplicity. Then we are to show that φ□ ≡ □(∃x :F. ψ□(x)) is equivalent
to φ⊞ ≡ □(∃x̄ :F+. ψ⊞(x̄)). The “only if” direction is trivial (set x̄ := [{x}]). For
the “if” direction, we may assume that there exists x̄ :F+ such that ψ⊞(x̄), since
we want to prove a boxed statement. By definition of the plus construction, it holds
that □(⌜x̄ is a singleton⌝). So, again since we want to prove a boxed statement,
we may assume that x̄ is actually a singleton. Therefore there exists x :F such
that x̄ = [{x}] and that ψ⊞([{x}]) holds. By the induction hypothesis, it follows
that ψ□(x). From this the claim follows.

The case for “∀” is similar. □

Example 6.39. Let X be a scheme. Let f be a global function on X. Let φ :≡
¬(⌜f inv.⌝) and φ′ :≡ ⌜f nilpotent⌝. Then, by Proposition 3.10, we have Sh(X) |=
(φ⇔ φ′). But in general, this does not imply that Sh(X) |= (φ□ ⇔ (φ′)□). Consider
for instance the modal operator given by □α :≡ ((α ⇒ !x) ⇒ !x) associated to a
point x ∈ X. Then Sh(X) |= (φ□ ⇔ (φ′)□) means that the equivalence φ ⇔ φ′

holds at the point x. This is false for X = SpecZ, f = 2, and x = (2), since in the
local ring OX,x = Z(2), the element f is not invertible while also not being nilpotent.

6.8. Internal proofs of common lemmas.

Lemma 6.40. Let X be a scheme (or a ringed space). Let F be an OX-module of
finite type.

(1) Let x ∈ X be a point. Then the stalk Fx is zero if and only if F is zero on
some open neighborhood of x.

(2) Let A ⊆ X be a closed subset. Then the restriction F|A (i. e. the pullback
of F to A) is zero if and only if F is zero on some open subset of X
containing A.



68 II. THE LITTLE ZARISKI TOPOS

Proof. Both statements are simply internalizations of Example 6.29, using the modal
operators □ = ( ∨Ac) and □ = (( ⇒ !x)⇒ !x). □

Remark 6.41. Lemma 6.40 fails if one drops the hypothesis that F is of finite
type. Indeed, in this case one cannot reformulate the condition that F is zero in a
geometric way.

In a remark after the proof of Proposition 5.6, we promised to present a simpler
proof of it once we would have developed the theory for doing so. We can now follow
up on this promise.

Lemma 6.42. Let X be a scheme (or a ringed space). Let F be an OX-module of
finite type. Let x ∈ X be a point. Let n be a natural number. Then the following
statements are equivalent:

(1) There exists a generating family for Fx consisting of n elements.
(2) There exists an open neighborhood U of x such that

U |= ⌜there exists a generating family for F consisting of n elements⌝.

Proof. Using the modal operator □ defined by □φ :≡ ((φ⇒ !x)⇒ !x), we have to
show that the following statements in the internal language are equivalent:

(1) ⌜there exists a generating family for F consisting of n elements⌝□.
(2) □(⌜there exists a generating family for F consisting of n elements⌝).

By Lemma 6.25, the second statement implies the first, since in a formal spelling of
the statement in quotes,

∃x1, . . . , xn :F . ∀x :F . ∃a1, . . . , an :OX . x =
∑
i aixi, (⋆)

no implication signs occur. To show the converse direction, we may assume that
there is a generating family y1, . . . , ym :F for F (since F is, externally speaking, of
finite type). Then the □-translation of the statement that the yi generate F holds
as well (again by Lemma 6.25). Since there is an intuitionistic proof of

⌜y1, . . . , ym generate F⌝ =⇒(
⌜there exist x1, . . . , xn :F which generate F⌝⇐⇒

∃x1, . . . , xn :F . ∃A :Om×n. ⌜y⃗ = Ax⃗⌝
)
,

Lemma 6.28 can substitute the non-geometric formula (⋆) by the geometric formula

∃x1, . . . , xn :F . ∃A :Om×n. ⌜y⃗ = Ax⃗⌝

(Lemma 6.28). Thus the claim follows. □

Lemma 6.43. Let X be a scheme (or a ringed space). Let α : F → G be a morphism
of OX-modules. Let G be of finite type and assume that αx : Fx → Gx is surjective
for some point x ∈ X. Then α is an epimorphism on some open neighborhood of x.

Proof. In the presence of generators y1, . . . , yn :G, the non-geometric surjectiv-
ity condition (∀y :G. ∃x :F . α(x) = y) can be reformulated in a geometric way:∧n
i=1 ∃x :F . α(x) = yi. Thus the claim follows by Lemma 6.28. □

Lemma 6.44. Let i : A ↪→ X be a closed immersion of schemes (or ringed spaces).
Let F be an OA-module. Then i∗F is of finite type if and only if F is of finite type.

Proof. Let □ be the modal operator defined by □φ :≡ (φ ∨Ac). From the internal
perspective, we have a surjective ring homomorphism i♯ : OX → OA, where we
omit the forgetful functor i∗ from □-sheaves to arbitrary sets in the notation, and
an OA-module F . Furthermore, we may assume that F is a □-sheaf. We can
regard F as an OX -module by i♯.
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Note that Ac ⇒ (F = 0), by □-separatedness of F .
We are to show that F is a finitely generated OX -module if and only if the □-

translation of “F is a finitely generated OA-module” holds. In explicit terms, we
have to show the equivalence of the following statements:

(1)
∨
n≥0 ∃x1, . . . , xn :F . ∀x :F . ∃a1, . . . , an :OX . x =

∑
i i
♯(ai)xi.

(2) □(
∨
n≥0 □(∃x1, . . . , xn :F . ∀x :F . □(∃b1, . . . , bn :OA. □(x =

∑
i bixi)))).

It is clear that the first statement implies the second. For the converse direction, we
just have to repeatedly use the observation that □φ implies φ ∨ (F = 0) (once for
each occurrence of □). So in each step, we either obtain the statement we want or
may assume that F is the trivial module, in which case any subclaim trivially follows.
By surjectivity of i♯, we may write any b :OA as b = i♯(a) for some a :OX . □

Lemma 6.45. Let X be a scheme (or a ringed space). Let F and G be OX-modules.
Let x ∈ X. Then HomOX

(F ,G)x ∼= HomOX,x
(Fx,Gx) if F is of finite presentation

around x.

Proof. It suffices to give an intuitionistic proof of the following fact: The construc-
tion HomR(M, ) is geometric if M is a finitely presented R-module. So assume
that M is the cokernel of a presentation matrix (aij) :R

n×m. Then we can describe
the Hom with any R-module N as

HomR(M,N) ∼=
{
x :Nn

∣∣∣ m∧
j=1

n∑
i=1

aijxi = 0 :N
}
,

and this construction is patently geometric, as a set comprehension with respect to
a geometric formula. □

Lemma 6.46. Let X be a scheme (or a ringed space). Let F be an OX-module of
finite presentation. Let x ∈ X. Then the stalk Fx is a finite free OX,x-module if
and only if F is finite locally free on some open neighborhood of x.

Proof. The internal statement that F is a finite free module is not geometric:∨
n≥0

∃x1, . . . , xn :F . ∀x :F . ∃!a1, . . . , an :OX . x =
∑
i aixi.

But it can equivalently be reformulated as∨
n≥0

∃α :HomOX
(F ,OnX). ∃β :HomOX

(OnX ,F). α ◦ β = id ∧ β ◦ α = id.

This reformulation is geometric, therefore it holds at x if and only if it holds on some
open neighborhood of x. The claim follows since, by the previous proposition, taking
stalks commutes with calculating HomOX

(F , ) resp. HomOX
(OnX , ); thus the

pulled back formula indeed expresses that Fx is finite free as an OX,x-module. □

Lemma 6.47. Let X be an integral scheme with generic point ξ. Let F be a
quasicoherent OX-module. Then F is a torsion module if and only if its generic
stalk Fξ vanishes.

Proof. The generic stalk vanishes if and only if the internal statement “(F = 0)¬¬”
holds. Therefore it suffices to give an intuitionistic proof of the following internal
statement: The module F is torsion if and only if any element of F is not not zero.

For the “only if” direction, let x :F be an arbitrary element. Since F is a torsion
module, there exists a regular element a :OX such that ax = 0. Since X is reduced,
regularity is equivalent to not-not-invertibility. Since we want to verify the ¬¬-stable
statement “¬¬(x = 0)”, we may in fact assume that a is invertible. Then x = 0
obviously follows.
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For the “if” direction, let x :F be an arbitrary element; by assumption, x is
not not zero. Since X is integral, Lemma 6.18 is applicable. Therefore there exists
an element a :OX such that a is not not invertible and such that invertibility of a
implies x = 0. Since F is quasicoherent, for some natural number n it holds
that anx = 0 (Theorem 8.3 below). Since a is not not invertible, it is regular (see
Lemma 9.7 below for a short and self-contained proof), and therefore an is regular.
So x ∈ Ftors. □

By simply using a different modal operator than “not not”, we will – without
any additional work – obtain a more general form of this lemma, applicable to
non-integral schemes (see Lemma 9.20).

7. Compactness and metaproperties

7.1. Quasicompactness. As stated in the introduction, quasicompactness of a
space cannot be detected by the internal language: There cannot exist a formula φ
such that a topological space is quasicompact if and only if Sh(X) |= φ, since the
latter is always a local property on X while quasicompactness is not. However,
quasicompactness can be characterized by a metaproperty of the internal language.

This result is best stated in a way which does not explicitly refer to a notion of
finiteness. So recall that quasicompactness of a topological space X can be phrased
in the following way: For any directed set I and any monotone family (Ui)i∈I of
open subsets, if X =

⋃
i Ui then X = Ui for some i ∈ I. As usual, a directed set is an

inhabited partially ordered set such that for any two elements there exists a common
upper bound. A family (Ui)i∈I is monotone if and only if i ⪯ j implies Ui ⊆ Uj .

Proposition 7.1. Let X be a topological space. Then X is quasicompact if and only
if the internal language of Sh(X) has the following metaproperty: For any directed
set I and any monotone family (φi)i∈I of formulas over X,

Sh(X) |=
∨
i∈I

φi implies for some i ∈ I, Sh(X) |= φi.

The monotonicity condition means that Sh(X) |= (φi ⇒ φj) for any i ⪯ j in I.

Stated more succinctly, a topological space X is quasicompact if and only
if “Sh(X) |=” commutes with directed “

∨
i∈I”’s.

Proof. For the “only if” direction, let such a family of formulas be given. Declare Ui
to be the largest open subset of X where φi holds. Then by assumption, the sets Ui
form a monotone family and cover X. By quasicompactness of X, some single
member Ui covers X as well, whereby the corresponding formula φi holds on X.

For the “if” direction, we observe that a monotone family (Ui) of open subsets
induces a monotone family of formulas by defining φi :≡ Ui, employing the notational
convention set out in Section 6.2. This correspondence is such that Sh(X) |=

∨
i φi

holds if and only if X =
⋃
i Ui and such that Sh(X) |= φi if and only if X = Ui.

With these observations the claim is obvious. □

Example 7.2. Let X be a quasicompact scheme (or quasicompact ringed space).
Let f ∈ Γ(X,OX) be a global function. Let the set of natural numbers be endowed
with the usual ordering. Then the family of formulas given by (fn = 0)n∈N is
monotone. Thus, if it internally holds that f is nilpotent, then f is nilpotent as an
element of Γ(X,OX) as well.

Proposition 7.3. Let X be a topological space. Let K ⊆ X be an open subset which
is locally quasicompact in the sense that there exists an open covering X =

⋃
j Uj

such that each K ∩ Uj is quasicompact. Then the internal language of Sh(X) has
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the following metaproperty: For any directed set I and any monotone family (φi)i∈I
of formulas over X it holds that

Sh(X) |=
(
K ⇒

∨
i

φi
)

implies Sh(X) |=
∨
i

(K ⇒ φi).

If additionally for any open subset V ⊆ X the set K ∩ V is locally quasicompact
in V, the following stronger and purely internal statement holds:

Sh(X) |=
(
K ⇒

∨
i

φi
)
=⇒

∨
i

(K ⇒ φi).

Proof. Assume that Sh(X) |= (K ⇒
∨
i φi). This is equivalent to K |=

∨
i φi. By

the locality of the internal language, it follows that K ∩ Uj |=
∨
i φi for each j.

Since K ∩ Uj is quasicompact, it follows by Proposition 7.1 that there exists an
index ij ∈ I such that K ∩ Uj |= φij . This is equivalent to Uj |= (K ⇒ φij ). In
particular, it holds that Uj |=

∨
i(K ⇒ φi). Since this is true for any j, it follows

that X |=
∨
i(K ⇒ φi), again by the locality of the internal language.

The second statement is a corollary of the first one. □

Example 7.4. Any retrocompact subset of a scheme is locally quasicompact in the
sense of Proposition 7.3.

Example 7.5. Let X be a scheme and f ∈ Γ(X,OX) be a global function. Then
the open set D(f) = {x ∈ X | fx is invertible in OX,x} is locally quasicompact
in the sense of Proposition 7.3, even in the stronger sense: Let V ⊆ X be any
open set. Consider a covering V =

⋃
i Ui by open affine subsets Ui = SpecAi.

Then D(f) ∩ Ui ∼= SpecAi[f
−1] is quasicompact.

From this example it will trivially follow that the nilradical
√
(0) ⊆ OX of a

scheme and indeed the radical of any quasicoherent sheaf of ideals is quasicoherent
(Example 8.7). This example is also pivotal for giving a simple description of
the quasicoherator (Proposition 8.13), which in turn is needed for an internal
understanding of the relative spectrum (Section 12).

Remark 7.6. In applications, the open set K of Proposition 7.3 is often given
as the largest open subset on which some formula ψ holds. (For instance, in
Example 7.5, K was given by the formula ⌜f is invertible in OX⌝.) Then the
conclusion of the proposition is that assuming that ψ holds commutes with directed
disjunctions.

7.2. Locality. A stronger condition on a topological space X than quasicom-
pactness is locality: A topological space is local if and only if for any open cov-
ering X =

⋃
i Ui (not necessarily directed) a certain single subset Ui covers X as

well. For instance, the spectrum of a ring A is local if and only if A is a local ring.
Locality has the following characterization as a metaproperty of Sh(X).

Proposition 7.7. Let X be a topological space. Then X is local if and only if the
internal language of Sh(X) has the following metaproperty: For any set I and any
family (φi)i∈I of formulas over X, it holds that

Sh(X) |=
∨
i∈I

φi implies for some i ∈ I, Sh(X) |= φi.

In this case, the internal language has additionally the following (weaker) metaprop-
erty: For any sheaf F on X and any formula φ(s) containing a variable s :F , it
holds that

Sh(X) |= ∃s :F . φ(s) implies for some s ∈ Γ(X,F), Sh(X) |= φ(s).
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Proof. The proof of the first part is very similar to the proof of Proposition 7.3.
For the “only if” direction of the second part, note that the antecedent implies
that there exist local sections si ∈ Γ(Ui,F) such that Ui |= φ(si) for some open
covering X =

⋃
i Ui. By locality of X, one such Ui suffices to cover X; so the

corresponding section si is actually a global section and verifies X |= φ(si). □

Remark 7.8. The second metaproperty stated in the proposition is indeed weaker
than the condition that X is local. For instance, let X be a space consisting of two
discrete points. Then Sh(X) has the second metaproperty, but X is not local.

7.3. Irreducibility. In intuitionistic logic, De Morgan’s law ¬(α ∧ β)⇒ ¬α ∨ ¬β
is not generally justified; therefore we can’t use it when working internally to the
topos of sheaves on a general scheme X. The following proposition demonstrates
that if X is irreducible, the law does hold.

Proposition 7.9. A topological space X is irreducible if and only if the internal
language of Sh(X) has the following metaproperty: For any formulas φ and ψ

Sh(X) |= ¬(φ ∧ ψ) implies Sh(X) |= ¬φ or Sh(X) |= ¬ψ,

and not Sh(X) |= ⊥. Furthermore, in this case the following internal logical principle
holds:

Sh(X) |= ∀α, β : Ω. ¬(α ∧ β)⇒ (¬α ∨ ¬β).

Proof. The statement “Sh(X) |= ¬(φ ∧ ψ)” means that U ∩ V = ∅, where U and V
are the largest open subsets on which φ respectively ψ hold. The disjunction
“Sh(X) |= ¬φ or Sh(X) |= ¬ψ” means that U = ∅ or V = ∅. And “Sh(X) |= ⊥” is
equivalent to X = ∅.

Therefore, ifX is irreducible, then the internal language has the claimed metaprop-
erty. The converse can be seen by instantiating φ and ψ with the formulas associated
to given open subsets having empty intersection. It then follows that one of these
formulas is false in the internal language; thus the associated subset is empty.

The stated internal logical principle holds since nonempty open subsets of irre-
ducible spaces are irreducible. □

7.4. Internal proofs of common lemmas.

Lemma 7.10. Let X be an irreducible reduced scheme. Then all local rings OX,x
are integral domains.

Proof. It suffices to give a proof of the following statement: Let R be a local ring
such that elements which are not invertible are nilpotent. Furthermore assume
that R is reduced. Then R is an integral domain in the weak sense of Definition 3.16.

This proof may, additionally to the rules of intuitionistic logic, use the classical
axiom stated in Proposition 7.9.

So let arbitrary elements x, y :R with xy = 0 be given. Then it is not the case
that x and y are both invertible: If they were, their product xy would be invertible
as well, contradicting 1 ̸= 0. By the classicality principle, it follows that x is not
invertible or that y is not invertible. Thus x or y is nilpotent and therefore zero. □

Lemma 7.11. Let X be a scheme (or a ringed space). Let (Ei)i be a directed system
of OX-modules such that E := colimi Ei is of finite type. If X is quasicompact, there
is an index i such that Ei is of finite type and such that the coprojection Ei → E is
an epimorphism of sheaves of modules.

Proof. Since the usual proof of the statement “if a directed colimit of modules (Mi)i
is finitely generated, then so is one of the modules and its coprojection into colimiMi
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is surjective” is intuitionistic, it can be applied in the internal universe of Sh(X).
Hence we have

Sh(X) |=
∨
i

⌜Ei is finitely generated and Ei → E is surjective⌝.

Therefore we can conclude by Proposition 4.3 and by Proposition 7.1. □

Caveat 7.12. There’s a lemma stating that on a quasicompact and quasiseparated
scheme, every quasicoherent sheaf of modules is a filtered colimit of finitely presented
sheaves of modules [126, Tag 07V9]. There’s also the corresponding statement for
modules, whose standard proof is intuitionistic: Any module M is a filtered colimit
of finitely presented modules (namely the finitely presented modules mapping to M).

However, the stated lemma does not immediately follow by applying the statement
for modules in the internal universe. This only yields that any sheaf of modules is
an internal filtered colimit; those are more general.17

8. Quasicoherent sheaves of modules

Recall that an OX -module F on a ringed space X is quasicoherent if and only if
there exists a covering of X by open subsets U such that on each such set U , there
exists an exact sequence

(OX |U )J −→ (OX |U )I −→ F|U −→ 0

of OX |U -modules, where I and J are arbitrary sets (which may depend on U).
If X is a scheme, quasicoherence can also be characterized in terms of inclusions

of distinguished open subsets of affines: An OX -module F is quasicoherent if and
only if for any open affine subscheme U = SpecA of X and any function f ∈ A, the
canonical map

Γ(U,F)[f−1] −→ Γ(D(f),F), s
fn 7−→ f−ns|D(f)

is an isomorphism of A[f−1]-modules. Here D(f) ⊆ U denotes the standard open
subset {p ∈ SpecA | f ̸∈ p}. Both conditions can be internalized.

Proposition 8.1. Let X be a ringed space. Let F be an OX-module. Then F is
quasicoherent if and only if

Sh(X) |= ∃I, J lc. ⌜there exists an exact sequence OJX → OIX → F → 0⌝.

The “ lc” indicates that when interpreting this internal statement with the Kripke–
Joyal semantics, I and J should only be instantiated with locally constant sheaves.

Proof. We only sketch the proof. The translation of the internal statement is that
there exists a covering of X by open subsets U such that for each such U , there
exist sets I, J and an exact sequence

(OX |U )J −→ (OX |U )I −→ F|U −→ 0

where I and J are the constant sheaves associated to I respectively J . The
term “(OX |U )I” refers to the internally defined free OX -module with basis the
elements of I. By exploiting that I is a discrete set from the internal point of view
(i. e. any two elements are either equal or not), one can show that this is the same
as (OX |U )I ; similarly for J . With this observation, the statement follows. □

17Any small category I induces a small category I internal to Sh(X) in such a way that the
category of diagrams over I coincides with the category of internal diagrams over I and the

corresponding notions of limit and colimit agree. However, not every internal small category is of
the form I. Therefore internal limits and colimits are more flexible than external ones.
For instance, it’s not true that any sheaf of sets is a colimit of a suitable system of copies of the
terminal sheaf. In contrast, internally, any set is a colimit of a suitable system of copies of the
singleton set.

https://stacks.math.columbia.edu/tag/07V9
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Remark 8.2. The restriction to locally constant sheaves is really necessary: The in-
ternal statement Sh(X) |= ∃I, J. ⌜there exists an exact sequence OJX → OIX → F → 0⌝
is true for any OX -module F . This is because the usual proof of the fact that any
module admits a resolution by (not necessarily finite) free modules is intuitionistically
valid and thus also valid in the internal universe.

I don’t know a useful internal characterization of locally constant sheaves (but
see Section 8.2). The alternative internal condition given by the following theorem
does not need such a characterization.

Theorem 8.3. Let X be a scheme. Let F be an OX-module. Then F is quasi-
coherent if and only if, from the internal perspective, for any f :OX , the localized
module F [f−1] is a sheaf for the modal operator (⌜f inv.⌝⇒ ).

In detail, the internal condition is that for any f :OX , it holds that

∀s :F [f−1]. (⌜f inv.⌝⇒ s = 0) =⇒ s = 0

and for any subsingleton S ⊆ F [f−1] it holds that

(⌜f inv.⌝⇒ ⌜S inhabited⌝) =⇒ ∃s :F [f−1]. (⌜f inv.⌝⇒ s ∈ S).
Unlike with the internalizations of finite type, finite presentation and coherence, this
condition is not a standard condition of commutative algebra. In fact, in classical
logic, this condition is always satisfied – for trivial logical reasons if f is invertible,
and because F [f−1] is the zero module if f is not invertible (since f is nilpotent
then, by Proposition 3.7).

That this condition in not known in commutative algebra is to be expected:
Quasicoherence is a condition on sheaves of modules, ensuring that they are locally
isomorphic to sheaves of the form M∼, where M is a plain module. But in
commutative algebra, one only studies plain modules (and not sheaves of modules).
The quasicoherence condition is imported into the realm of commutative algebra
only by the internal language.

We give the proof of Theorem 8.3 below, after first discussing some examples and
consequences. The proof will explain the origin of this condition. The localized mod-
ule F [f−1] appearing in the theorem is externally a certain sheaf. If f ∈ Γ(U,OX),
then it is the sheafification of the presheaf on U given by V 7→ Γ(V,F)[f−1].

Example 8.4. The zero OX -module is quasicoherent, since (it and) all localizations
of it are singleton sets from the internal perspective and thus □-sheaves for any
modal operator □ by Example 6.10.

Corollary 8.5. Let X be a scheme. Let F be a quasicoherent OX-module. Let G ⊆ F
be a submodule. Then G is quasicoherent if and only if

Sh(X) |= ∀f :OX . ∀s :F . (⌜f inv.⌝⇒ s ∈ G) =⇒
∨
n≥0

fns ∈ G.

Proof. We can give a purely internal proof. Let f :OX . Since subpresheaves of
separated sheaves are separated, the module G[f−1] is in any case separated with
respect to the modal operator □ with □φ :≡ (⌜f inv.⌝⇒ φ).

Now suppose that G is quasicoherent. Let f :OX . Let s :F and assume that
if f were invertible, s would be an element of G. Define the subsingleton S :=
{t :G[f−1] | ⌜f inv.⌝∧t = s/1}. Then S would be inhabited by s/1 if f were invertible.
Since G[f−1] is a □-sheaf, it follows that there exists an element u/fn of G[f−1] such
that, if f were invertible, it would be the case that u/fn = s/1 ∈ G[f−1] ⊆ F [f−1].
Since F [f−1] is □-separated, it follows that it actually holds that u/fn = s/1 ∈
F [f−1]. Therefore there exists m :N such that fmfns = fmu ∈ F . Thus fm+ns is
an element of G.
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For the converse direction, assume that G fulfills the stated condition. Letf :OX .
Let S ⊆ G[f−1] be a subsingleton which would be inhabited if f were invertible. By
regarding S as a subset of F [f−1], it follows that there exists an element u/fn ∈
F [f−1] such that, if f were invertible, u/fn would be an element of S. In particular, u
would be an element of G. By assumption it follows that there exists m :N such
that fmu ∈ G. Thus (fmu)/(fmfn) is an element of G[f−1] such that, if f were
invertible, it would be an element of S. □

Example 8.6. Let X be a scheme and s be a global section of OX . Then the
annihilator of s, i. e. the sheaf of ideals internally defined by the formula

I := AnnOX
(s) = {t :OX | st = 0} ⊆ OX

is quasicoherent. To prove this in the internal language it suffices to verify
the condition of Corollary 8.5. So let f :OX and t :OX be arbitrary and as-
sume ⌜f inv.⌝⇒ t ∈ I, i. e. assume that if f were invertible, then st would be zero.
By Proposition 3.10 it follows that fnst = 0 for some n :N, i. e. that fnt ∈ I.
Example 8.7. Let X be a scheme and I ⊆ OX be a quasicoherent sheaf of ideals.
Then the radical of I, internally definable as

√
I :=

{
s :OX

∣∣∣ ∨
n≥0

sn ∈ I
}
,

is quasicoherent as well: Let f :OX and s :OX be arbitrary and assume ⌜f inv.⌝⇒
s ∈
√
I, i. e. assume that if f were invertible, some power sn would be an element

of I. Since assuming that f is invertible commutes with directed disjunctions
(Example 7.5), it follows that for some natural number n, it holds that ⌜f inv.⌝⇒
sn ∈ I. By quasicoherence of I, we may deduce that for some natural number m, it
holds that fmsn ∈ I. Thus fs ∈

√
I.

Proposition 8.8. Let X be a scheme of dimension ≤ 0. Then any OX-module is
quasicoherent.

Proof. By Corollary 3.14, any element f :OX is invertible or nilpotent. Therefore the
quasicoherence condition of Theorem 8.3 is trivially satisfied for any OX -module. □

Remark 8.9. In general intuitionistic mathematics – not inside the internal universe
of a scheme – the notion of quasicoherence as given by the internal condition of
Theorem 8.3 does not seem to be very interesting: For many important rings, there
are few quasicoherent modules in this sense. For instance, let M be a module over
a ring R in which every element is invertible or not invertible. (The ring Z is such a
ring.) Then M is quasicoherent if and only if for any f :R which is not invertible,
the localized moduleM [f−1] is the zero module, i. e. any element ofM is annihilated
by some power fn. As a concrete example, any Z-submodule of Z which contains a
nonzero element fails to be quasicoherent.

Incidentally, the internal condition of Theorem 8.3 provides a way to distinguish
the topos of sheaves over any nontrivial topological, smooth or complex manifold
from the little Zariski topos of any scheme. This is because the topos of sheaves over
a smooth manifold satisfies the condition (referring to the sheaf of smooth functions)
if and only if the manifold is empty, basically because for no number n ≥ 0 the
singularity of the function xne1/x can be removed.

Proof of Theorem 8.3. By the well-known characterization of quasicoherence in
terms of inclusions of distinguished open subsets, an OX -module F is quasicoherent
if and only if for any affine open subset U ⊆ X and any function f ∈ Γ(U,OU ), the
canonical map

Γ(U,F)[f−1] −→ Γ(D(f),F), s/fn 7−→ f−ns|D(f) (4)
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is bijective. We will see that this map is injective for all such U and f if and only if
from the internal perspective, for any f :OX , the set F [f−1] is a separated presheaf
with respect to the modal operator (⌜f inv.⌝⇒ ); and we will see that in this case,
the map is additionally surjective for all such U and f if the full sheaf condition is
fulfilled.

Since the sheaf F [f−1] does not appear in the stated characterization, we will
first reformulate the separatedness and the sheaf condition in terms of F instead
of F [f−1]. To this end, we observe that the separatedness condition is equivalent to

∀f :OX . ∀s :F . (⌜f inv.⌝⇒ s = 0 :F) =⇒
∨
n≥0

fns = 0 :F . (5)

The equivalence can easily be proven in the internal language. The sheaf condition
is equivalent to the conjunction of the separatedness condition and

∀f :OX . ∀K ⊆ F . (⌜f inv.⌝⇒ ⌜K is a singleton⌝) =⇒∨
n≥0

∃s :F . ⌜f inv.⌝⇒ f−ns ∈ K. (6)

In one direction, a set S ⊆ F [f−1] is given; construct K := {s :F | s/1 ∈ S} ⊆ F .
In the other direction, a set K ⊆ F is given; construct S := {s :F [f−1] | ∃s′ :F . s′ ∈
K ∧ s = s′/1} ⊆ F [f−1]. The remaining details can easily be filled in.

We now interpret the internal statement (5) with the Kripke–Joyal semantics.
Using the simplification rules, the external meaning is that for any affine open
subset U ⊆ X and any function f ∈ Γ(U,OU ) the following condition is satisfied:
For any section s ∈ Γ(U,F) it should hold that

U |= (⌜f inv.⌝⇒ s = 0) implies U |=
∨
n≥0

fns = 0.

The antecedent is equivalent to saying that s is zero in Γ(D(f),F). The consequent
is (by quasicompactness of U , see Example 7.2) equivalent to saying that for
some n ≥ 0, the section fns is zero in Γ(U,F), i. e. that s is zero in Γ(U,F)[f−1].
So this condition is precisely the injectivity of the canonical map (4).

The external meaning of statement (6) is that for any affine open subset U ⊆
X and any function f ∈ Γ(U,OU ) the following condition is satisfied: For any
subsheaf K ⊆ F|U it should hold that

U |= (⌜f inv.⌝⇒ ⌜K is a singleton⌝) implies

U |=
∨
n≥0

∃s :F . ⌜f inv.⌝⇒ f−ns ∈ K.

Given the injectivity of the canonical map (4) (for any affine open subset, not
only U), this condition is equivalent to its surjectivity: To see that surjectivity is
sufficient, let a subsheaf K ⊆ F|U verifying the antecedent be given. Since K|D(f) is
a singleton sheaf, we can consider its unique section u ∈ Γ(D(f),K) ⊆ Γ(D(f),F).
By surjectivity, there exists a preimage, i. e. a fraction s/fn ∈ Γ(U,F)[f−1] such
that u = f−ns|D(f) in Γ(D(f),F). Thus U |= f−ns ∈ K holds and the consequent
is verified.

To see that surjectivity is necessary, let a section u ∈ Γ(D(f),F) be given. Define
a subsheaf K ⊆ F|U by setting Γ(V,K) := {u|V |V ⊆ D(f)}. Then K verifies the
antecedent. Thus the consequent holds: There exists an open covering U =

⋃
i Ui

such that for each i, there exists a natural number ni and a section si ∈ Γ(Ui,F)
such that f−nisi = u on Ui ∩D(f). Without loss of generality, we may assume that
the Ui are distinguished open subsets D(gi) ⊆ U ; that they are finite in number; and
that the natural numbers ni agree with each other and thus equal some number n.
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Since si = sj in Γ(Ui ∩ Uj ∩ D(f),F), injectivity of the canonical map (4) (on
the affine set Ui ∩ Uj = D(gigj)) implies that si = sj in Γ(Ui ∩ Uj ,F)[f−1]. Thus
for any indices i, j there exists a natural number mij such that fmijsi = fmijsj
in Γ(Ui ∩ Uj ,F). We may assume that the numbers mij equal some common
number m; thus the local sections fmsi glue to a section s ∈ Γ(U,F). The sought
preimage of u is the fraction s/fn+m, since f−(n+m)s|D(f) equals u in Γ(D(f),F)
(as this is true on the covering D(f) =

⋃
i(D(f) ∩ Ui)). □

8.1. The quasicoherator for radical ideals. For applications in Section 12 about
interpreting the relative spectrum as an internal spectrum, we want to specialize
to radical sheaves of ideals. In particular, we want to describe the quasicoherator –
the left adjoint to the inclusion of the quasicoherent radical ideals in the poset of all
radical ideals – in simple terms.

Caveat 8.10. The quasicoherator we refer to does not coincide with the quasicoher-
ator of OX -modules [126, Tag 077P], [133], which is the right adjoint to the inclusion
of category of quasicoherent OX -modules in the category of all OX -modules. We
discuss this in more detail in Example 8.12 below.

Proposition 8.11. Let X be a scheme. Let I ⊆ OX be a radical ideal.

(1) The ideal I is quasicoherent if and only if

Sh(X) |= ∀s :OX . (⌜s inv.⌝⇒ s ∈ I)⇒ s ∈ I.
(2) The reflection of I in the poset of quasicoherent radical ideals is the sheaf I

given by the internal expression

I := {s :OX | ⌜s inv.⌝⇒ s ∈ I}.

Proof. Both claims can be verified by purely internal reasoning. The first claim is a
straightforward calculation using the characterization given in Corollary 8.5. We
discuss the second one in more detail.

Firstly, it’s obvious that I contains I and that I is a radical ideal. To verify
that I is quasicoherent, let s :OX be given such that, if s were invertible, then s
would be an element of I. Symbolically, we have

⌜s inv.⌝ =⇒ (⌜s inv.⌝⇒ s ∈ I),
which of course implies

⌜s inv.⌝ =⇒ s ∈ I.
This is precisely the condition for s to be an element of I.

To verify that the construction I 7→ I is really left adjoint to the inclusion,
let a quasicoherent radical ideal J be given such that I ⊆ J . We have to show
that I ⊆ J . This is straightforward. □

Example 8.12. Let X := A1
k = Spec k[T ] be the affine line over a field k. Let j :

U := A1
k \{0} ↪→ X be the open inclusion of the punctured line. Then I := j!OU ↪→

OX is the standard example of a radical sheaf of ideals which is not quasicoherent.
The quasicoherator of modules maps I to (Γ(X, I))∼, so to the zero module. In
contrast, the reflection of I in the poset of quasicoherent radical ideals is (T ).

Generally, the reflection I of a radical ideal I is the unique radical ideal such
that I is quasicoherent and such that D(I) = D(I). Explicitly, it is the subsheaf
of OX given by

U 7−→ {f ∈ OX(U) | 1 ∈ I(D(f))}.
For arbitrary OX -algebras A, the description of the quasicoherator for radical

ideals of A is more involved than the description given in Proposition 8.11(2), but
still sufficiently explicit for the applications in Section 12.

https://stacks.math.columbia.edu/tag/077P
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Proposition 8.13. Let X be a scheme. Let A be a quasicoherent OX-algebra. Then
the reflection of a radical ideal I ⊆ A in the poset of quasicoherent radical ideals
of A is given by the internal expression

I :=
⋃
n≥0

In,

where (In) is the family of radical ideals defined recursively by

I0 := I,
In+1 := the radical ideal generated by {fs | f :OX , s :A, (⌜f inv.⌝⇒ s ∈ In)}.

Proof. We argue internally. The set I contains I and is a radical ideal, as an
ascending union of radical ideals. To verify that I is quasicoherent, let f :OX
and s :A be given such that, if f were invertible, then s would be an element of I.
This means that we have

⌜f inv.⌝ =⇒
∨
n≥0

s ∈ In.

Since assuming that f is invertible commutes with directed disjunctions (Exam-
ple 7.5), there is a natural number n such that

⌜f inv.⌝ =⇒ s ∈ In.

Therefore fs ∈ In+1 ⊆ I.
Finally, to verify that the construction I 7→ I is indeed left adjoint to the inclusion

of the quasicoherent radical ideals in all radical ideals, let a quasicoherent radical
ideal J be given such that I ⊆ J . By induction we can show that In ⊆ J for all
natural numbers n. Therefore I ⊆ J . □

Remark 8.14. If the goal was to close a given radical ideal under the condition

∀s :A. (⌜f inv.⌝⇒ s ∈ I) =⇒ fs ∈ I,

where f :OX is a fixed element, no infinite iteration would be necessary. The closure
would in this case simply be given by

If := the radical ideal generated by the set {fs | s :A, (⌜f inv.⌝⇒ s ∈ I)}.

There is also a purely formal description of the reflector, given by

I 7−→
⋂
{J ⊆ A |J is a quasicoherent radical ideal such that I ⊆ J }.

Verifying that this construction has the universal property of the reflector is straight-
forward. However, it is not sufficiently concrete for calculations. In particular, we
don’t see a way to prove the following corollary without the explicit description
given by Proposition 8.13.

Corollary 8.15. Let X be a scheme. Let A be a quasicoherent OX-algebra. Let I
and J be radical ideals of A. Then I ∩ J = I ∩ J .

Proof. The claim is not purely formal. As a left adjoint, the reflector preserves
arbitrary suprema (as a map from the poset of all radical ideals into the poset of all
quasicoherent radical ideals); but the claim is that it preserves (finite) intersections.

Since the reflector is monotone, it is clear that I ∩ J ⊆ I ∩ J .
To verify the converse direction, we show by induction that In ∩ Jm ⊆ I ∩ J

for all natural numbers n and m. The base case is trivial, since I0 ∩ J0 = I ∩ J .
For the induction step let x ∈ In+1 ∩ Jm. Then xℓ =

∑
i fisi for some natural

number ℓ and elements fi :OX , si :A such that ⌜fi inv.⌝⇒ si ∈ In. In particular we
have ⌜fi inv.⌝⇒ six ∈ In ∩ Jm, so by the induction hypothesis ⌜fi inv.⌝⇒ six ∈
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I ∩ J . This implies fisix ∈ I ∩ J , since I ∩ J is quasicoherent. Therefore xℓ+1 ∈
I ∩ J and thus x ∈ I ∩ J . □

Remark 8.16. If in the situation of Proposition 8.13 the algebra A is not quasi-
coherent, the construction I 7→ I is still left adjoint to the inclusion of the radical
sheaves of ideals which satisfy the (then somewhat unmotivated) internal condition
given in Corollary 8.5 in the poset of all radical sheaves of ideals. Also Corollary 8.15
remains valid. This is even the case if X is an arbitrary ringed space; in this case,
the proofs of Proposition 8.13 and Corollary 8.5 have to be modified, since then we
may not suppose that assuming that an element of OX is invertible commutes with
directed disjunctions.

Instead, the reflector I 7→ I has to be characterized by

I := least fixed point of P above I,

where P is the monotone operator on the set of radical ideals which takes a radical
ideal I to the radical ideal generated by {fs | f :OX , s :A, (⌜f inv.⌝⇒ s ∈ I)}. The
existence of these fixed points is guaranteed by the Knaster–Tarski theorem, which
is intuitionistically valid in the version we need [19].

The following proof scheme is useful for verifying properties of the least fixed
point. Let φ(J ) be a statement on radical ideals J such that φ(supi Ji)⇔

∨
i φ(Ji)

for every family (Ji)i of radical ideals. If

φ(P (J )) =⇒ φ(J )

for all radical ideals J containing I, then φ(I) ⇒ φ(I). This proof scheme is a
special case of the following more general scheme, which is also sometimes needed
for reasoning about the least fixed point.

Let L be a complete partial order. Let α be a map from the set of radical ideals
to L such that α(supi Ji) = supi α(Ji) for every family (Ji)i of radical ideals. If

α(P (J )) ⪯ α(J )

for all radical ideals J containing I, then α(I) ⪯ α(I).

Remark 8.17. The reflector can also be given by the formula

I =
⋂
J

(
J :

⋂
f :OX

(J : If )
)
,

where If is as in Remark 8.14 and the first intersection is indexed by all radical
ideals J ⊆ A. This identity follows by the description of I as a least fixed point and
the explicit formula for the least fixed point from the proof of its existence [19]. It
also follows from the observation that the operation J 7→ J is the nucleus associated

to the intersection of the sublocales given by the nuclei J 7→ J f , which in turn is
evident from the description of the relative spectrum as a classifying locale given in
Proposition 12.14.

8.2. Characterizing locally constant sheaves. We don’t think that there is a
characterization of locally constant sheaves in the internal language of an arbitrary
topos of sheaves, other than the following trivial one: A sheaf E on a topological
space X (or a locale, or a site) is locally constant if and only if

Sh(X) |=
∨
M

⌜E ∼=M⌝,

where the disjunction is over all sets and M is the constant sheaf associated to the
set M . Strictly speaking, because of the class-sized disjunction, this statement is not
even well-formed; however one can still make sense of its Kripke–Joyal translation.
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In the special case that X is a scheme, however, there might be an internal
characterization. We failed to disprove the following speculation:

Speculation 8.18. Let X be a scheme. Let E be a sheaf of sets on X. Then E
is locally constant if and only if OX⟨E⟩, the free OX -module on E (constructed
internally), is quasicoherent.

The free module occurring in this speculation is the sheafification of the presheaf

U 7−→ Γ(U,OX)⟨Γ(U, E)⟩

and can also be described as f!f
−1OX , where f : Ét(X)→ X is the projection of

the étalé space associated to E (and Ét(X) is equipped with a scheme structure by

exploiting that Ét(X) is locally homeomorphic to X).
The “only if” direction of Speculation 8.18 certainly holds; in fact, if E is locally

constant, then OX⟨E⟩ is even locally free. There are the following indications that
the converse might hold.

IfX happens to be local as a topological space, then the converse holds: Exploiting
that in this case Γ(X,OX⟨E⟩) ∼= Γ(X,OX)⟨Γ(X, E)⟩ one can show that the canonical
morphism Γ(X, E)→ E is an isomorphism. Returning to the general situation, we see
that the pullback of E to any of the Spec(OX,x) is constant if OX⟨E⟩ is quasicoherent.
Thus E is “constant on all infinitesimal neighborhoods”.

If OX⟨E⟩ is not only quasicoherent, but even locally free (locally isomorphic to a

module of the form O⊕M
X ), then locally we have OX,x⟨Ex⟩ ∼= OX,x⟨M⟩, so Ex ∼=M ,

so at least the stalks are locally constant. Similarly, if OX⟨E⟩ is of finite presentation,
then E is locally constant (with finite stalks).

Finally, let j : V ↪→ X be the inclusion of an open subset. Let E be j!(1), the
extension of the terminal sheaf on V by the empty set. This sheaf is locally constant
iff V is a clopen subset. Now furthermore assume that X is integral. In this case
one can check that OX⟨E⟩ = j!(OV ) (extension by zero) is quasicoherent iff V is a
clopen subset. Thus the converse holds in this case.

9. Rational functions and Cartier divisors

9.1. The sheaf of rational functions. Recall that the sheaf KX of rational
functions on a scheme X (or a ringed space) can be defined as the sheafification of
the presheaf

U ⊆ X open 7−→ Γ(U,OX)[Γ(U,S)−1],

where Γ(U,S) is the multiplicative set of those sections of OX on U which are
regular in each stalk OX,x, x ∈ U . Recall also that there are some wrong definitions
in the literature [80].

Using the internal language, we can give a simpler definition of KX . Recall that
we can associate to any ring R its total quotient ring, i. e. its localization at the
multiplicative subset of regular elements. Since from the internal perspective OX is
an ordinary ring, we can associate to it its total quotient ring OX [S−1], where S is
internally defined by the formula

S := {s :OX | ⌜s is regular⌝} ⊆ OX .
Externally, this ring is the sheaf KX .

Proposition 9.1. Let X be a scheme (or a ringed space). The sheaf of rings defined
in the internal language by localizing OX at its set of regular elements is (canonically
isomorphic to) the sheaf KX of rational functions.

Proof. Internally, the ring OX [S−1] has the following universal property: For any
ring R and any homomorphism OX → R which maps the elements of S to units,



9. RATIONAL FUNCTIONS AND CARTIER DIVISORS 81

there exists exactly one homomorphism OX [S−1]→ R which renders the evident
diagram commutative.

OX //

$$

R

OX [S−1]

;;

The translation using the Kripke–Joyal semantics gives the following universal
property: For any open subset U ⊆ X, any sheaf of rings R on U and any
homomorphism OX |U → R which maps all elements of Γ(V,S) for open subsets
V ⊆ U to units, there exists exactly one homomorphism OX [S−1]|U → R which
renders the evident diagram commutative. It is well-known that the sheaf KX as
usually defined has this universal property as well. □

Proposition 9.2. Let X be a scheme (or a ringed space). Then the stalks of KX
are given by

KX,x = OX,x[S−1
x ].

The elements of Sx are exactly the germs of those local sections which are regular
not only in OX,x, but in all rings OX,y where y ranges over some open neighborhood
of x (depending on the section).

Proof. Since localization is a geometric construction, the first statement is made
entirely trivial by our framework. The second statement follows since

Γ(U,S) = {s ∈ Γ(U,OX) |U |= ⌜s is regular⌝}
and since regularity is a geometric implication, so that U |= ⌜s is regular⌝ if and
only if the germ sy is regular in OX,y for all y ∈ U . □

Remark 9.3. Speaking internally, the multiplicative set S is saturated. Therefore
an element s/t :KX is invertible in KX if and only if the numerator s belongs to S,
that is if s is an regular element of OX .

9.2. Regularity of local functions. It is well-known that on a locally Noetherian
scheme, regularity spreads from stalks to neighborhoods, that is that a section
of OX is regular in OX,x if and only if it is regular on some open neighborhood of x.
This fact has a simple proof in the internal language.

Proposition 9.4. Let X be a locally Noetherian scheme. Let s ∈ Γ(U,OX) be a
local function on X. Let x ∈ U . Then the following statements are equivalent:

(1) The section s is regular in OX,x.
(2) The section s is regular in all local rings OX,y where y ranges over some

open neighborhood of x.

Proof. Let □ be the modal operator defined by □φ :≡ ((φ ⇒ !x) ⇒ !x). By
Corollary 6.32, we are to show that the following statements of the internal language
are equivalent:

(1) (⌜s is regular⌝)□, i. e. ∀t :OX . st = 0⇒ □(t = 0).
(2) □(⌜s is regular⌝), i. e. □(∀t :OX . st = 0⇒ t = 0).

It is clear that the second statement implies the first – in fact, this is true without
any assumptions on X: Let t :OX be such that st = 0. Since we want to prove the
boxed statement □(t = 0), we may assume that s is regular and prove t = 0. This
is immediate. (This direction also follows simply by examining the logical form and
applying Lemma 6.25.)

For the converse direction, consider the annihilator of s, i. e. the ideal

I := AnnOX
(s) = {t :OX | st = 0} ⊆ OX .
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This ideal satisfies the quasicoherence condition (this was Example 8.6), thus I
is a quasicoherent submodule of a finitely generated module. Since X is locally
Noetherian, it follows that I is finitely generated as well, say by x1, . . . , xn : I. By
assumption, each generator xi : I fulfills □(xi = 0). Since we want to prove a boxed
statement, we may in fact assume xi = 0. Thus I = (0) and the assertion that s is
regular follows. □

The proof critically depends on the ideal I being finitely generated, since a modal
operator need only commute with finite conjunctions. Intuitively, each time we
use the modus ponens rule (□φ ∧ (φ ⇒ ψ)) ⇒ □ψ, we restrict to a smaller open
neighborhood of x. Since infinite intersections of open sets need not be open, we
cannot expect an infinitary modus ponens rule to hold.

Corollary 9.5. Let X be a locally Noetherian scheme. Then the stalks KX,x of
the sheaf of rational functions are given by the total quotient rings of the local
rings OX,x.

Proof. Follows by combining Proposition 9.2 and Proposition 9.4. □

9.3. Normality. Recall that a ring R is normal if and only if it is integrally closed
in its total quotient ring. Recall also that a scheme X (or a ringed space) is normal
if and only if all rings OX,x are normal.

Proposition 9.6. A locally Noetherian scheme is normal if and only if the ring OX
is normal from the internal perspective.

Proof. The condition of normality can be put into a form which is almost a geometric
implication:

∀s, t :OX .
(
⌜t regular⌝ ∧

∃a0, . . . , an−1 :OX . sn + an−1ts
n−1 + · · ·+ a1t

n−1s+ a0t
n = 0

)
=⇒

∃u :OX . s = ut.

The only non-geometric subpart is the condition on t to be regular. However, by
Proposition 9.4, for the purposes of comparing its truth at points vs. on neighbor-
hoods, it behaves just like a geometric formula. Therefore the claim follows. □

9.4. Geometric interpretation of rational functions. Recall that on integral
schemes, rational functions (i. e. sections of KX) are the same thing as regular
functions defined on dense open subsets. This amounts to saying that KX is the ¬¬-
sheafification of OX (see Proposition 6.15). We want to rederive this result, as far
as possible in the internal language, and generalize it to arbitrary (not necessarily
locally Noetherian) schemes.

Lemma 9.7. Let X be a reduced scheme. Then:

(1) OX is ¬¬-separated.
(2) Internally, an element s :OX is regular if and only if it is not not invertible.

Proof. Recall from Corollary 3.9 that

Sh(X) |= ∀s :OX . ¬(⌜s invertible⌝)⇔ s = 0. (⋊⋉)

From this we can deduce that OX is ¬¬-separated: Assume ¬¬(s = 0) for s :OX .
If s were invertible, we would have ¬¬(1 = 0) and thus ⊥. Therefore s is not
invertible and thus zero.

For the “only if” direction of the second statement, note that a regular element
is not zero (if it were, then the true statement 0 · 0 = 0 · 1 would imply the false
statement 0 = 1) and thus not not invertible (by the contrapositive of equivalence (⋊⋉)).
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For the “if” direction, let st = 0 in OX . Since s is not not invertible, it follows that t
is not not zero. Since OX is ¬¬-separated, this implies that t really is zero. □

For the following, we need two technical conditions. Say that an affine scheme SpecA
has property (⋆) if and only if:

Every open dense subset U ⊆ SpecA contains a standard open dense
subset.

Say that SpecA has property (⋆⋆) if and only if:

Every open scheme-theoretically dense subset U ⊆ SpecA contains
a standard open scheme-theoretically dense subset.

The first condition is satisfied if A is an irreducible ring (i. e. if SpecA is irreducible)
or more generally if A contains only finitely many minimal prime ideals. Both
conditions are satisfied if A is integral or if A is Noetherian; for convenience, we
give a proof in the latter case.

Proposition 9.8. Let A be a Noetherian ring. Then SpecA has properties (⋆)
and (⋆⋆).

Proof. Recall that, under the Noetherian hypothesis, an open subset of SpecA
is dense if and only if it contains all minimal prime ideals (this fact holds more
generally if there are only finitely many minimal prime ideals) and that it is scheme-
theoretically dense if and only if it contains all associated prime ideals. There are
only a finite number of these prime ideals. Therefore the claim is reduced to the
following statement:

Let p1, . . . , pn be a finite number of points of an open subset U ⊆ SpecA. Then
there exists a standard open subset D(f) ⊆ U which also contains these points.

The proof of this statement is a direct application of the prime avoidance lemma.
□

Proposition 9.9. Let X be a reduced scheme. Assume that every open affine
subscheme has property (⋆). (For instance, this condition is satisfied if X is integral,
the set of irreducible components is locally finite, or if X is locally Noetherian.)
Then KX is the ¬¬-sheafification of OX .

Proof. We first show that KX is ¬¬-separated, so assume ¬¬(a/s = 0) for a/s :KX .
Since KX is obtained from OX by localizing at regular elements, the fraction a/s
vanishes in KX if and only if a = 0 in OX . Thus it follows that ¬¬(a = 0) in OX
and therefore a = 0 in OX ; in particular, a/s = 0 in KX .

We defer the proof that KX is a ¬¬-sheaf to the end and first verify the universal
property of ¬¬-sheafification. So let G be a ¬¬-sheaf and let α : OX → G be a map.
We define an extension ᾱ : KX → G in the following way: Let f :KX . Define the
subsingleton S := {x :G | ∃b :OX . f = b/1∧x = α(b)} ⊆ G. Since f can be written in
the form a/s with s not not invertible, it follows that S is not not inhabited. Since G
is a ¬¬-sheaf, there exists a unique x :G such that ¬¬(x ∈ S). We declare ᾱ(f)
to be this x. It is straightforward to check that the composition OX → KX → G
equals α and that ᾱ is unique with this property.

Up to this point, the proof did not need that X is a scheme – it was enough
for X to be a ringed space such that equivalence (⋊⋉) holds and such that ¬(0 = 1)
in OX . Only now, in showing that KX is a ¬¬-sheaf, the scheme condition enters.
To this end, we first reformulate the sheaf condition in a way such that it only refers
to OX , not KX : The quotient ring KX is a ¬¬-sheaf if and only if

Sh(X) |= ∀T ⊆ OX . ⌜T is a subsingleton⌝ ∧ ¬¬(⌜T is inhabited⌝) =⇒
∃a, b :OX . ⌜b is regular⌝ ∧ ¬¬(b−1a ∈ T ).



84 II. THE LITTLE ZARISKI TOPOS

This is done just as in the proof of Theorem 8.3. The expression “b−1” refers to
the inverse of b which indeed exists in a doubly negated context, since b is assumed
regular. More explicitly, we should write

¬¬(∃c :OX . bc = 1 ∧ ca ∈ T ) instead of ¬¬(b−1a ∈ T ).
To verify the Kripke–Joyal interpretation of the rewritten sheaf condition, let an
affine open subset U = SpecA ⊆ X having property (⋆) and a subsheaf T ↪→ OX |U
be given such that T is internally a subsingleton and not not inhabited. We may
glue the unique germs in the inhabited stalks of T to obtain a section s ∈ Γ(V,OX)
where V ⊆ U is a dense open subset. Since U has property (⋆), we may assume
that V = D(f) is a standard open subset. Because V is dense and A is reduced, the
function f is a regular element ofA. Since Γ(V,OX) = A[f−1], we can write s = a/fn

with a ∈ A and n ≥ 0.
By Lemma 3.18, the function b := fn is also regular as an element of OU from

the internal point of view. The function b is invertible on V , since V = D(f) = D(b).
It follows that on the dense open subset V ⊆ U , the sections s and b−1a agree. This
observation concludes the proof. □

Corollary 9.10. Let X be a reduced scheme such that any open affine subscheme
has property (⋆). Then KX is the result of pulling back OX to the sublocale X¬¬
and then pushing forward again. If X is irreducible with generic point ξ, then KX
is the constant sheaf associated to the set OX,ξ.

Proof. Recall from Section 6.4 that pulling back to X¬¬ is equivalent to sheafifying
with respect to the double negation modality; and that pushing forward is equivalent
to forgetting the sheaf property. Therefore the first statement holds.

For the second statement, recall from Lemma 6.16 that the sublocale X¬¬ is given
by the subspace {ξ}; that the sheafification functor Sh(X)→ Sh({ξ}) ≃ Set is given
by calculating the stalk at ξ; and that the inclusion functor Set ≃ Sh({ξ}) ↪→ Sh(X)
is given by the constant sheaf construction. □

If X is a general scheme (not necessarily reduced), we can describe KX in a
similar way as a sheafification of OX ; specifically, it is the sheafification with respect
to the modal operator defined by

□̂φ :≡ ⌜OX is (φ⇒ )-separated⌝

in the internal language of Sh(X), i. e.

□̂φ :≡ (∀s :OX . (φ⇒ s = 0)⇒ s = 0).

This modal operator has an explicit scheme-theoretic description.

Lemma 9.11. Let U be an open subset of a scheme X. Then Sh(X) |= □̂U if and
only if U is scheme-theoretically dense in X.

Proof. We have the following chain of equivalences.

X |= □̂U

⇐⇒ ⌜OX is (U ⇒ )-separated⌝

⇐⇒ X |= ⌜OX → O+
X is injective⌝

(where the plus construction is wrt. the modality (U ⇒ ))

⇐⇒ X |= ⌜OX → O++
X is injective⌝

(by the factorization OX → O+
X → O

++
X )

⇐⇒ the canonical morphism OX → j∗OU (with j : U ↪→ X) is injective

⇐⇒ U is scheme-theoretically dense in X. □
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Using the internal language of a scheme, talking about scheme-theoretically dense
open subsets is therefore just as easy as talking about ordinary topologically dense

open subsets; the difference simply amounts to using the modal operator □̂ instead
of “not not”.

Proposition 9.12. Let X be a ringed space. Then:

(1) The operator □̂ fulfills the axioms for a modal operator.

(2) OX is □̂-separated.

(3) KX is □̂-separated.

(4) Internally, it holds that □̂(⌜f inv.⌝) implies that f is regular for any f :OX .

Suppose furthermore that X is a scheme. Then:

(5) The converse in (4) holds.

(6) If every open affine subscheme of X has property (⋆⋆), then KX is the □̂-
sheafification of OX .

Proof. The first four properties are entirely formal; we thus skip over some details.
For the first property, we verify the second axiom on a modal operator. So we

assume □̂□̂φ and have to show □̂φ. To this end, let s :OX be arbitrary such
that φ⇒ (s = 0); we have to prove that s = 0. If OX were separated with respect
to the modal operator (φ⇒ ), it would follow that s = 0. So unconditionally it

holds that □̂φ ⇒ (s = 0). Since by assumption OX is (□̂φ ⇒ )-separated, the
claim follows.

For the second property, let s :OX be arbitrary such that □̂(s = 0). Obviously
it holds that (s = 0) ⇒ (s = 0). Thus, since OX is separated with respect
to ((s = 0)⇒ ), it follows that s = 0. The proof of the third property is similar.

For the fourth property, assume □̂(⌜f inv.⌝) and let h :OX be arbitrary such
that fh = 0. Then, trivially, it holds that ⌜f inv.⌝⇒ h = 0. Since OX is separated
with respect to (⌜f inv.⌝⇒ ), it follows that h = 0.

We now suppose that X is a scheme. To verify the fifth property, let a regular
element f :OX be given. We have to show that OX is separated with respect to
the modality (⌜f inv.⌝⇒ ). So assume that ⌜f inv.⌝⇒ (s = 0) for some s :OX .
By Proposition 3.10 it follows that fns = 0 for some natural number n. Since f is
regular, we may conclude that s = 0.

The verification of the universal property of KX is done analogously as in the
case that X is reduced: For the proof of Proposition 9.9, it was critical that regular
elements of OX are not not invertible. We now need (and have) that regular elements

of OX are □̂(⌜invertible⌝).
Thus it only remains to verify that KX is a □̂-sheaf. We may again imitate the

proof of Proposition 9.9; using the same notation, we may now suppose that V is a

standard open subset such that U |= □̂V (previously, we supposed that U |= ¬¬V ).
The proof that the denominator b is regular (as seen from the internal perspective,

as an element of OU ) now goes as follows: We have V ⊆ D(b). Therefore U |= □̂V
implies U |= □̂(⌜b inv.⌝). By the fourth property, it follows that U |= ⌜b is regular⌝.

□

Remark 9.13. The modal operator □̂ is the largest (weakest) operator such

that OX is □̂-separated, i. e. if □ is any modal operator such that OX is □-separated,

then □φ⇒ □̂φ for any proposition φ.

In the special case that X is a reduced scheme, Proposition 9.12 recovers the
result of Proposition 9.9:
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Proposition 9.14. Let X be a scheme. Then Sh(X) |= ∀φ : Ω. □̂φ⇒ ¬¬φ. The

converse holds if X is reduced, so that in this case the modal operator □̂ coincides
with the double negation modality.

Proof. We argue internally. Let φ be an arbitrary truth value and assume that □̂φ.
The negation ¬φ (which is defined as φ⇒ ⊥) is equivalent to φ⇒ (1 = 0). Since
by assumption OX is separated with respect to the (φ⇒ )-modality, this in turn
is equivalent to 1 = 0 :OX , i. e. to ⊥. Thus ¬¬φ.

For the converse direction, let φ⇒ (s = 0) for some s :OX ; we have to show that
in fact s = 0. Since by assumption ¬¬φ, it follows that s is not not zero. Since X
is reduced, OX is ¬¬-separated, so this implies that s is really zero. □

As a corollary, we can reprove the following basic lemma about scheme-theoretical
denseness.

Lemma 9.15. Let U be an open subset of a scheme X. If U is scheme-theoretically
dense, then U is also dense in the plain topological sense. The converse holds if X
is reduced.

Proof. The set U is scheme-theoretically dense if and only if Sh(X) |= □̂U and is
dense if and only if Sh(X) |= ¬¬U . Therefore the claim follows from Proposition 9.14.

□

Proposition 9.16. Let X be a scheme such that any open affine subscheme has
property (⋆⋆). Then KX is the result of pulling back OX to the sublocale X□̂

associated to the modal operator □̂ and then pushing forward again. If X is locally
Noetherian, this sublocale is the subspace of associated points in X.

In formulas, the proposition states that the canonical map

KX −→ i∗i
−1OX

is an isomorphism, where i : X□̂ ↪→ X is the inclusion of the sublocale X□̂. This
result requires a cover with property (⋆⋆), but no Noetherian hypothesis.

Proof. The first statement follows trivially by the results of Section 6.4 and the fact

that KX is the □̂-sheafification of OX .
For the second statement, we need to verify that the nucleus jAss(OX) associated

to the subspace of associated points coincides with the nucleus j□̂ associated to the

modal operator □̂. Recall from Subsection 6.3 that the latter is given by

j□̂(U) = largest open subset of X on which □̂U holds

=
⋃
{V ⊆ X | V open, V |= □̂U}

and note that the former is given by

jAss(OX)(U) =
⋃
{V ⊆ X | V open, V ∩Ass(OX) ⊆ U}.

This is a general fact of locale theory, not depending on particular properties
of Ass(OX). To verify this, one needs to check that jAss(OX) is indeed a nucleus
and that the canonical map

{U ∈ T (X) | jAss(OX)(U) = U} −→ T (Ass(OX)), U 7−→ Ass(OX) ∩ U

is an isomorphism of frames with inverse given by Ass(OX) ∩ U 7→ jAss(OX)(U).



9. RATIONAL FUNCTIONS AND CARTIER DIVISORS 87

The equivalence thus follows from a standard result on the set of associated points
on locally Noetherian schemes:

V ∩Ass(OX) ⊆ U
⇐⇒ Ass(OV ) ⊆ U
⇐⇒ U ∩ V is scheme-theoretically dense in U

(this step requires the Noetherian assumption)

⇐⇒ V |= □̂U. □

Lemma 9.17. Let X be a scheme such that any open affine subscheme has prop-
erty (⋆⋆). Let j : U ↪→ X be the inclusion of an open subset containing the
sublocale X□̂. (If X is locally Noetherian, this is equivalent to requiring that U
contains Ass(OX).) Then the canonical morphism KX → j∗KU is an isomorphism.

Proof. Write i : X□̂ ↪→ X and i′ : X□̂ ↪→ U for the inclusions. By Proposi-

tion 9.16, the sheaf KX is given by i∗i
−1OX . Similarly, the sheaf j∗KU is given

by j∗i
′
∗i

′−1j−1OX . The claim follows since j ◦ i′ = i. □

Lemma 9.18. Let X be a scheme such that any open affine subscheme has prop-
erty (⋆) respectively (⋆⋆). Then

Sh(X) |= ∀φ : Ω. ¬¬φ =⇒ ∃f :OX . ¬¬(⌜f inv.⌝) ∧ (⌜f inv.⌝⇒ φ)

respectively

Sh(X) |= ∀φ : Ω. □̂φ =⇒ ∃f :OX . □̂(⌜f inv.⌝) ∧ (⌜f inv.⌝⇒ φ).

Proof. The proof of Lemma 6.18 carries over, mutatis mutandis. □

Proposition 9.19. Let X be a scheme of dimension ≤ 0 such that the set of
irreducible components is locally finite or such that X is locally Noetherian. Then
the internal language of Sh(X) is Boolean. (The converse holds as well and was
already stated as Corollary 3.15.)

Proof. It suffices to verify the principle of double negation elimination, since the
law of excluded middle is equivalent to it.18 So let φ be an arbitrary formula and
assume ¬¬φ. By the previous lemma there exists an element f :OX such that f is
not not invertible and such that (⌜f inv.⌝⇒ φ). Since dimX ≤ 0, this element is
invertible or nilpotent (Corollary 3.14). In the first case, we are done. In the second
case, some power fn is zero and therefore in particular not not zero. Since f is
not not invertible, this implies that not not 1 = 0. On the other hand 1 ̸= 0, so we
obtain a contradiction; from this contradiction φ trivially follows. □

Lemma 9.20. Let X be a locally Noetherian scheme. Let F be a quasicoherent OX-
module. Then F is a torsion module if and only if the restriction of F to Ass(OX)
vanishes.

Proof. By Proposition 9.16 and Lemma 9.18 it suffices to repeat the proof of

Lemma 6.47 with “not not” substituted by “□̂”. □

18This is a standard fact of intuitionistic logic. Assume that the principle of double negation
elimination holds. We want to verify the law of excluded middle, so let an arbitrary formula φ be
given. Even intuitionistically it holds that ¬¬(φ ∨ ¬φ). By double negation elimination it follows
that φ ∨ ¬φ.
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9.5. Cartier divisors. Let X be a scheme (or a ringed space). Recall that a
Cartier divisor on X is a global section of the sheaf of groups K×

X/O
×
X . This

sheaf can be constructed internally, with the same notation: It is the quotient of
the group of invertible elements of the ring KX by the subgroup of invertible
elements of the ring OX . So an arbitrary section of K×

X/O
×
X is internally of

the form [s/t] with s, t :OX being regular elements; this is a simpler description
than the usual external one as a family (fi)i of functions fi ∈ Γ(Ui,K×

X) such

that f−1
i |Ui∩Uj · fj |Ui∩Uj ∈ Γ(Ui ∩ Uj ,O×

X) for all i, j.
We can sketch the basic theory of Cartier divisors completely from the internal

perspective. In accordance with common practice, we write the group operation
of K×

X/O
×
X (which is induced by multiplication of elements in K×

X) additively.

Definition 9.21. A Cartier divisor is effective if and only if, from the internal
perspective, it can be written in the form [s/1] with s :OX being a regular element.

Thus a Cartier divisor [s/t] is effective if and only if s is an OX -multiple of t.

Definition 9.22. A Cartier divisor D is principal if and only if there exists a
global section f ∈ Γ(X,K×

X) such that internally, D = [f ]. Two Cartier divisors are
linearly equivalent if and only if their difference is a principal divisor.

Decidedly, principality is a global notion: For any divisor D there exists an open
covering X =

⋃
i Ui and local sections fi ∈ Γ(Ui,K×

X) such that D|Ui = [fi].

Definition 9.23. The line bundle associated to a Cartier divisor D is the OX -
submodule

OX(D) := {g :KX | gD ∈ OX} = D−1OX ⊆ KX
of KX . Here we are abusing language for “gD ∈ OX” to mean that gf ∈ OX if D =
[f ] with f :KX ; and for “D−1OX” to mean f−1OX . This condition respectively
submodule does not depend on the representative f , since f is well-defined up to
multiplication by an element of O×

X .

The submodule OX(D) is indeed locally free of rank 1, since internally f−1 gives a
one-element basis. The divisor D is effective if and only if OX(−D) is a subset of OX
from the internal perspective (this comparison makes sense, since OX(−D) and OX
are both canonically embedded in KX). In this case, we can define the support of D
to be the closed subscheme of X associated to the sheaf of ideals OX(−D) ⊆ OX .

The line bundle OX(D) can also be written in the familiar form

OX(D) = {g :KX | div(g) +D ≥ 0},
if we define “div(g)” as the equivalence class [g] : KX/O×

X , interpret the left-hand

side of the inequality as an element of KX/O×
X , and declare that [s/t] ≥ 0 if and

only if s is an OX -multiple of t.
On the other hand, a description like

“OX(D) = {0} ∪ {g :K×
X | div(g) +D ≥ 0}”

is not possible, since the case distinction necessary for a verification of the inclu-
sion “⊆” is not possible intuitionistically.

Definition 9.24. The Cartier divisor associated to a free OX-submodule L ⊆ KX
of rank 1 is D := [f−1], where f :KX is the unique element of some one-element
basis of L.

The basis element f :KX does indeed lie in K×
X : Write f = s/t with s, t :OX . It

suffices to show that s is a regular element of OX . So let h :OX be such that sh = 0
in OX . Then in particular hf = 0 in KX . By linear independence, it follows
that h = 0 in KX and thus h = 0 in OX .
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Furthermore, the associated divisor does not depend on the choice of f , since f
is well-defined up to multiplication by an element of O×

X : If fOX = gOX ⊆ KX ,
then there exist elements u, v :OX such that fu = g and gv = f in KX . It follows
that uv = fuvf−1 = gvf−1 = ff−1 = 1 in KX and thus in OX , by injectivity of
the localization morphism OX → KX . Therefore u and v are elements of O×

X .

Lemma 9.25. Let D and D′ be divisors on X. Then OX(D) ⊗OX
OX(D′) ∼=

OX(D +D′).

Proof. The wanted morphism of sheaves OX(D)⊗OX(D′)→ OX(D+D′) is given
by multiplication. That this is well-defined and an isomorphism can be checked
from the internal point of view, where the claims are obvious. □

Proposition 9.26. The association D 7→ OX(D) defines a one-to-one corre-
spondence between Cartier divisors on X and rank-one submodules of KX . This
correspondence descends to a one-to-one correspondence between Cartier divisors
up to linear equivalence and rank-one submodules of KX up to isomorphism (as
abstract OX-modules, ignoring their embedding into KX).

Proof. The first statement is obvious from the definitions. For the second statement,
it suffices to show that OX(D) is isomorphic to OX if and only if D is principal.
An isomorphism OX → OX(D) gives a global section f ∈ Γ(X,K×

X) (by considering
the image of the unit element) such that internally, D = [f−1]; this shows that D is
principal. The converse is similar. □

For the following definition, recall that we can localize an OX -module L at the
set S ⊆ OX of regular elements to obtain a KX -module L[S−1].

Definition 9.27. Let f :L[S−1] be a rational section of a line bundle L on X.
Assume that “f is nontrivial”, that is multiplication by f is an injective map OX →
L[S−1]. Then the associated divisor of f is div(f) := [ψ(s)/t], where f = s/t
with s :L and t :OX and ψ : L → OX is an isomorphism.

One can check that ψ(s) is a regular element of OX ; this statement is equivalent
to the multiplication map OX → L[S−1] being injective. Furthermore one can check
that [ψ(s)/t] does not depend on the choice of s, t, and ψ.

Proposition 9.28. Let f :L[S−1] be a nontrivial rational section of a line bundle L
on X. Then multiplication by f induces an isomorphism OX(div(f))→ L.

Proof. The isomorphism should map a rational function g to gf . This is a priori an
element of L[S−1]; we have to check that it can be regarded as an element of L. Just
as in the definition of div(f), write f = s/t and fix an isomorphism ψ : L → OX .
Write g = (t/ψ(s)) · h for some function h :OX . Then gf = sh/ψ(s) = hψ−1(1),
since s = ψ−1(ψ(s)) = ψ(s) ·ψ−1(1). The element hψ−1(1) can indeed be considered
as an element of L.

Injectivity of the map OX(div(f))→ L is by nontriviality of f . For surjectivity,
we observe that (t/ψ(s)) · ψ(v) is a preimage to v :L, since (t/ψ(s)) · ψ(v) · f =
ψ(v)ψ(s)ψ−1(1)/ψ(s) = v. □

Proposition 9.29. Let L be a line bundle on X. Assume that L can be embedded
into KX . Then L possesses a nontrivial rational section.

Proof. Let i : L → KX be the given injection. Let (v) be an one-element basis
for L. Write i(v) = s/t. Then s is regular, since hs = 0 implies i(hv) = 0 and
thus h = 0, for any h :OX . Therefore f := tv/s is a well-defined element of L[S−1].
Furthermore it is nontrivial in the desired sense: If h · (tv/s) = 0, then htv = 0,
thus ht = 0 and h = 0.
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It remains to check that f is independent of the choice of v and of the representa-
tion i(v) = s/t; else we defined only local sections which might not glue to a single
nontrivial rational section (externally speaking). This verification is trivial. □

Proposition 9.30. Let D be an effective divisor on X. Then the complement of
its support is scheme-theoretically dense.

Proof. The complement of the support of D, that is the open subset D(OX(−D))
(where we consider OX(−D) as an ideal of OX), is the truth value of the state-
ment “1 ∈ OX(−D)”. By Lemma 9.11, we therefore have to verify that OX is
separated with respect to the modal operator (1 ∈ OX(−D)⇒ ).

Let s :OX be given such that 1 ∈ OX(−D)⇒ s = 0; we have to show that s = 0.
Writing D = [f/1] where f :OX is a regular element, this condition is equivalent
to ⌜f inv.⌝ ⇒ s = 0. By Proposition 3.10 it follows that fns = 0 for some n ≥ 0.
Since f is regular, we may cancel fn in this equation. □

Proposition 9.31. Assume that X is an integral scheme. Then any line bundle
on X is (uncanonically) a submodule of KX .

Proof. Let ξ be the generic point of X and let □ := ¬¬ denote the modal operator
such that internal sheafification with respect to □ is the same as pulling back to {ξ}
and then pushing forward to X again (see Section 6.5). Let L be a line bundle
on X. Since Lξ ∼= OX,ξ (uncanonically), there is some injection Lξ → KX,ξ; this
corresponds internally to an injection L++ → K++

X . Since KX is already a □-sheaf
(Proposition 9.9) and L is □-separated (being isomorphic to OX), we have the global
injection

L ↪−→ L++ ↪−→ K++
X

(∼=)−1

−→ KX . □

10. Subschemes

10.1. Sheaves on open and closed subspaces. It is well-known that sheaves
defined on open or closed subspaces of a topological space X can be related with
certain sheaves on X, by using appropriate extension functors. We can define these
functors and show their basic properties in the internal language. Recall from
Section 6.2 that we have defined a formula “U” for any open subset U ⊆ X such
that V |= U if and only if V ⊆ U .

Lemma 10.1. Let X be a topological space. Let j : U ↪→ X be the inclusion of
an open subspace. Then there is a canonical functor j! : Sh(U) → Sh(X) called
extension by the empty set with the following properties:

(1) The functor j! is left adjoint to the restriction functor j−1 : Sh(X)→ Sh(U).
(2) The composition j−1 ◦ j! : Sh(U) → Sh(U) is (canonically isomorphic to)

the identity.
(3) The essential image of j! consists of exactly those sheaves on X whose stalks

are empty at all points of U c. For those sheaves F it holds that j!j
−1F ∼= F

(canonically).

Proof. Internally, for a set F , we can define j!(F) simply to be the set comprehension

j!(F) := {x :F |U}.
Externally, the sections of the thus defined sheaf on an open subset V ⊆ X are
given by {x ∈ Γ(V,F) |V ⊆ U}, i. e. all of Γ(V,F) if V ⊆ U and the empty set
otherwise. With this short internal description, all of the stated properties can be
easily verified in the internal language.

For instance, recall that internally the functor j−1 is given by sheafifying with
respect to the modal operator □ :≡ (U ⇒ ). Thus, to show the second statement,
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we have to give a bijection (j!(F))++ → F for any □-sheaf F . (This map has to be
given explicitly, to not only show a weaker statement about a local isomorphism –
see Section 2.2). To this end, we can use the composition

(j!(F))++ ↪−→ F++ (∼=)−1

−→ F ,

where the first map is injective since sheafifying is exact. It is also surjective,
since the □-translation of the statement ⌜j!(F)→ F is surjective⌝ holds: For any
element x :F , it holds that □(⌜x possesses a preimage⌝).

For the third property, we observe that a sheaf F on X fulfills the stated
condition on stalks if and only if, from the internal perspective, it holds that U ⇒
⌜F is inhabited⌝. We omit further details. □

Lemma 10.2. Let X be a ringed space. Let j : U ↪→ X be the inclusion of an open
subspace. Then there is a canonical functor j! : ModU (OU ) → ModX(OX) called
extension by zero with the following properties:

(1) The functor j! is left adjoint to the restriction functor j−1 : ModX(OX)→
ModU (OU ).

(2) The composition j−1 ◦ j! : ModU (OU )→ ModU (OU ) is (canonically isomor-
phic to) the identity.

(3) The essential image of j! consists of exactly those OX-modules whose stalks
are zero at all points of U c. For those sheaves F it holds that j!j

−1F ∼= F
(canonically).

Proof. Internally, a sheaf of modules on OU is simply a module on O++
X which is

a □-sheaf, where □ :≡ (U ⇒ ). The suitable internal definition for the extension
by zero of such a module F is

j!(F) := {x :F | (x = 0) ∨ U}.

With this description, all necessary verifications are easy. Note that an OX -
module F fulfills the stated condition on stalks if and only if internally, it holds
that ∀x :F . ((x = 0) ∨ U). □

Lemma 10.3. Let X be a topological space. Let i : A ↪→ X be the inclusion of a
closed subspace. The essential image of the inclusion i∗ : Sh(A)→ Sh(X) consists
of exactly those sheaves whose support is a subset of A. For those sheaves F it holds
that i∗i

−1F ∼= F (canonically).

Proof. Recall that the modal operator associated to A is □φ :≡ (φ ∨Ac), and that
by Section 6.4 the essential image of i∗ consists of exactly those sheaves which
are □-sheaves from the internal perspective. Let F be a sheaf on X. Then it holds
that

suppF ⊆ A ⇐⇒ Ac ⊆ X \ suppF ⇐⇒ Ac ⊆ int(X \ suppF).

Since the interior of the complement of suppF can be characterized as the largest
open subset of X on which the internal statement “F is a singleton” holds (Re-
mark 4.11), the condition on the support is fulfilled if and only if

Sh(X) |= (Ac ⇒ ⌜F is a singleton⌝).

We thus have to show that this internal condition is equivalent to F being a □-sheaf.
For the “if” direction, assume Ac. Then the empty subset S ⊆ F trivially verifies
the condition that □(⌜S is a singleton⌝). There thus exists an element x :F (such
that □(x ∈ S)). If we’re given a further element y :F , it trivially holds that □(x = y).
By □-separatedness, it thus follows that x = y. Thus F is the singleton {x}. The
proof of the “only if” direction is similar.
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The second statement claims that internally, sheafifying a □-sheaf with respect
to the modal operator □ and then forgetting that the result is a □-sheaf amounts
to doing nothing. This is obvious. □

10.2. Closed subschemes. Let X be a ringed space. Recall that a sheaf of
ideals I ⊆ OX defines a closed subset V (I) = {x ∈ X | Ix ̸= (1) ⊆ OX,x}, a sheaf of
rings OX/I, and a ringed space (V (I),OV (I)) where OV (I) is the pullback of OX/I
to V (I). In the internal universe, we can reify V (I) by giving a modal operator □
such that externally, the subspace X□ coincides with V (I).

Proposition 10.4. Let X be a ringed space. Let I ⊆ OX be a sheaf of ideals.
Then:

(1) The subspace of X associated to the modal operator □ defined by □φ :≡
(φ ∨ (1 ∈ I)) is V (I).

(2) The support of OX/I is exactly V (I).
(3) The canonical morphism i : V (I) → X is a closed immersion of ringed

spaces.

Proof. For any open subset U ⊆ X, it holds that U |= 1 ∈ I if and only if U ⊆
D(I) = X \ V (I). Thus D(I) can be characterized as the largest open subset on
which “1 ∈ I” holds. According to Table 2 on page 56, the stated modal operator
thus defines the subspace D(I)c, i. e. V (I).

For the second statement, we observe that since OX/I is a sheaf of rings, its
support is closed. Therefore the largest open subset of X where the internal
statement “OX/I = 0” holds is the complement of the support (Proposition 4.10).
Since D(I) is the largest open subset where the internal statement “I = (1)” holds,
it suffices to show that internally, OX/I = 0 if and only if I = (1). This is obvious.

The topological part of the third statement is clear. For the ring-theoretic part,
we have to show that the canonical ring homomorphism OX → i∗OV (I), that is
the canonical projection OX → OX/I, is an epimorphism of sheaves. This is
obvious. □

By Lemma 10.3, the sheaf OX/I is thus a □-sheaf from the internal perspective.

Proposition 10.5. Let X be a locally ringed space. Let I ⊆ OX be a sheaf of
ideals. Then the ringed space (V (I),OV (I)) is locally ringed as well.

Proof. We have to show that

Sh(V (I)) |= ⌜OV (I) is a local ring⌝.

By Theorem 6.31, this is equivalent to

Sh(X) |= (⌜OX/I is a local ring⌝)□,

where □ is the modal operator given by □φ :≡ (φ ∨ (1 ∈ I)). We therefore have to
give an intuitionistic proof of the fact

∀x, y :OX/I. ⌜x+ y inv.⌝ =⇒ □(⌜x inv.⌝ ∨ ⌜y inv.⌝).

So let x = [s], y = [t] :OX/I such that x+ y is invertible in OX/I. This means that
there exists u :OX and v : I such that us+ ut+ v = 1 in OX . Since OX is a local
ring, it follows that us, ut, or v is invertible. In the first two cases, it follows that x
respectively y are invertible in OX/I. In the third case, it follows that 1 ∈ I and
thus any boxed statement is trivially true. □

If X is a scheme and I ⊆ OX is a sheaf of ideals, it is well-known that the locally
ringed space V (I) is a scheme if and only if I is quasicoherent. We cannot give
an internal proof of this fact since we lack an internal characterization of being a
scheme.
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Lemma 10.6. Let X be a scheme (or a ringed space). Let I ⊆ OX be a sheaf of
ideals. The ringed space V (I) is reduced if and only if, from the internal perspective
of Sh(X), the ideal I is a radical ideal.

Proof. The following chain of equivalences holds:

Sh(V (I)) |= ⌜OV (I) is a reduced ring⌝

⇐⇒ Sh(V (I)) |=
∧
n≥0

∀s :OV (I). s
n = 0 =⇒ s = 0

⇐⇒ Sh(X) |=
(∧
n≥0

∀s :OX/I. sn = 0⇒ s = 0
)□

⇐⇒ Sh(X) |=
∧
n≥0

∀s :OX/I. sn = 0⇒ □(s = 0)

⇐⇒ Sh(X) |=
∧
n≥0

∀s :OX . sn ∈ I ⇒ □(s ∈ I)

⇐⇒ Sh(X) |=
∧
n≥0

∀s :OX . sn ∈ I ⇒ s ∈ I

⇐⇒ Sh(X) |= ⌜I is a radical ideal⌝

In the second-to-last step, we used that □(s ∈ I) ≡ ((s ∈ I)∨ (1 ∈ I)) implies s ∈ I.
This is trivial in both cases of the disjunction. □

Lemma 10.7. Let X be a scheme (or a ringed space).

(1) There exists a reduced closed sub-ringed space Xred ↪→ X having the same
underlying topological space as X with the following universal property: Any
morphism Y → X of (ringed or locally ringed) spaces such that Y is reduced
factors uniquely over the closed immersion Xred ↪→ X.

(2) Let A ⊆ X be a closed subset. Then there exists a structure of a reduced
closed ringed subspace on A with a similar universal property.

Proof. For the first statement, let N ⊆ OX be the nilradical of OX . This can
internally be simply defined by N :=

√
(0) = {s :OX |

∨
n≥0 s

n = 0}. Define Xred

as the closed subspace associated to this sheaf of ideals. This ringed space is
reduced by the previous lemma. If X is a scheme, then quasicoherence of N
(which is necessary and sufficient for Xred to be a scheme) can be shown internally
(Example 8.7). The proof of the universal property can also be done in the internal
language, by using the basic fact of locale theory that the category of locales over X
is equivalent to internal locales in Sh(X); but we do not want to discuss this further.

For the second statement, internally define the ideal I := {s :OX | ⌜s inv.⌝ ⇒
Ac} ⊆ OX . Then 1 ∈ I if and only if Ac, thus by Proposition 10.4 the closed ringed
subspace defined by I has A as underlying topological space. It is reduced since I
is a radical ideal. □

Remark 10.8. By Proposition 8.11, the ideal I defined in the proof of Lemma 10.7
is internally quasicoherent. Therefore the closed ringed subspace defined by I is a
scheme if X is.

Lemma 10.9. Let X be a scheme of dimension ≤ n. Let V (I) ↪→ X be a closed
subscheme which is locally cut out by a regular equation. Then dimV (I) ≤ n− 1.

Proof. By Proposition 3.13, it suffices to give an intuitionistic proof of the following
fact of dimension theory: Let A be an arbitrary ring of dimension ≤ n. Let I = (s) ⊆
A be an ideal which is generated by a regular element s :A. Then the □-translation
of “A/I is of dimension ≤ n− 1” holds. In fact, we can show that A/I really is of



94 II. THE LITTLE ZARISKI TOPOS

dimension ≤ n− 1; since no implication signs occur in a formal rendering of “being
of dimension ≤ n− 1”, Lemma 6.25 is applicable and implies that this a stronger
statement.

For this, let a sequence ([a0], . . . , [an−1]) of elements in A/I be given. We can
lift and extend this sequence to the sequence (a0, . . . , an−1, s) of elements of A.
Since dimA ≤ n, there exists a complementary sequence (b0, . . . , bn−1, bn). Since s

is regular, the inclusion
√
(sbn) ⊆

√
(0) given by the definition of complementarity

implies that bn is nilpotent. Thus we have that
√
(an−1bn−1) ⊆

√
(s, bn) =

√
(s)

in A, which translates to
√
([an−1][bn−1]) ⊆

√
(0) in A/I. Therefore ([b0], . . . , [bn−1])

is a complementary sequence to ([a0], . . . , [an−1]) in A/I. □

Lemma 10.10. Let X be a scheme. Let I be a sheaf of OX-modules. Then:

dimV (I) ≤ n ⇐⇒ Sh(X) |= ⌜OX/I is of Krull dimension ≤ n⌝.

Proof. By Proposition 3.13, the condition dimV (I) ≤ n is equivalent to

Sh(V (I)) |= ⌜OV (I) is of Krull dimension ≤ n⌝.

By Theorem 6.31 this is equivalent to

Sh(X) |= (⌜OX/I is of Krull dimension ≤ n⌝)□,

where □ is the modal operator given by □φ := (φ∨(1 ∈ I)). The claimed equivalence
then follows by Lemma 6.25 (for “⇐”) and by direct inspection similar to the proof
of Lemma 6.44 (for “⇒”). □

11. Transfer principles

Let M be an A-module. A natural question is how properties of M relate to
properties of the induced quasicoherent sheaf M∼ on SpecA. For instance it is
well-known that

• M is finitely generated iff M∼ is of finite type,
• M is flat over A iff M∼ is flat over OSpecA, and
• M is torsion iff M∼ is a torsion sheaf.

Using the internal language of the little Zariski topos of SpecA, we can give a
simple, conceptual, and uniform explanation of these equivalences. Namely, from
the internal point of view, the module M∼ is obtained from the constant sheaf M
by localizing at the generic filter, a particular multiplicative subset to be introduced
below, and the set M and the sheaf M share the same properties (by Lemma 11.1
below).

This makes it obvious that, for instance, properties which are stable under
localization pass from M to M∼.19

11.1. Internal properties of constant sheaves.

Lemma 11.1. Let φ be a formula in which arbitrary sets and elements may occur
as parameters. Let X be a topological space and let U ⊆ X be an open subset. Then

U |= φ iff (U inhabited⇒ φ).

We are abusing notation on the left hand side: The parameters of φ, which
are sets and elements, must be read as the induced constant sheaves and constant
functions (sections of those sheaves). Unbounded quantifiers have to be read as
ranging only over locally constant sheaves, not all sheaves.

19More precisely, we should write that properties for which there is an intuitionistic proof that
they are stable under localization pass from M to M∼.
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Proof. By induction on the structure of φ. By way of example, we give the argument
in the case that φ ≡ (a = b), where a and b are elements of some setM . Then U |= φ
means by definition that the constant functions U →M with value a respectively b
coincide. This is equivalent to saying that a and b coincide if U is inhabited. □

The lemma in particular implies that constant sheaves enjoy several classical
properties from the internal point of view (if they are present in the metatheory),
even though the internal language only supports intuitionistic reasoning in general.
For instance, for a constant sheaf M it holds that

Sh(X) |= ∀x, y :M. ¬¬(x = y)⇒ x = y

and even
Sh(X) |= ∀x, y :M. x = y ∨ x ̸= y.

Remark 11.2. Lemma 11.1 is also valid for locales instead of topological spaces. If
one works in an intuitionistic metatheory, one has to add the additional requirement
that the locale is overt ; classically, every locale is overt, and intuitionistically, at
least locales arising from topological spaces are overt. We’ll revisit this subtle
point in Section 12.9, where we sketch how scheme theory can be developed in an
intuitionistic context, and more specifically in Lemma 12.49.

11.2. The generic filter. Let A be a ring.

Definition 11.3. A filter of A is a subset F ⊆ A such that

• 0 ̸∈ F ,
• x+ y ∈ F =⇒ (x ∈ F ) ∨ (y ∈ F ), and
• 1 ∈ F ,
• xy ∈ F ⇐⇒ (x ∈ F ) ∧ (y ∈ F )

for all x, y :A.

In classical logic, the complement of a prime ideal is a filter and furthermore every
filter is of such a form. In constructive mathematics however, it is useful to axiomatize
complements of prime ideals directly, avoiding negations. Intuitionistically, since
De Morgan’s law ¬(α ∧ β)⇒ ¬α ∨ ¬β is not available, one can neither show that
the complement of a prime ideal is a filter nor that the complement of a filter is a
prime ideal.

A filter is in particular a multiplicative subset. Inverting the elements of a filter
results in a local ring, while intuitionistically the localization of a ring at a prime
ideal cannot in general be verified to be local.

Definition 11.4. The generic filter F is the subsheaf of A on SpecA given by

Γ(U,F) := {f : U → A | f(p) ̸∈ p for all p ∈ U}.

Proposition 11.5.

(1) Let f ∈ A and x ∈ A. Then D(f) |= x ∈ F if and only if f ∈
√
(x).

(2) The stalk Fp at a point p ∈ SpecA is in canonical bijection with A \ p.
(3) From the internal point of view of Sh(SpecA), the generic filter is indeed a

filter of A.

Proof. By definition D(f) |= x ∈ F means that x ̸∈ p for all prime ideals p

with f ̸∈ p. This is well-known to be equivalent to f ∈
√
(x).

For the claim about stalks, we observe that the canonical map Fp → A \ p
sending a germ [f ] to f(p) is invertible with inverse being the map which sends an
element x ̸∈ p to the germ of the constant function with value x (defined on D(x)).

Regarding the third statement we only verify the axiom regarding sums, the other
verifications being easier. Interpreting this axiom with the Kripke–Joyal semantics
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and restricting without loss of generality to open subsets where given locally constant
functions are constant, let elements x, y ∈ A be given such that D(f) |= x+ y ∈ F .
By the first statement f ∈

√
(x+ y). Therefore D(f) ⊆ D(x) ∪D(y), and on D(x)

it holds that x ∈ F and on D(y) it holds that y ∈ F . □

The significance of the generic filter is given by the following proposition.

Proposition 11.6. From the internal point of view of Sh(SpecA),

(1) the structure sheaf OSpecA is the localization of the constant sheaf A at the
generic filter: OSpecA = A[F−1], and

(2) the quasicoherent sheaf of modules M∼ associated to an A-module M is the
localization of the constant sheaf M at the generic filter.

Proof. Ignoring the ring respectively module structure, the second statement is
more general; therefore we prove this one. We didn’t discuss the case of quo-
tients in Section 2.2. However it should be perspicuous that the interpretation
of M [F−1] is defined as the colimit of E ↠ M × F , taken in the category of
sheaves on SpecA, where E is the subsheaf of F × (M × F) × (M × F) given
by E(U) := {(s, (x, t), (y, u)) | sux = sty}.

This colimit can be obtained as the sheafification of the similarly defined presheaf
colimit E ′ ↠Mpre×F , whereMpre is the constant presheaf associated toM . On an

open subset U this presheaf colimit is simply the localization Γ(U,Mpre)[Γ(U,F)−1] =

M [Γ(U,F)−1]. In the special case that U = D(f) is a standard open subset, Propo-
sition 11.5(a) shows that this module is canonically isomorphic to M [f−1]. The
quasicoherent sheaf M∼ of modules admits the same description. □

Recognizing OSpecA as a localization of A fits nicely into the following abstract
algebraic motivation for schemes: Does the ring A admit a universal localization, i. e.
a homomorphism A→ A′ into a local ring such that every homomorphism A→ B
into a local ring factors via a local map over A → A′? Intuitively speaking, can
we localize a ring at all prime ideals at once, or equivalently at all filters at once?
The answer is no in general,20 but always yes if we are willing to change the topos
in which we look for a solution: The universal localization of A is given by the
ring OSpecA in the topos Sh(SpecA); this ring is constructed by localizing A at the
generic filter, a filter which exists in Sh(SpecA) but not in Set.

We expand on this point of view in Section 12 on the relative spectrum.
For transferring properties of M∼ to M , the following metatheorem is crucial.

Proposition 11.7. Let I be an ideal in A such that, for all inhabited open sub-
sets U ⊆ SpecA and elements x ∈ A, the set Γ(X, I) contains the constant function
with value x if Γ(U, I) does. Then

D(f) |= ⌜I ∩ F is inhabited⌝ implies for some n ≥ 0, D(f) |= fn ∈ I.

Lemma 11.1 gives a simple and purely syntactical criterion for the hypothesis on I:
It suffices for I to be internally defined by an expression of the form {a :A |φ(a)},
where φ is a formula which refers only to constant sheaves.

The metatheorem reflects the following well-known fact of classical ring theory: If
an ideal meets every filter (that is, the complement of every prime ideal), it is the unit
ideal. In this particular formulation the statement can’t be proven intuitionistically;
the occurrence of “every filter” has to be replaced by “generic filter”. Intuitively,

20Assume that the universal localization A′ of a ring A exists as an ordinary ring in Set. Then
any two prime ideals p and q of A are equal: Let s ̸∈ p. Since s is invertible in the local ring Ap

and the map A′ → Ap induced by A→ Ap is local, it is also invertible in A′. Therefore the image
of s in Aq is invertible as well. Thus s ̸∈ q.
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the generic filter is a reification of the abstract idea of an “arbitrary filter”, a filter
about which nothing is known except that it satisfies the filter axioms.

Proof. Let D(f) |= ⌜I ∩ F is inhabited⌝. Then there exists an open cover D(f) =⋃
iD(fi) and elements xi ∈ A such that D(fi) |= xi ∈ F and D(fi) |= xi ∈ I.

By Proposition 11.5 we have that fi ∈
√
(xi) and therefore D(fi) |= fmi

i ∈ I
for some mi ≥ 0. We may assume that all the D(fi) are inhabited and that the
exponents mi are all equal to some number m. The assumption on I implies D(f) |=
fmi ∈ I for all i. By a standard argument we can write fn =

∑
i aif

m
i for some

coefficients ai; thus D(f) |= fn ∈ I. □

Remark 11.8. The stronger statement

D(f) |= (⌜I ∩ F is inhabited⌝⇒
∨
n≥0

(fn ∈ I))

does not hold in general. Indeed, consider the example f := 1 and I := J(g)K :=
J{a :A | ∃b :A. a = bg}K, where g is a fixed element of A which is not nilpotent and
not invertible. Since D(g) |= g ∈ I ∩F , the stronger statement would imply D(g) |=
1 ∈ I. By Lemma 11.1, this is equivalent to g being invertible in A.

Remark 11.9. Recall from Proposition 9.1 that the sheaf KSpecA of rational
functions can internally be obtained by localizing OSpecA at the set of regular
elements. Since OSpecA is itself a localization, the sheaf KSpecA is therefore obtained
by a two-step process. It can also be obtained in a single step by localizing A at T ,
where T is the subsheaf of A defined by

Γ(U, T ) = {f : U → A | f(p) is regular in Ap for all p ∈ U}.
This subsheaf is characterized by the property that, for all f ∈ A and x ∈ A, D(f) |=
x ∈ T if and only if x is regular in A[f−1].

11.3. Internal proofs of common lemmas.

Lemma 11.10. Let A be a ring. Then A is reduced if and only if the scheme SpecA
is reduced.

Proof. By Proposition 3.3 the scheme SpecA is reduced if and only if OSpecA is a
reduced ring from the internal point of view of Sh(SpecA).

For the “only if” direction assume that A is reduced. Then A is reduced as well,
by Lemma 11.1. Since localizations of reduced rings are reduced (and this fact has
an intuitionistic proof), in particular OSpecA = A[F−1] is reduced.

For the “if” direction let x ∈ A be an element such that xn = 0. Since OSpecA =
A[F−1] is reduced from the internal point of view, the element x is zero in that ring,
that is

Sh(SpecA) |= ∃s :F . sx = 0.

Therefore the ideal internally defined by

I := {a :A | ax = 0}
meets the generic filter. By Proposition 11.7 it follows that Sh(SpecA) |= 1 ∈ I. By
Lemma 11.1 this is equivalent to 1 · x = 0 as elements of A. □

The “if” direction also admits a shorter proof, by simply considering the Kripke–
Joyal interpretation of Sh(SpecA) |= ⌜OSpecA is reduced⌝ and using the canonical
isomorphism Γ(SpecA,OSpecA) ∼= A. We included the given proof to give a simple
example of the mixed internal/external reasoning with the generic filter. In a similar
way we could reprove Lemma 3.18, the statement that a ring element f ∈ A is
regular in A if and only if, from the internal point of view, it is regular in OSpecA.
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Lemma 11.11. Let M be an A-module. Then M∼ is of finite type if and only if M
is finitely generated.

Proof. First assume thatM is finitely generated over A. ThenM is finitely generated
over A, by Lemma 11.1. Since localizations of finitely generated modules are finitely
generated (over the localized ring), the module M∼ =M [F−1] is finitely generated
from the internal point of view. By Proposition 4.3 this means that M∼ is of finite
type from the external point of view.

For the “only if“ direction, we assume that M∼ is finitely generated over OSpecA

from the internal point of view and have to verify that M is finitely generated
over A. So it holds that

Sh(SpecA) |=
∨
n≥0

∃x1, . . . , xn :M [F−1]. ⌜the xi span M [F−1] over A[F−1]⌝.

Since multiplying a generating family by an unit results again in a generating family,
we have in fact that

Sh(SpecA) |=
∨
n≥0

∃x1, . . . , xn :M. ⌜the xi/1 span M [F−1] over A[F−1]⌝

or equivalently

Sh(SpecA) |=
∨

n≥0,x1,...,xn∈M

⌜the xi/1 span M [F−1] over A[F−1]⌝.

Since this is a directed disjunction and SpecA is quasicompact, Proposition 7.1 is ap-
plicable and shows that there exists a natural number n ≥ 0 and elements x1, . . . , xn ∈
M such that

Sh(SpecA) |= ⌜the xi/1 span M [F−1] over A[F−1]⌝.

We claim that these xi also span M as an A-module. So let x ∈ M be arbitrary.
By elementary linear algebra we can deduce that

Sh(SpecA) |= ∃s ∈ F . ∃a1, . . . , an :A. sx =
∑
i

aixi.

Therefore the ideal internally defined by

I := {s :A | ∃a1, . . . , an :A. sx =
∑
i aixi}

meets the generic filter. Proposition 11.7 shows that Sh(SpecA) |= 1 ∈ I, that is x
is an element of the A-span of the xi. □

Remark 11.12. If M∼ can be generated by ≤ n elements over OSpecA from the
internal point of view, it needn’t be the case that M can be generated by ≤ n
elements over A. It is instructive to see where the appropriately modified version of
the above proof fails: In this case we still have

Sh(SpecA) |=
∨

x1,...,xn∈M
⌜the xi/1 span M [F−1] over A[F−1]⌝,

but this disjunction is no longer directed.

Lemma 11.13. Let X be a scheme. Then kernels and cokernels of morphisms
between quasicoherent OX-modules are quasicoherent.

Proof. We may assume that X = SpecA is affine. A morphism between quasicoher-
ent OX -modules is of the form φ[F−1] :M [F−1]→ N [F−1], where φ :M → N is a
linear map between A-modules. Since taking constant sheaves and localization are
exact, we have the chain of isomorphisms

(ker(φ))[F−1] ∼= (ker(φ))[F−1] ∼= ker(φ[F−1]),

and similarly for the cokernel. □
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11.4. An application to constructive mathematics. The generic filter has
a practical application in constructive mathematics. Recall that intuitionistically
prime and maximal ideals don’t work very well, since one often needs the axiom of
choice or related set-theoretical principles in dealing with them. This is unfortunate,
since calculations with prime and maximal ideals are often quite useful. For example:

• To verify that a ring element is nilpotent, it suffices to verify that it is an
element of every prime ideal. For instance, this is calculationally simpler
when proving that the coefficients of a nilpotent polynomial are themselves
nilpotent.
• To verify that there is a relation of the form 1 = p1f1 + · · ·+ pmfm among

polynomials f1, . . . , fm ∈ K[X1, . . . , Xn] where K is an algebraically closed
field, it suffices to show that the fi don’t have a common zero.

One could of course blithely switch to classical logic in this case. However this
might not be desirable, as a constructive proof would contain more information: For
instance, if we have classically proven that an element x is an element of every prime
ideal, then we know that some power xn is zero. But from such a proof we can’t
directly read off any upper bound on n. From a constructive proof of nilpotency,
we could.

There is a way to combine some of the powerful tools of classical ring theory
with the advantages that constructive reasoning provides. Namely we can devise a
language in which we can usefully talk about prime ideals, but which substitutes all
non-constructive arguments by constructive arguments “behind the scenes”. The
key idea is to substitute the phrase “for all prime ideals” (or equivalently “for all
filters”) by “for the generic filter”.

This was already explored by Coquand, Coste, Lombardi, Roy, and others under
the theme of dynamical methods in algebra [46, 40]. Here we show how one can use
the generic filter, as reified by a sheaf in the little Zariski topos, to achieve similar
effects.

Proposition 11.14. Let M and N be A-modules. Let α :M → N be a linear map.
The interpretations of the statements in the second column of Table 3 in the internal
language of Sh(SpecA) are intuitionistically equivalent to the statements given in
the third column.

Proof. To demonstrate the technique we verify the first and the last claim. To make
the following proofs constructive we have to define SpecA, its sheaf topos, and the
generic filter in a constructive fashion, not using prime ideals. This can be done, by
constructing SpecA as a locale instead of a topological space. We expand on this in
Section 12.2 and in Section 12.9.

The interpretation of Sh(SpecA) |= x ̸∈ F by the Kripke–Joyal semantics is
that D(f) |= x ∈ F implies D(f) = ∅ for all f ∈ A. By Proposition 11.5(a) this is
equivalent to

∀f ∈ A. f ∈
√

(x)⇒ f ∈
√
(0),

that is the statement that x is nilpotent in A.
Assume that α :M → N is surjective. By Lemma 11.1 the induced map M → N

is surjective from the internal point of view. Since localization preserves surjectivity,
also the map M [F−1]→ N [F−1] is surjective.

Conversely, assume that M [F−1]→ N [F−1] is surjective from the internal point
of view. To verify that α :M → N is surjective, let y ∈ N . The assumption implies
that the ideal internally defined by

I := {s :A | ∃x :A. sy = α(x)}
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Statement constructive substitution meaning

x ∈ p for all p. x ̸∈ F . x is nilpotent.

x ∈ p for all p such that y ∈ p. x ∈ F ⇒ y ∈ F . x ∈
√

(y).

x is regular in all stalks Ap. x is regular in A[F−1]. x is regular in A.

The stalks Ap are reduced. A[F−1] is reduced. A is reduced.

The stalks Mp vanish. M [F−1] = 0. M = 0.

The stalks Mp are fin. gen. over Ap. M [F−1] is fin. gen. over A[F−1]. M is fin. gen. over A.

The stalks Mp are flat over Ap. M [F−1] is flat over A[F−1]. M is flat over A.

The maps Mp → Np are injective. M [F−1] → N [F−1] is injective. M → N is injective.

The maps Mp → Np are surjective. M [F−1] → N [F−1] is surjective. M → N is surjective.

Table 3. Substituting the use of prime ideals by the generic filter.

meets the generic filter. By Proposition 11.7 this implies that Sh(SpecA) |= 1 ∈ I,
that is there exists an element x ∈ A such that α(x) = y. □

Remark 11.15. As is apparent from Table 3, there is a slight mismatch between the
external “for any prime ideal” and the internal “for the generic filter”. It’s not true
that a module is finitely generated if and only if all its stalks are finitely generated
(a counterexample is the Z-module

⊕
p Z/(p)). But it is true that an A-moduleM is

finitely generated if and only if, internally to Sh(Spec(A)), the generic stalk M [F−1]
is finitely generated.

Intuitively, verifying a statement about the generic stalk doesn’t only mean that
it holds for all (ordinary) stalks; it means that it holds for the ordinary stalks in a
uniform manner. This extra bit of rigidity is what allows to draw slightly stronger
conclusions.

The other entries in Table 3 don’t show this slight difference in semantics.

The sheaf-theoretical approach using the generic filter is different from the
dynamical methods in the following aspect. We have to reword classical arguments
using (the generic) filter instead of (the generic) prime ideal. Depending on the
situation this might be a nuisance. One might be tempted to employ the complement
of the generic filter, but this is only an ideal, not a prime ideal from the internal
point of view.21

11.5. An internal proof of Grothendieck’s generic freeness lemma. The
goal of this subsection is to give a simple proof of Grothendieck’s generic freeness
lemma in the following general form.

Theorem 11.16. Let A be a reduced ring. Let B be an A-algebra of finite type.
Let M be a finitely generated B-module. Then there is a dense open subset U ⊆
Spec(A) such that over U ,

(1) B∼ is finitely presented as an OSpec(A)-algebra,
(2) M∼ is of finite presentation over B∼, and
(3) M∼ is (not necessarily finite) locally free as an OSpec(A)-module.

21One can check that the complement of F in A is the subsheaf P defined by Γ(U,P) := {f : U →
A | f(p) ∈ p for all p ∈ U} and that D(f) |= x ∈ P if and only if fx is nilpotent. This can be used
to show that the statement Sh(SpecA) |= ∀x, y :A. xy ∈ P ⇒ x ∈ P ∨ y ∈ P is false in general. A
concrete counterexample is given by A = Z[U, V ]/(UV ). Then Sh(SpecA) |= [U ] · [V ] ∈ P, but
Sh(SpecA) ̸|= [U ] ∈ P ∨ [V ] ∈ P.
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The usual proofs of Grothendieck’s generic freeness lemma proceed using a series
of reduction steps which are arguably not very memorable or straightforward, see
for instance [126, Tag 051Q] or [125]. In particular, there doesn’t seem to be a
published proof which tackles the Noetherian and non-Noetherian cases in one go.
Employing the internal language, Grothendieck’s generic freeness lemma can be
proved in a simple, conceptual, and constructive way without any reduction steps.

This section was prompted by a MathOverflow thread [36] and greatly benefited
from discussions with Brandenburg.

x0y7v1 x1y7v1 x2y7v1 x3y7v1 x4y7v1 x5y7v1 x6y7v1 x7y7v1

x0y6v1 x1y6v1 x2y6v1 x3y6v1 x4y6v1 x5y6v1 x6y6v1 x7y6v1

x0y5v1 x1y5v1 x2y5v1 x3y5v1 x4y5v1 x5y5v1 x6y5v1 x7y5v1

x0y4v1 x1y4v1 x2y4v1 x3y4v1 x4y4v1 x5y4v1 x6y4v1 x7y4v1

x0y3v1 x1y3v1 x2y3v1 x3y3v1 x4y3v1 x5y3v1 x6y3v1 x7y3v1

x0y2v1 x1y2v1 x2y2v1 x3y2v1 x4y2v1 x5y2v1 x6y2v1 x7y2v1

x0y1v1 x1y1v1 x2y1v1 x3y1v1 x4y1v1 x5y1v1 x6y1v1 x7y1v1

x0y0v1 x1y0v1 x2y0v1 x3y0v1 x4y0v1 x5y0v1 x6y0v1 x7y0v1

Figure 1. A single step in the iterative process used in the proof
of Theorem 11.16, in the special case n = 2,m = 1. The hatched
cells indicate vectors which have already been removed from the
generating family. The vector in the red cell was found to be
expressible as a linear combination of vectors with smaller index
(blue cells). It is therefore about to be removed, along with the
vectors in all cells to the top and to the right of the red cell.

Proof of Theorem 11.16. Since “dense open” translates to “not not” in the internal
language (Proposition 6.5), it suffices to prove that, from the internal point of view
of Sh(Spec(A)), it’s not not the case that

(1) B∼ is of finite presentation over OSpec(A),
(2) M∼ is finitely presented as a B∼-module, and
(3) M∼ is (not necessarily finite) free over OSpec(A).

https://stacks.math.columbia.edu/tag/051Q
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1 2 3

4 5 6

Figure 2. The iterative process used in the proof of Theorem 11.16,
in the special case n = 2,m = 1. The process terminates after
reducing the generating family a finite number of times.

Since B∼ is finitely generated as an OSpec(A)-algebra, it is isomorphic to an
algebra of the form OSpec(A)[X1, . . . , Xn]/a for some number n ≥ 0 and some
ideal a. By Proposition 3.31 and Theorem 3.29, the ring OSpec(A)[X1, . . . , Xn] is
anonymously Noetherian. Therefore a is not not finitely generated, showing that B∼

is not not of finite presentation over OSpec(A).
Similarly, the module M∼ is of the form (B∼)m/U for some number m ≥ 0 and

some submodule U . Since (B∼)m is anonymously Noetherian as a direct sum of
anonymously Noetherian modules, the submodule U is not not finitely generated.
Thus M∼ is not not a finitely presented B∼-module.

The basic idea to show that M∼ is not not free over OSpec(A) is as follows.
Since OSpec(A) is a field in the sense that noninvertible elements are zero, minimal
generating families are already linearly independent; we observed this in the proof
of Lemma 5.7. By the finiteness hypotheses, the module M∼ admits a countable
generating family. It’s not not the case that either one of these vectors can be
expressed as a linear combination of the others, or not. In the second case we’re
done; in the first case, we remove the redundant vector and continue in the same
fashion.

However, if we shrink the given generating family in this naive fashion, the process
may not terminate in finitely many steps. In a classical context, Zorn’s lemma
could be used to iterate the process transfinitely and eventually obtain a minimal
generating family, but Zorn’s lemma is not available in the internal universe of the
little Zariski topos. We therefore have to pick the vectors we’ll remove in a more
systematic fashion.

Let (x1, . . . , xn) be a generating family for B∼ as an OSpec(A)-algebra and let
(v1, . . . , vm) be a generating family for M∼ as a B∼-module. We endow the set

I := {(j, i1, . . . , in) | j ∈ {1, . . . ,m}, i1, . . . , in ∈ {0, 1, . . .}}

with the lexicographic order. We choose the family (xi11 · · ·xinn vj)j,i1,...,in as the
starting point of the shrinking process. In each step, we use that it’s not not the
case that
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• either one of the vectors of the generating family can be expressed as a
linear combination of vectors in the family with a smaller index,
• or not.

In the second case, the generating family is linearly independent: For any linear
combination summing to zero, we can show that all coefficients are zero, beginning
with the coefficient which is paired with the vector of greatest index.

Figure 1 illustrates our action in the first case. We remove the redundant
vector xi11 · · ·xinn vj and also any vector with greater powers of the x1, . . . , xn from
the generating family. The resulting family will still be a generating family, since
the linear combination witnessing the redundancy of xi11 · · ·xinn vj successively gives

rise to linear combinations witnessing the redundancy of the vectors x≥i11 · · ·x≥inn vj ;
we maintain the invariant that any member of the starting generating family can be
expressed as a linear combination of vectors of the current generating family with
smaller or equal index.

As indicated in Figure 2, this process terminates after finitely many steps.
This fact is related to the fact that the ordinal ωn is well-founded; the formal
statement ensuring termination is known as Dickson’s Lemma (see, for instance, [138,
Thm. 1.1]). □

Since the given internal proof was (necessarily) intuitionistically valid, the internal
language machinery is intuitionistically valid, and the construction of the spectrum
can be set up in an intuitionistically sensible way (Section 12), an intuitionistic
external proof not employing the topos machinery can be extracted from the given
argument. The resulting proof will verify Grothendieck’s generic freeness lemma in
the following form.

Theorem 11.17. Let A be a reduced ring. Let B be an A-algebra of finite type.
Let M be a finitely generated B-module. Assume that the only element f ∈ A such
that

(1) B[f−1] is of finite presentation over A[f−1],
(2) M [f−1] is finitely presented as a B[f−1]-module, and
(3) M [f−1] is free over A[f−1]

is f = 0. Then A = 0.

In classical logic, this form implies Grothendieck’s generic freeness lemma in its
more abstract formulation by a routine argument: Let U ⊆ Spec(A) be the union
over all standard open subsets D(f) such that the statements (1), (2), and (3) in
Theorem 11.17 hold. The statements (1), (2), and (3) of Theorem 11.16 hold on
this open subset, therefore it remains to show that U is dense.

So let a nonempty open subset V of Spec(A) be given. This contains a standard
open subset D(g) ⊆ V such that g is not nilpotent. Therefore the localized
ring A[g−1] is not zero. Thus the conclusion of Theorem 11.17 is not satisfied.
Since we assume classical logic, there is a nonzero element f ∈ A[g−1] such that
statements (1), (2), and (3) in Theorem 11.17 hold for A[g−1][f−1], B[g−1][f−1],
and M [g−1][f−1]. Writing f = h/gn, we see that U ∩ V contains the nonzero open
subset D(gh).

We refrain from giving the resulting explicit proof of Theorem 11.17 here, but
will report on it in the future [25]. A part of the proof was included by Brandenburg
in a paper of his [27].

Remark 11.18. There is no hope that there is an intuitionistic proof of Gro-
thendieck’s generic freeness lemma in the form of Theorem 11.16 even if the
spectrum is constructed in an intuitionistically sensible way, since there is the
following Brouwerian counterexample. Let φ be an arbitrary statement. Then
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the Z-module M := Z/a, where a := {x ∈ Z | (x = 0) ∨ φ} as in Footnote 10 on
page 33, is finitely generated. By assumption, there exists a nonzero element f ∈ Z
such that M [f−1] is a finite free module over A[f−1] of some rank n. If n = 0,
then fm ∈ a for some m ≥ 0, therefore φ holds. If n ≥ 1, then ¬φ holds, since φ
would imply a = Z and therefore M [f−1] = 0. Since n = 0 ∨ n ≥ 1, it follows
that φ ∨ ¬φ.

11.6. A note on Q-algebras which are finitely generated over Z. In this
section, we want to show how the internal language of Sh(Spec(Z)) can be used to
give a proof of the following fact.

Proposition 11.19. Let A be a finitely presented Z-algebra such that any positive
natural number is invertible in A. Then 1 = 0 in A.

A slick classical proof runs as follows: Assume that 1 ̸= 0 in A. Then there
exists a maximal ideal m ⊆ A. The preimage of m in Z is maximal since Z is a
Jacobson ring [126, Tag 00GB] and therefore of the form (p) for a prime number p.
Thus p ∈ m. Since p is also invertible in A, it follows that 1 = 0 in A.

We intend the following proof as an example of how one can extend, in some
cases, the applicability of theorems about fields to rings using the internal language.
If one sets up the spectrum in an intuitionistically sensible way, as described in
Section 12, the proof avoids the axiom of choice.

Proof of Proposition 11.19. Noether’s normalization lemma is intuitionistically valid
in the following form: “Let K be a ring such that 1 ̸= 0 and such that ¬(⌜s inv.⌝)⇒
s = 0 for all s :K. Let a ⊆ K[X1, . . . , Xn] be an ideal. Then it’s not not the
case that either a = (1) or that there exists a number r ≥ 0 and a finite injective
homomorphism K[Y1, . . . , Yr]→ K[X1, . . . , Xn]/a of K-algebras.”

In the internal universe of Sh(Spec(Z)), the structure sheaf OSpec(Z) satisfies the
assumption onK by Corollary 3.9. We can therefore apply the Noether normalization
lemma to the OSpec(Z)-algebra A

∼.
Writing A = Z[X1, . . . , Xn]/(f1, . . . , fm), we thus obtain that, internally, it’s

not not the case that 1 ∈ (f1, . . . , fm) or that there is a finite injective mor-
phism OSpec(Z)[Y1, . . . , Yr] → OSpec(Z)[X1, . . . , Xn]/(f1, . . . , fm) = A∼ for some
number r ≥ 0. The latter case can’t occur: Assume that it does. Since any positive
natural number is invertible in A∼ and finite injective homomorphisms of rings reflect
invertibility, any positive natural number is also invertible in OSpec(Z)[Y1, . . . , Yr]
and therefore in OSpec(Z). This, however, is false.

We therefore have Sh(Spec(Z)) |= ¬¬(1 ∈ (f1, . . . , fm)). Thus D(h) |= 1 ∈
(f1, . . . , fm) for some dense open subset D(h) ⊆ Spec(Z). This implies that hl ∈
(f1, . . . , fm) for some l ≥ 0. Therefore hl = 0 in A; on the other hand, hl is invertible
in A. Thus 1 = 0 in A. □

12. Relative spectrum

Recall that if A is a quasicoherent OX -algebra on a scheme X, one can construct
the relative spectrum SpecX A by appropriately gluing the spectra Spec Γ(U,A)
where U ranges over the affine opens of X. This relative spectrum comes equipped
with a canonical morphism SpecX A → X.

From the internal point of view of Sh(X), the sheaf A looks just like a plain
algebra, to which therefore the usual (absolute) spectrum construction can be
applied. One could hope that this construction yields the relative spectrum.

In this section, we discuss generalities on how to make sense of this internal
construction; we show that this proposed construction is too naive and doesn’t yield
the relative spectrum; we give a refined internal construction which does yield the

https://stacks.math.columbia.edu/tag/00GB
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relative spectrum, discuss its relation to the naive construction, and phrase it in
topos-theoretic terms; and we deduce, as an application, a description of limits in
the category of locally ringed spaces. We also cover the relative Proj construction.

In much of the following, it’s not actually necessary that X is a scheme and A is a
quasicoherent algebra. IfX is not a scheme or A is not quasicoherent, then SpecX(A)
might fail to be a scheme and can of course not be constructed by gluing usual spectra,
but it still exists as a more general kind of space and still verifies a meaningful
universal property. We give details on this generalization below.

12.1. Internal locales. Let X be a topological space (or a locale). A fundamental
fact in the theory of locales is that there is a canonical equivalence between the
category of locales over X – that is locales Y equipped with a morphism Y → X –
and internal locales in Sh(X) [74, p. 49]. An internal locale in a topos E is given by
an object L of E (the internal frame of opens of the locale) together with a binary
relation (⪯) ↪→ L×L such that the axioms for a locale hold from the internal point
of view. (For our purposes, we do not need a precise wording of these axioms.)

The equivalence is described as follows: A locale f : Y → X over X induces an
internal locale I(Y ) with object of opens given by T (I(Y )) := f∗ΩSh(Y ) ∈ Sh(X),
where f∗ is the pushforward functor and ΩSh(Y ) is the object of truth values in
the topos of sheaves on Y . Conversely, an internal locale given by an internal
frame L ∈ Sh(X) induces an (external) locale E(L) with frame of opens given
by T (E(L)) := Γ(X,L). This comes equipped with a canonical morphism Y → X
of locales which we do not need to describe explicitly [72, Section C1.6].

As a special case, the internalization of the trivial locale id : X → X over X
has as frame of opens the object id∗ΩSh(X) = ΩSh(X) = P(1). This is precisely
the frame of opens of the one-point space. Thus I(X) ∼= pt. This illustrates the
intuition behind working internally in Sh(X): From the perspective of Sh(X), the
space X looks like the one-point space (even if in fact it is not).

One can associate to an internal locale T in a topos E a topos of internal sheaves
on it: ShE(T ). The correspondence is made in such a way that the topos of sheaves
on a locale Y over X is equivalent to the topos of sheaves on the internal locale I(Y ):
Sh(Y ) ≃ ShSh(X)(I(Y )).

There is no similarly nice correspondence between topological spaces over X
and internal topological spaces in Sh(X) [72, Corollary C1.6.7]. This is one of
the reasons why locales are better suited for working internally and for switching
between internal and external perspectives.

For verification of properties of such sheaves, the idempotency of the internal
language is useful: If φ is a formula over Y , then

Sh(Y ) |= φ if and only if Sh(X) |= ⌜Sh(I(Y )) |= φ⌝.

Here we’re abusing notation in two ways. Firstly, the formula φ has to be ap-
propriately interpreted in the expression “Sh(I(Y )) |= φ”. Secondly, the expres-
sion “Sh(I(Y ))” doesn’t actually refer to the category ShSh(X)(I(Y )), but to the lo-
cally internal category induced by the canonical geometric morphism ShSh(X)(I(Y ))→
Sh(X). We give some details on this point in Section 16. However, in the situations
encountered in this section, the meaning will always be reasonably clear.

12.2. The spectrum of a ring as a locale. Recall that the spectrum of a ring A
is usually constructed as the set

SpecA := {p ⊆ A | p is a prime ideal}
endowed with a certain topology and a sheaf of rings OSpecA. From an intuitionistic
(and thus internal) point of view, this construction does not work well: Prime ideals
are intuitionistically much more elusive than classically, where one can appeal to
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Zorn’s lemma to obtain maximal (and thus prime) ideals. More to the point, one
cannot show that this construction of the spectrum as a topological space verifies
the expected universal property, namely

HomLRS(X,SpecA) ∼= HomRing(A,Γ(X,OX))

for all locally ringed spaces X (or some variant of this property involving more
general kinds of spaces).

On the other hand, the frame of opens of SpecA admits a simple description not
requiring the notion of prime ideals:

T (SpecA) ∼= {a ⊆ A | a is a radical ideal}.

An open subset U ⊆ SpecA corresponds to the radical ideal {h ∈ A |D(h) ⊆ U}
(so in particular, the open subset D(f) corresponds to the radical ideal

√
(f));

conversely, a radical ideal a corresponds to the open subset
⋃
h∈aD(h).

Thus, in an intuitionistic context, we will construct the spectrum of a ring A as
a locale, not as a topological space, and adopt the following definition.

Definition 12.1. The spectrum Spec(A) of a ring A is the locale whose frame
of opens is the frame of radical ideals of A. We endow it with the structure
sheaf OSpec(A) := A[F−1], where F is the generic filter as described in Section 11.2.

This construction has the expected universal property, namely that it is adjoint
to the global functions functor:

HomLRL(X,SpecA) ∼= HomRing(A,Γ(X,OX)).

Here, “LRL” refers to the category of locally ringed locales, i. e. locales X equipped
with a sheaf of rings OX such that from the internal point of view of Sh(X), the
ring OX is a local ring. A morphism Y → X of locally ringed locales consists of
a locale morphism f : Y → X and a morphism f ♯ : f−1OX → OY of sheaves of
rings on Y such that, from the internal point of view of Sh(Y ), the ring homomor-
phism f ♯ is a local homomorphism. The notion of a locally ringed locale is thus a
straightforward generalization of that of a locally ringed space.

Schemes are usually regarded as locally ringed spaces, not as locally ringed locales.
However, in a classical context where the axiom of choice is available, schemes are
sober topological spaces [126, Tag 01IS]. For sober topological spaces, the passage
from the space to its induced locale (forgetting the set of points and only keeping the
frame of open subsets) doesn’t lose information: The category of sober topological
spaces with arbitrary continuous maps embeds into the category of locales as a full
subcategory. Therefore the category of schemes can just as well be viewed as a full
subcategory of the category of locally ringed locales.

Describing morphisms between locally ringed locales is just as simple as describing
morphisms between locally ringed spaces; using the viewpoint of classifying locales,
one may even pretend that it suffices to give a map of points. We expand on this in
Section 12.9.

The importance of a locale-theoretic approach to spectra of rings, especially in
relative situations, has also been stressed by Lurie [91, p. 37].

Remark 12.2. In contrast to the prime spectrum, the spectrum of maximal ideals
can’t in general be realized as a locale. This is because the maximal spectrum is in
general not sober; its soberification is the subspace of the prime spectrum consisting
of those prime ideals which are intersections of maximal ideals. (For Jacobson rings,
every prime ideal is of this form.)

https://stacks.math.columbia.edu/tag/01IS
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Points of the locale-theoretic spectrum. Constructing the spectrum as a locale
instead of a topological space sidesteps any issues with prime ideals, since points
are not a defining ingredient of a locale. However, points are still meaningful as
a derived concept : A point of locale X is a morphism pt → X, where pt is the
terminal locale, the locale corresponding to the one-point topological space with
frame of opens P(1) = Ω (where 1 = {⋆} is a one-element set). Therefore it’s still
an interesting question what the points of the locale Spec(A) look like.

Proposition 12.3. Let A be a ring. Then the points of the locale Spec(A) are in
canonical one-to-one correspondence with the filters of A (as in Definition 11.3),
even intuitionistically.

Proof. The points of a locale X are in canonical one-to-one correspondence with
the completely prime filters of T (X), subsets K ⊆ T (X) which are upward-closed,
downward-directed, and have the property that, whenever a supremum of a set M ⊆
T (X) is contained in K, then so is some element of M .

Such a completely prime filter K ⊆ T (Spec(A)) corresponds to the ring-theoretic
filter

F := {s :A |
√

(s) ∈ K} ⊆ A,
and a ring-theoretic filter F ⊆ A corresponds to the completely prime filter

K := {a : T (Spec(A)) | a ∩ F is inhabited}.
We omit the required routine verifications. □

In classical logic, where complementation yields a one-to-one correspondence
between filters and prime ideals, the points of Spec(A) are therefore in canonical
bijection with the prime ideals of A, just as one would expect.

Observing that intuitionistically the points of the locale Spec(A) are filters, not
prime ideals, one might wonder: Is the locale-theoretic approach really necessary?
Wouldn’t it suffice to define Spec(A) as the topological space of filters of A? Indeed,
for some time this was believed [85, Section 3]; however, this hope turned out to
be too naive: Joyal gave an explicit example of a nontrivial ring in a certain topos
without any filters [134, pp. 200f.], thus showing that the construction can’t have
the expected universal property and that therefore a true pointfree approach as
provided by lattice theory/locale theory [43], topos theory, or formal topology [118]
is necessary to construct the spectrum in an intuitionistic context.22

The spectrum as a classifying locale. The fact that the points of Spec(A) are
in canonical one-to-one correspondence with the filters of A is a shadow of a more
general fact. Namely, for any locale X (and in fact any topos), maps X → Spec(A)
are in canonical one-to-one correspondence with the internal filters of A in Sh(X),
that is subsheaves of the constant sheaf A satisfying the filter axioms from the point
of view of the internal language of Sh(X): The locale Spec(A) is the classifying
locale of the theory of filters of A.

The fact about the points of Spec(A) can be recovered from this observation as
follows. A point of Spec(A) is a map pt→ Spec(A) and therefore corresponds to a
subsheaf of the constant sheaf A satisfying the filter axioms from the point of view
of Sh(pt). Since Sh(pt) ≃ Set, such a subsheaf amounts to a subset of A satisfying
the filter axioms.

22When following reference [134], note that Tierney calls “primes” what we call “filters”. Joyal’s

example was none other than the ring A1
SpecZ in the functor category [Ringfp, Set]. The big Zariski

topos of Spec(Z), when defined using the parsimonious sites, is a subtopos of that topos; in it, the
ring A1

S does have filters, for instance the filter of units. These two facts are not contradictory,
since not having any filters is not a geometric implication and is therefore not guaranteed to be
preserved by inverse image parts of geometric morphisms.
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The notion of classifying locales provides a pleasant way of approaching the
problem of constructing a space of models of a propositional geometric theory (in
the case of the spectrum the theory of filters), simultaneously streamlining the usual
topological approach and generalizing it to work in an intuitionistic context: Instead
of first constructing the set of models (filters of A) and then manually endowing
this set with a suitable topology (the Zariski topology), one can simply consider
the locale of models, that is the classifying locale of the theory. Its sets of points
coincides with the set of models of the topological approach, but the locale is not
determined by its sets of points, facilitating a better behavior in contexts where the
points might be elusive.

Put more concisely, the topological space of filters doesn’t work well in an
intuitionistic context, but the locale of filters does. This phenomenon is an instance
of Vickers’s motto “if you define points by a geometric theory, then the topology
is implicit”. A lucid expository account of the theory of classifying locales can be
found in a survey article by him [142].

Remark 12.4. For comparison with a refined geometric theory discussed below,
we describe the geometric theory of filters of A here explicitly. It has one atomic
proposition “s ∈ F” for each element s :A, and its axioms are given by the following
axiom schemes:

(1) ⊤ ⊢ 1 ∈ F
(2) st ∈ F ⊣⊢ s ∈ F ∧ t ∈ F (two axioms for each s, t :A)
(3) 0 ∈ F ⊢ ⊥
(4) s+ t ∈ F ⊢ s ∈ F ∨ t ∈ F (one axiom for each s, t :A)

A trivial case. For later use, we study the question when the spectrum is the
one-point space. The answer is well-known classically, but since we want to use this
result in an internal context, we have to give an intuitionistic proof.

Lemma 12.5. Let A be a ring. Its spectrum is a one-point space (as a locale) if
and only if 1 ̸= 0 in A and any element of A is nilpotent or invertible.

Proof. The locale SpecA is a one-point space if and only if the unique continuous
map Spec(A)→ pt of locales is an isomorphism. This is the case if and only if the
canonical frame homomorphism

Ω = P(1) −→ T (SpecA)
φ 7−→ aφ := sup{

√
(1) |φ} = {x :A | ⌜x nilpotent⌝ ∨ φ}

is surjective and reflects the ordering (and is therefore automatically injective).
If 1 = 0 in A, this homomorphism is not injective, since ⊥ and ⊤ get both mapped
to

√
(0). For the rest of the proof, we’ll therefore assume that 1 ̸= 0 in A.

Under this assumption, the homomorphism reflects the ordering: If aφ ⊆ aψ,
then (1 ∈ aφ) ⇒ (1 ∈ aψ). Since the unit of A is not nilpotent, this amounts
to φ⇒ ψ.

The homomorphism is surjective if and only if for any radical ideal a ⊆ A, it
holds that a = {x :A | ⌜x nilpotent⌝ ∨ φ} for some proposition φ. By considering
the condition “1 ∈ a”, it follows that this proposition φ must be equivalent to the
proposition “1 ∈ a” (if it is at all possible to write a in such a way).

So the map is surjective if and only if for any radical ideal a ⊆ A and any
element x of A it holds that

x ∈ a ⇐⇒ ⌜x nilpotent⌝ ∨ (1 ∈ a).

The “if” direction always holds. If any element of A is nilpotent or invertible, the
“only if” direction holds as well (for any a and any x). Conversely, if the “only if”
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direction holds, then any element of A is nilpotent or invertible. This follows by
considering the radical ideal

√
(f) for an element f :A. □

Remark 12.6. The structure sheaf OX of a scheme fulfills almost, but not quite,
the condition given in Lemma 12.5: By Proposition 3.7, it has the property that
any element which is not invertible is nilpotent. In classical logic, this statement is
equivalent to the statement that every element is nilpotent or invertible. However,
intuitionistically the former is a weaker statement than the latter. This observation
entails that the internally constructed spectrum does not coincide with the relative
spectrum, and that instead a refined approach is necessary. Section 12.4 is devoted
to studying this difference.

12.3. Digression: Further topologies on the set of prime ideals. The Zariski
topology is not the only interesting topology on the set of prime ideals. For instance,
the constructible topology and the flat topology studied by Tarizadeh [130] (also
called “co-Zariski topology”) too have their uses.

The universal properties given in the following two propositions should be com-
pared with the following way of phrasing the universal property of the ordinary
locale-theoretic spectrum. The usual phrasing employs the categories RL and LRL
of (locally) ringed locales, therefore emphasizing the spatial character. But the dual
categories RLop and LRLop can be used just as well; since the morphisms in RLop

and LRLop go in the direction of the ring-theoretic parts, they can be thought of as
the category of all rings respectively all local rings, where “all” refers to the fact
that these categories don’t only include the (local) rings in Set, but the (local) rings
in arbitrary localic sheaf toposes.

Formulated using RLop and LRLop, and adopting the notation to suppress
mention of the involved spaces (instead of the involved sheaves of rings), the
universal property of Spec(A) reads as follows: For any local ring OY over any
locale Y ,

HomLRLop(OSpec(A),OY ) ∼= HomRLop(A,OY ).
The morphism A→ OSpec(A) in RLop is therefore the universal localization of A.

Proposition 12.7. Let A be a ring. The locale given by the space of prime ideals
of A with the flat topology is the classifying locale of prime ideals of A. Equipped
with A/P as structure sheaf, where P is the generic prime ideal, it is the universal
way of mapping A to an integral domain in the weak sense (as defined in Section 3.5;
with morphisms of weak integral domains taken to be injective ring homomorphisms).

Proof. See [71, Proposition 4.5]. □

Proposition 12.8. Let A be a ring. The locale given by the space of prime ideals
of A with the constructible topology is the classifying locale of detachable prime
ideals (or equivalently detachable filters) of A. Equipped with A/P as structure
sheaf, where P is the generic prime ideal, it is the universal way of mapping A to an
integral domain in the strong sense. Equipped with A[F−1], where F is the generic
filter, it is the universal way of mapping A to a local ring in which invertibility is
decidable.

Proof. This is mostly covered in [71, p. 253]. □

In constructive mathematics, a subset U ⊆ A is detachable if and only if for every
element a :A, either a ∈ U or a ̸∈ U . While intuitionistically the complement of a
filter might fail to be a prime ideal and the complement of a prime ideal might fail
to be a filter, the complement of a detachable filter is a detachable prime ideal, and
vice versa.
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12.4. The relative spectrum as an ordinary spectrum from the internal
point of view. Let X be a scheme and A be a quasicoherent OX -algebra. Since A
looks like a plain algebra from the internal perspective of Sh(X), we can consider its
internally defined spectrum. This is a locale internal to Sh(X); we might hope that
its externalization is precisely the relative spectrum of A (considered as a locale):

E(SpecA)
?∼= SpecX A.

However, this turns out to be too naive. The locale E(Spec(A)) is equipped with a
map to X, being an externalization of a locale internal to Sh(X), and it is equipped
with a sheaf of rings (because we can transport the internally defined structure sheaf
along the equivalence ShSh(X)(Spec(A)) ≃ Sh(E(Spec(A))). Furthermore, this sheaf
of rings is local, since we know

Sh(X) |= ⌜Sh(Spec(A)) |= ⌜OSpec(A) is a local ring⌝⌝

which by idempotency of the internal language is equivalent to

Sh(E(Spec(A))) |= ⌜OSpec(A) is a local ring⌝.

However, the map E(Spec(A))→ X is only part of a morphism of ringed locales,
not of locally ringed locales (even though domain and codomain happen to be locally
ringed): Internally, the morphism (Spec(A),OSpec(A))→ (pt,OX) of ringed locales,
which is defined using the OX -algebra structure of A, is not a morphism of locally
ringed locales (even though domain and codomain happen to be locally ringed).

In contrast, the true relative spectrum SpecX(A) is equipped with a morphism
of locally ringed locales to X.

It’s illuminating to compare the different universal properties of E(Spec(A))
and SpecX(A). There is a canonical morphism E(Spec(A)) → E(Spec(OX)) of
locally ringed locales (the externalization of the canonical morphism Spec(A) →
Spec(OX) given by the OX -algebra structure of A), but in general, the locales
E(Spec(OX)) and X are not isomorphic.

As we justify below, the externalization of the internally defined spectrum has
the universal property

HomLRL/E(SpecOX)(Y,E(SpecA)) ∼= HomOX
(A, µ∗OY )

for all locally ringed locales Y over E(SpecOX). Here, µ is the structure mor-
phism Y → SpecOX , E(SpecOX) is the locally ringed locale associated to the
internally defined spectrum of OX , and LRLSh(X) is the category of locally ringed
locales internal to Sh(X). In contrast, the relative spectrum has the different
universal property

HomLRL/X(Y, SpecX A) ∼= HomOX
(A, µ∗OY )

for all locally ringed locales Y over X.23 The crucial difference is that in general, the
internally defined locally ringed locale SpecOX does not coincide with the internal
locally ringed locale (pt,OX) (which is simply (X,OX) from the external point
of view). More succinctly, the functor E ◦ Spec is an adjoint to the pushforward-
of-sheaf-of-functions functor LRL/E(SpecOX) → Alg(OX)op, while the relative
spectrum functor is an adjoint to the analogous functor LRL/X → Alg(OX)op.

The universal property of E(Spec(A)) can be determined as follows. From the
internal point of view of Sh(X), the locally ringed locale E(Spec(A)) looks like the
ordinary locale-theoretic spectrum Spec(A) and therefore has the universal property

HomLRL(Y,Spec(A)) ∼= HomRing(A,Γ(Y,OY ))

23If X is a scheme and A is quasicoherent, this universal property is well-known, even though it’s

usually only stated for schemes Y over X instead of general locally ringed locales over X. In any
case, we take this universal property as the definition of what the relative spectrum should be.
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for any locally ringed locale Y .24 If we restrict the right-hand side to the set of OX -
algebra homomorphisms, the left-hand side restricts to the set of morphisms Y →
Spec(A) of locally ringed locales over the locally ringed locale Spec(OX). So we
have

HomLRL/ Spec(OX)(Y,Spec(A)) ∼= HomAlg(OX)(A,Γ(Y,OY )).

This discussion took place in the internal universe of Sh(X). Externally, the
displayed universal property implies that for any locally ringed locale µ : Y → X
over E(Spec(OX)),

HomLRL/E(Spec(OX))(Y,E(Spec(A))) ∼= HomAlg(OX)(A, µ∗OY ),

as claimed above.

Definition 12.9. Let R be a ring. Let A be an R-algebra. The local spectrum of A
over R is the locale Spec(A|R) with frame of opens given by

T (Spec(A|R)) := {a ⊆ A | a is a radical ideal such that

∀f :R. ∀s :A. (⌜f inv.⌝⇒ s ∈ a)⇒ fs ∈ a}.

We’ll equip the local spectrum with the structure of a locally ringed locale below.
It is this refined construction which correctly internalizes the relative spectrum:

Theorem 12.10. Let X be a scheme (or a locally ringed locale). Let A be an OX-
algebra. Then the externalization E(Spec(A|OX)) coincides with SpecX(A) as
locally ringed locales over X.

Before giving the proof, we want to clarify some details of the construction.
Firstly, the base ring R directly enters the construction. This is in contrast to

the usual spectrum: If A is an R-algebra, the construction of Spec(A) does not
depend on the R-algebra structure of A. The algebra structure only enters in the
construction of a morphism Spec(A)→ Spec(R).

Secondly, in the case that X is a scheme and A is a quasicoherent OX -algebra, we
can compare the externalization of Spec(A|OX) with the result of the construction
of SpecX(A) by gluing spectra:

Proposition 12.11. Let X be a scheme. Let A be a quasicoherent OX-algebra.
Then E(Spec(A|OX)) coincides with SpecX(A) as locales over X.

Proof. The condition

∀f :OX . ∀s :A. (⌜f inv.⌝⇒ s ∈ a) =⇒ fs ∈ a

appearing in Definition 12.9 is precisely the internal quasicoherence condition of
Corollary 8.5 (slightly simplified in view that a is a radical ideal). The sections of
the sheaf JT (Spec(A|OX))K on an open subset U ⊆ X are therefore precisely the
quasicoherent sheaves of radical ideals a ↪→ A|U . Let π : SpecX(A) → X be the
canonical morphism. If U is affine, then

π−1U ∼= SpecX(A)×X U ∼= SpecU (A|U ) ∼= Spec(Γ(U,A))

24Externally, this implies that for any locally ringed locale over the underlying locale of X (that is,
for any locale Y equipped with a morphism µ : Y → X and a local sheaf of rings), we have

HomLR(L/X)(Y,E(Spec(A))) ∼= HomRingSh(X)
(A, µ∗OY ).
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is affine as well and

Γ(U, T (I(SpecX(A)))) = Γ(U, π∗ΩSpecX(A)) = ΩSpecX(A)(π
−1U)

∼= set of open subsets of π−1U

∼= set of open subsets of Spec(Γ(U,A))
∼= set of radical ideals of Γ(U,A)
∼= set of quasicoherent sheaves of radical ideals of A|U
∼= Γ(U, JT (Spec(A|OX))K).

Therefore I(SpecX(A)) is canonically isomorphic to Spec(A|OX) as locales internal
to Sh(X). Expressed externally: The relative spectrum SpecX(A) coincides with
the externalization of Spec(A|OX) as locales over X, as claimed. □

Thirdly, the partial order T (Spec(A|R)) is indeed a frame. A quick way to verify
this is to recognize that it is related to the frame of opens of Spec(A) by the formula

T (Spec(A|R)) = {a : T (Spec(A)) | a = a},

where (a 7→ a) is the quasicoherator described in Remark 8.16. Since the quasi-
coherator satisfies the axioms for a nucleus, this formula exhibits Spec(A|R) as a
sublocale of Spec(A). In particular, suprema are computed in T (Spec(A|R)) by
applying the quasicoherator to the suprema computed in T (Spec(A)). We denote
the inclusion Spec(A|R) ↪→ Spec(A) by “i”.

Lastly, it’s interesting to know what the points of Spec(A|R) are, even though
these don’t determine Spec(A).

Definition 12.12. Let R be a ring. Let φ : R→ A be an algebra. A filter F ⊆ A
lies over the filter of units if and only if φ−1F ⊆ R×, that is if

φ(r) ∈ F =⇒ r is invertible in R

for all r :R. (The reverse inclusion “φ−1F ⊇ R×” holds automatically.)

This definition will mostly be used in situations where the ring R is local, in
which case the subset R× is actually a filter and the phrase “filter of units” is
therefore justified.

It’s illuminating to consider Definition 12.12 in a classical context, even though
the use case we have in mind is to apply it in the internal language of the little
Zariski topos of a base scheme. Classically, a filter F lies over the filter of units if
and only if φ−1p ⊇ R \ R×, where p := F c = A \ F is the prime ideal associated
to F . If R is local, the set R \R× is the unique maximal ideal m of R. Thus F lies
over the filter of units if and only if p lies over the maximal ideal.

Proposition 12.13. Let R be a ring. Let φ : R → A be an R-algebra. Then the
points of Spec(A|R) are intuitionistically in canonical one-to-one correspondence
with those filters of A which lie over the filter of units.

Proof. The correspondence outlined in Proposition 12.3 can be adapted to the
situation at hand. A completely prime filter K ⊆ T (Spec(A|R)) corresponds to the
ring-theoretic filter

F := {s :A |
√
(s) ∈ K}

and a ring-theoretic filter F corresponds to the completely prime filter

K := {a : T (Spec(A|R)) | a ∩ F is inhabited}.

It’s instructive to perform some of the necessary verifications, to see how the quasi-
coherator is used, even though Proposition 12.14 will subsume this correspondence.
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The filter F corresponding to K has the displayed property for the following
reason. Let φ(r) ∈ F . We want to verify that r is invertible in R. Under the
assumption that r is invertible in R, it’s trivial that 1 is an element of

a := sup{
√
(1) | r is invertible in R}

= {s :A | s is nilpotent or r is invertible in R} ∈ T (Spec(A)).

Therefore, without any assumption on r, we have that r · 1 = φ(r) is an element

of a and therefore
√
(φ(r)) ⊆ a. Since K is upward-closed, it follows that a ∈ K.

Since a is the supremum of the set {
√
(1) | r is invertible} in T (Spec(A|R)) and K

is completely prime, it follows that this set is inhabited. Thus r is invertible in R.
The set K corresponding to a ring-theoretic filter F is completely prime for

the following reason. Let supi ai =
√∑

i ai ∈ K. Then
√∑

i ai ∩ F is inhabited.

By the special assumption on F , the intersection
√∑

i ai ∩ F is inhabited as well:
In the case that X is a scheme, this follows easily using the description of the
quasicoherator given in Proposition 8.13. In the general case, we use the proof
scheme outlined in Remark 8.16 – using the notation of that remark, if P (b) ∩ F is
inhabited, then b ∩ F is as well.

A short calculation using the filter axioms then shows that there exists an index i
such that ai ∩ F is inhabited. □

Proposition 12.14. Let R be a ring. Let φ : R→ A be an algebra. Then Spec(A|R)
is the classifying locale of the theory of filters of A which lie over the filter of units,
that is of the geometric theory with atomic propositions “s ∈ F” for s :A and axioms
given by the following axiom schemes:

(1) ⊤ ⊢ 1 ∈ F
(2) st ∈ F ⊣⊢ s ∈ F ∧ t ∈ F (two axioms for each s, t :A)
(3) 0 ∈ F ⊢ ⊥
(4) s+ t ∈ F ⊢ s ∈ F ∨ t ∈ F (one axiom for each s, t :A)
(5) φ(r) ∈ F ⊢

∨
{⊤ | r is invertible in R} (one axiom for each r :R)

Proof. The frame of the classifying locale of the given theory T is the free frame
on generators “s ∈ F” for s :A subject to the relations given by the axioms of the
theory. More explicitly, it’s the Lindenbaum algebra L(T ) of the theory, so its
elements are the formulas of the theory up to provable equivalence and the ordering
is defined by [φ] ⪯ [ψ] :⇔ (φ ⊢ ψ). We want to verify that this frame is isomorphic
to T (Spec(A|R)).

We define a frame homomorphism L(T )→ T (Spec(A|R)) by sending the genera-

tors [s ∈ F ] to the radical ideal
√
(s). This respects the relations and therefore gives

a well-defined map. The map is surjective, since a preimage to a : T (Spec(A|R))
is [

∨
s∈a(s ∈ F )]. To verify that it is an isomorphism of frames, we therefore only

have to verify that it reflects the ordering.
By the axiom schemes (1) and (2), any formula of T is provably equivalent

to a formula of the form
∨
i(si ∈ F ). It therefore suffices to verify that, for any

families (si)i and (tj)j such that
√
(si)i ⊆

√
(tj)j , the sequent

∨
i(si ∈ F ) ⊢∨

j(tj ∈ F ) is derivable. We’ll show more generally: If a and b are radical ideals

such that a ⊆ b, then
∨
s∈a(s ∈ F ) ⊢

∨
t∈b(t ∈ F ). This follows from the following

chain of deductions:∨
s∈a

(s ∈ F ) ⊢
∨
s∈a

(s ∈ F ) ⊢
∨
s∈b

(s ∈ F ) ⊢
∨
s∈b

(s ∈ F ).

All but the final step are trivial. The final step is an application of the general proof
scheme outlined in Remark 8.16. In the notation of that remark, we set α(J ) :=
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[
∨
s∈J (s ∈ F )] and exploit that, if s ∈ P (J ), then s ∈ F ⊢

∨
t∈J (t ∈ F ). This is

because s can be written as sn =
∑
j ajfjuj such that, for each j, if fj is invertible

in R then uj ∈ J , and we have the following chain of deductions.

s ∈ F ⊢ sn ∈ F

⊢
∨
j

(tjfjuj ∈ F )

⊢
∨
j

(φ(fj) ∈ F ∧ uj ∈ F )

⊢
∨
j

(∨
{⊤ | fj invertible in R} ∧ uj ∈ F

)
⊢
∨
j

∨
{(uj ∈ F ) | fj invertible in R}

⊢
∨
t∈J

(t ∈ F ). □

Lemma 12.15. Let R be a local ring. Let φ : R → A be an R-algebra. Then,
intuitionistically, the locale Spec(A|R) carries a canonical structure as a locally
ringed locale over (pt, R) and has the following universal property: For any locally
ringed locale (Y,OY ) over (pt, R),

HomLRL/(pt,R)(Y, Spec(A|R)) ∼= HomAlg(R)(A,Γ(Y,OY )).

Proof. Since Spec(A|R) is a sublocale of Spec(A), we can equip Spec(A|R) with the
restriction of OSpec(A) to Spec(A|R) as the structure sheaf:

OSpec(A|R) := i−1OSpec(A) = i−1(A[F−1]) ∼= (i−1A)[(i−1F)−1] ∼= A[(i−1F)−1].

The generic filter F was described in Section 11.2. The penultimate isomorphism is
because localizing is a geometric construction. Since locality of a ring is a geometric
implication, this structure sheaf is indeed a local sheaf of rings. Thus Spec(A|R) is
a locally ringed locale.

Next, we have to describe a morphism (Spec(A|R),OSpec(A|R))→ (pt, R). Locale-
theoretically, this morphism is given by the unique map ! : Spec(A|R)→ pt. The
ring-theoretic part is given by the composition

!−1R = R −→ A −→ A[(i−1F)−1] = OSpec(A|R).

This homomorphism of rings which happen to be local is indeed a local homomor-
phism, that is, it reflects invertibility. More precisely,

Spec(A|R) |= ∀f :R. ⌜φ(f) is inv. in OSpec(A|R)⌝⇒ ⌜f is inv. in R⌝.

Denoting the modal operator associated to the sublocale inclusion Spec(A|R) ↪→
Spec(A) by “□”, this statement is equivalent to

Spec(A) |= (∀f :R. φ(f) ∈ F ⇒ ⌜f is inv. in R⌝)□

by Theorem 6.31 and Lemma 6.23. To verify this, let s :A and f :R be given
such that

√
(s) |= φ(f) ∈ F , that is, s ∈

√
(φ(f)). We are to show that

√
(s) |=

□(⌜f is invertible in R⌝).
The largest open in Spec(A) on which ⌜f is invertible in R⌝ holds is

a := sup{
√
(1) | f is invertible in R}

= {t :A | t is nilpotent or f is invertible in R} ∈ T (Spec(A)),

by Lemma 11.1. Under the assumption that f is invertible in R, trivially 1 ∈ a.
Therefore, without any assumptions on f , we have that φ(f) ∈ a. Thus

√
(φ(f)) ⊆ a
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and therefore
√
(φ(f)) |= □(⌜f is invertible in R⌝). Since

√
(s) ⊆

√
(φ(f)), the

monotonicity of the internal language implies
√
(s) |= □(⌜f is invertible in R⌝).

Finally, we verify the universal property. Let Y be a locally ringed locale
over (pt, R) and let a morphism A → Γ(Y,OY ) of R-algebras be given. We like
this data to uniquely induce a morphism Y → Spec(A|R) of locally ringed locales
over (pt, R).

To obtain a locale-theoretic map f : Y → Spec(A|R), by Proposition 12.14 we
need to specify a filter of A in Sh(Y ) which lies over the filter of units. The given
morphism A→ Γ(Y,OY ) induces a morphism α : A→ OY in Sh(Y ). Since OY is a
local ring, the subsheaf O×

Y is a filter. Its preimage F := α−1O×
Y is the sought filter

of A. It lies over the filter of units because the composition R→ A→ OY is local.
By the general theory, the pullback of the generic filter in Sh(Spec(A|R)) to Sh(Y )
along f is F .

The ring-theoretic part of the sought morphism Y → Spec(A|R) of locally ringed
locales over (pt, R) is the canonical homomorphism

f−1OSpec(A|R) = f−1(A[(i−1F)−1]) = A[F−1] −→ OY
of local rings.

This finishes the description of the construction. We omit further verifications
that the construction works as claimed. □

Remark 12.16. The modal operator □ associated to the inclusion Spec(A|R) ↪→
Spec(A) can be defined in the internal language of Sh(Spec(A)). Namely, it’s the
smallest operator such that the □-translated statement

(⌜the morphism R→ OSpec(A) is local⌝)
□

holds. It is thus the smallest operator such that for any f :R with φ(f) ∈ F ,
□(⌜f is invertible in R⌝). The sublocale Spec(A|R) is therefore the largest sublocale
of Spec(A) on which the morphism R→ OSpec(A) is local.

Remark 12.17. In classical logic, the sublocale Spec(A|R) is closed in Spec(A),
coinciding with V (mRA) (see Remark 12.24). But we don’t think that this property
can be verified intuitionistically.25 For technical reasons, it would be nice to know
that Spec(A|R) is an essential sublocale, since the pullback functor admits a simpler
description for essential sublocales. It is an intersection of open, hence essential,
sublocales, but the intersection of essential sublocales needn’t be essential [77]. We
are grateful to Guilherme Frederico Lima de Carvalho e Silva for valuable discussions
and references on this matter.

Proof of Theorem 12.10. Follows immediately by interpreting the intuitionistic
proof of Lemma 12.15 in the internal language of Sh(X), applied to R := OX
and A := A. Then “(pt,OX)” actually refers to the locally ringed locale (X,OX)
and “Γ(Y,OY )” refers to µ∗OY , where µ : (Y,OY ) → (X,OX) is a locally ringed
locale over (X,OX). □

Theorem 12.10 settles the question how the little Zariski topos of SpecX(A) looks
like from the internal point of view of Sh(X). A related question is how the big
Zariski topos looks like. We give the answer in Theorem 16.9.

A basic fact about the ordinary spectrum is that the ring of global sections
of OSpec(A) is canonically isomorphic to A. This is not true for the local spectrum:

25The nucleus corresponding to the sublocale Spec(A|R) is the quasicoherator a 7→ a. Assume

that the sublocale is closed. Then there is a radial ideal b such that a =
√
a+ b for all radical

ideals a ⊆ A. This radical ideal b is uniquely determined by b =
√

(0). Thus we obtain the simple

description a =

√
a+

√
(0) for the quasicoherator. We don’t believe that this is right in general.
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A trivial example is given by any algebra over a ring R which is strongly not
local over R in the sense that there are some nonunits of R which generate the
unit ideal in A. In this case the theory which Spec(A|R) classifies is inconsistent.
Thus Spec(A|R) is the empty locale and the ring of global sections of OSpec(A|R) is

the zero ring.26

Proposition 12.18. Let R be a local ring. Let A be an R-algebra. The canonical
homomorphism A → Γ(Spec(A|R),OSpec(A|R)) is an isomorphism in any of the
following situations:

(1) The algebra A satisfies the quasicoherence condition given in Theorem 8.3.
(2) The algebra A is local and the structure morphism R→ A is local.

Furthermore, the sheaf OSpec(A) is a sheaf for the modal operator associated to
the sublocale Spec(A|R) ↪→ Spec(A) if and only if A satisfies the quasicoherence
condition.

Proof. We only verify the claim in the second situation. In this case 1 ∈ a im-
plies 1 ∈ a for any radical ideal of A, as can be checked using the proof scheme
given in Remark 8.16. Hence Spec(A|R) is a local locale, meaning that for any

covering
√
(1) =

∨
i ai =

√∑
i ai of the top element of T (Spec(A|R)), there is an

index i such that ai =
√

(1).
The locale Spec(A|R) thus has an initial (locale-theoretic) point. This focal point

can be explicitly described: it is the filter A× (which lies over the filter of units
because R → A is local). As is generally the case for local locales, taking global
sections is the same as taking the stalk at the focal point. Therefore we can conclude
by the following string of isomorphisms.

Γ(Spec(A|R),OSpec(A|R)) ∼= OSpec(A|R),A× ∼= A[(A×)−1] ∼= A. □

Corollary 12.19. Let X be a scheme. Let A be an OX-algebra. Let f : SpecX(A)→
X be the canonical projection morphism. The canonical morphism A → f∗OSpecX(A)

of OX-algebras is an isomorphism in any of the following situations:

(1) The algebra A is quasicoherent.
(2) From the point of view of Sh(X), the algebra A is local and the homomor-

phism OX → A is local. (This means that, for every point x ∈ X, the
stalk Ax is local and the homomorphism OX,x → Ax is local.)

Proof. This is just the interpretation of Proposition 12.18 internal to Sh(X). □

Remark 12.20. Naively one might think that the canonical morphism A →
f∗OSpecX(A) of Corollary 12.19 is the canonical morphism from A to the quasico-
herization of A. This is not the case. Firstly, the canonical morphism obtained by
quasicoherization goes in the other direction. Secondly, as stated in Corollary 12.19,
the canonical morphism can be an isomorphism even if A is not quasicoherent.

12.5. Comparing the different spectrum constructions. For rings and alge-
bras, there are at least the following spectrum constructions.

• The ordinary spectrum of a ring, possibly realized as a locale instead of a
topological space in order to work in an intuitionistic setting: Ringop → LRS
or Ringop → LRL
• The local spectrum of an algebra: Alg(R)op → LRL/(pt, R)

26This failure is not entirely unexpected, since Coste’s general result on sheaf representations [45,
Theorem 5.1.1], which would immediately guarantee that the global sections of OSpec(A|R) are
in canonical one-to-one correspondence with the elements of A, is not applicable: The theory
which Spec(A|R) classifies is not a coherent theory. The set-indexed disjunction appearing in axiom
scheme (5) of the description given in Proposition 12.14 can’t be rewritten as a finite disjunction.
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• (A special case of) Gillam’s spectrum of a sheaf of algebras [57]: Alg(OX)op →
LRS/(X,OX)
• Hakim’s spectrum of a ringed topos [63], yielding a locally ringed topos:
RT→ LRT.
• Cole’s general framework for spectrum constructions [35] (also reported on
at [75, Theorem 6.58])

These are related as follows.
As described in Section 12.4, the ordinary spectrum construction cannot only

be applied to rings, but also to sheaves of rings and indeed ring objects internal to
arbitrary elementary toposes equipped with a natural numbers object, by employing
the internal language. Applied to a ring O internal to such a topos E , it yields
a locally ringed locale internal to E , or equivalently a locally ringed localic topos
internal to E . Externally, this corresponds to a locally ringed topos which is equipped
with a localic geometric morphism to E .

The ordinary spectrum construction can therefore be used to turn a ringed
topos (E ,O) (with a natural numbers object) into a locally ringed topos (which
will be equipped with a morphism of ringed toposes to (E ,O), but which will, even
if O happens to be a local ring, not be equipped with a morphism of locally ringed
toposes to (E ,O)).

By comparing the universal properties one sees that this kind of internal appli-
cation of the ordinary spectrum construction coincides with the result of Hakim’s
spectrum construction. In fact, it can be interpreted as a simultaneous simplification
and generalization of Hakim’s construction: It’s simpler, since it’s just the familiar
spectrum construction and no explicit site calculations are required; and it’s more
general, since Hakim’s construction only applies to ringed Grothendieck toposes
whereas the internally-performed construction of the ordinary spectrum applies to
ringed elementary toposes with natural numbers object.

Gillam’s spectrum coincides with internally performing the construction of the
local spectrum, with the caveat that Gillam’s construction starts with and yields a
locally ringed space, whereas ours starts with and yields a locally ringed locale.27

More precisely:
For a locale Y , let YP be the topological space of points of Y , and for a

topological space T , let TL be the induced locale. Let (X,OX) be a sober lo-
cally ringed topological space. Let A be an OX -algebra. Then we have a mor-
phism E(Spec(A|OX)) → XL of locally ringed locales. Since X ∼= (XL)P , there
is an induced morphism E(Spec(A|OX))P → X of locally ringed spaces. The
adjunction ( )L ⊣ ( )P relating locales and topological spaces then yields, for any
locally ringed space µ : Y → X over X,

HomLRS/X(Y,E(Spec(A|OX))P ) ∼= HomLRL/XL
(YL, E(Spec(A|OX)))

∼= HomAlg(OX)(A, µ∗OY ).

This is precisely the universal property which Gillam’s spectrum enjoys.
Cole’s framework for spectrum constructions is sufficiently general to encompass

both the ordinary spectrum and the local spectrum, and by extension Hakim’s
spectrum and Gillam’s spectrum. As is well-known, the ordinary spectrum can be
obtained from Cole’s framework by applying it to the geometric theory S of rings, its
quotient theory T of local rings, and the admissible class A of local homomorphisms
(notation as in [75, Theorem 6.58]). The local spectrum can be obtained by applying

27More generally, the local spectrum construction can be applied to any algebra over a local ring O
internal to an elementary topos E with a natural numbers objects and yields a locally ringed topos
equipped with a morphism of locally ringed toposes to (E,O).
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it to the geometric theory S of OX -algebras, its quotient theory T of local OX -
algebras which are local over OX , and the admissible class of local homomorphisms.
For this to make sense, one has to interpret Cole’s framework in the internal language
of Sh(X), since there are no external geometric theories of (local) OX -algebras.

In general, the local spectrum doesn’t coincide with the usual spectrum and
Gillam’s spectrum doesn’t coincide with Hakim’s spectrum. (This was partly
observed before, for instance in [34, Remark A.1.2].) However, if the base space is a
scheme of dimension ≤ 0, they do coincide.

Proposition 12.21. Let X be a scheme. Then E(Spec(OX)) ∼= X as locales over X
if and only if dimX ≤ 0.

Proof. The externalization of SpecOX coincides with X if and only if from the
internal point of view, the locale SpecOX coincides with the one-point locale. By
interpreting Lemma 12.5 in the internal language of Sh(X), it follows that this is
the case if and only if

Sh(X) |= ∀f :OX . ⌜f nilpotent⌝ ∨ ⌜f invertible⌝.

(Internally, it always holds that ¬(1 = 0) in OX , even if X happens to be the
empty scheme. Therefore the lemma is indeed applicable.) By Corollary 3.14, this
condition is equivalent to the dimension of X being less than or equal to zero (i. e.
to X being empty or having dimension exactly zero). □

Corollary 12.22. Let X be a scheme. Then the relative spectrum of OX-algebras
can be computed by the internal spectrum (instead of the internal local spectrum) if
and only if dimX ≤ 0.

Proof. The externalization of the internal spectrum of arbitrary OX -algebras A
coincides with the relative spectrum if and only if it coincides in the special case A =
OX . This is apparent by the universal properties of both constructions. Thus the
claim follows from Proposition 12.21. □

Which construction is more fundamental, the ordinary spectrum of a ring
or the local spectrum of an algebra? The ordinary spectrum Spec(A) can be
expressed as the local spectrum Spec(A∼|OSpec(Z)), where A∼ is the induced
quasicoherent algebra on Sh(Spec(Z)). This fact is well-known in the alternate
form “SpecSpec(Z)(A

∼) ∼= Spec(A)”.
Fast and loose reasoning as follows could lead one to believe that it’s similarly

possible to express the local spectrum as an ordinary spectrum. Let R be a local
ring. Let φ : R→ A be an algebra. The points of Spec(A|R) are those filters F ⊆ A
such that φ−1F = R×. Illicitly assuming classical logic, the points of Spec(A|R)
are in canonical one-to-one correspondence with those prime ideals p ⊆ A such
that φ−1p = mR. The points of Spec(A|R) are therefore in canonical one-to-one
correspondence with the points of Spec(A⊗R k), where k = R/mR is the residue
field of R. Therefore Spec(A|R) and Spec(A⊗R k) might coincide.

However, we have the following negative result.28

28Intuitionistically, it’s still true that the prime ideals of a quotient ring A/p are in one-to-
one correspondence with those prime ideals of A which contain p. However, the analogous
statement “filters of A/F correspond to those filters of A which are contained in F” can’t be

shown intuitionistically, if A/F is defined as A/F c. However, informally speaking, this failure is
not the fault of the statement, but of the definition of A/F . The definition raises red flags from an

intuitionistic point of view, since not F , but only its complement F c enters the construction.
The statement can be salvaged by defining “A/F” to mean the set A equipped with a new apartness
relation defined by a # b :⇔ a − b ∈ F . (A basic example for a ring-with-apartness-relation is
the field of real numbers equipped with x # y :⇔ ∃q ∈ Q. |x − y| ≥ q > 0.) A filter G of this
ring-with-apartness-relation A is by definition a subset G ⊆ A which verifies the filter axioms
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Proposition 12.23. In general, the local spectrum of an algebra can’t be expressed
as an ordinary spectrum.

Proof. It is well-known that the ordinary spectrum is always quasicompact. The
local spectrum, however, can fail to be quasicompact. A quick way to see this
is to notice that, if that was the case, the locale-theoretic part of the projection
morphism SpecX(A)→ X would always be a proper map of locales [139].

There’s also a more direct way of seeing this, which in fact proves a slightly stronger
statement. Let X be a scheme. Let f ∈ Γ(X,OX). From the internal point of view
of Sh(X), the local spectrum Spec(OX [f−1]|OX) ↪→ Spec(OX |OX) ∼= pt is the open
sublocale of pt corresponding to the truth value of “f is invertible”. Explicitly, the
frame of opens of Spec(OX [f−1]|OX) is isomorphic to {ψ : Ω |ψ ⇒ f is invertible}.

The ordinary spectrum always has the Frobenius reciprocity property, being
quasicompact. In contrast, the locale Spec(OX [f−1]|OX) has this property if and
only if f is nilpotent or invertible. □

Remark 12.24. Even in classical logic, where the local spectrum Spec(A|R) and
the ordinary spectrum Spec(A⊗R R/mR) coincide as locales, they do not coincide
as locally ringed locales. The structure sheaf of Spec(A|R), regarded as a sheaf
on Spec(A ⊗R R/mR), is i−1OSpec(A), where i : Spec(A ⊗R R/mR) ↪→ Spec(A) is
the closed immersion corresponding to the inclusion Spec(A|R) ↪→ Spec(A). It’s in
general not OSpec(A⊗RR/mR).

Finally, we want to restate the universal properties of the ordinary spectrum and
the local spectrum in ring-theoretic language, employing the dual categories RLop

and LRLop, as in Section 12.3.
Let A be a ring. The morphism A→ OSpec(A) in RLop (the ring-theoretic part of

the canonical morphism (Spec(A),OSpec(A))→ (Set, A)) is the universal localization
of A: The ring OSpec(A) is local, and for any morphism A→ B into a local ring B
(over any locale), there is a unique local morphism OSpec(A) → B rendering the
diagram

A

  

// localB

OSpec(A)
local

loc
al

88

commutative. In contrast, the universal property of the local spectrum is as follows.
Let R be a ring. Let A be an R-algebra. The morphism A → OSpec(A|R) is the
universal way of turning A into a local ring which is local over R: The ring OSpec(A|R)

is local, the composition R→ A→ OSpec(A|R) is local, and for any morphism A→ B
into a local ring (over any locale) such that the composition R→ A→ B is local,

and which is open with respect to the apartness relation in that for any elements a, b :A, the
implication a ∈ G⇒ ((b ∈ G) ∨ (a # b)) holds.
This construction provides one of several motivations for developing the theory of rings using
apartness relations and anti-ideals; one can even define the spectrum of a ring-with-apartness-
relation. However, we’ll not pursue these ideas further here.
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there is a unique local morphism OSpec(A|R) → B such that the diagram

R //

local

((

local ))

A

""

// localB

OSpec(A|R)
local

loc
al

77

commutes.

Remark 12.25. It’s possible to state the universal property of the structure
sheaf of the big Zariski topos of a ring A, more precisely of the canonical mor-
phism (Zar(A),A1

SpecA)→ (Set, A) of ringed toposes, in a similar manner, employing
the dual categories RTop and LRTop of the categories of (locally) ringed toposes.
However, unlike the universal property of the spectrum, this universal property looks
slightly odd from an algebraic point of view: For any morphism A→ B into a local
ring (over any topos E), there is a unique bijective homomorphism A1

SpecA → B
rendering the diagram

A

��

// localB

A1
SpecA
local

bij
ec
tiv

e

88

commutative. By “bijective” we mean that the ring-theoretic part f ♯ : f−1A1
SpecA →

B of the morphism f : (E ,B)→ (Zar(A),A1
SpecA) is bijective as seen from the internal

point of view of E .

12.6. The spectrum of the generic ring. Let Set[Ring] be the classifying topos
of the theory of rings; explicitly, it’s the topos of presheaves on Ringopfp , the dual
of the category of finitely presented rings. This topos contains the generic ring U
(explicitly the presheaf R 7→ R): any ring in any topos is the pullback of U along a
suitable geometric morphism.

Let Set[LocRing] be the classifying topos of the theory of local rings. Explicitly,
it’s the big Zariski topos Zar(Spec(Z)) (built using one of the parsimonious sites, as
described in Section 15). This topos contains the generic local ring U ′: any local
ring in any topos is the pullback of U ′ along a suitable geometric morphism.

Let A be a ring. By the universal property of Set[Ring], there is a geometric
morphism g : Set → Set[Ring] such that g−1U ∼= A. Since U ′ is in particular
a ring, again by the universal property of Set[Ring], there is a geometric mor-
phism f : Set[LocRing] → Set[Ring] such that f−1U ∼= U ′. By the universal
property of Set[LocRing], the topos of sheaves over the spectrum of A admits a
geometric morphism g′ to Set[LocRing] such that (g′)−1U ′ ∼= OSpec(A).
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The resulting solid diagram

E g̃

&&

f̃

%%

h

%%
Sh(Spec(A))

g′ //

f ′

��

Set[LocRing]

f

��
Set

g
//

η

3;

Set[Ring]

commutes up to a non-invertible natural transformation η; under the equivalence

category of geometric morphisms Sh(Spec(A))→ Set[Ring] ≃
category of ring objects in Sh(Spec(A))

this transformation corresponds to the non-invertible localization homomorphismA→
A[F−1] = OSpec(A). It is folklore that this square is a lax pullback square in the
2-category of Grothendieck toposes (for instance, this is reported on at [6]); however,
this is not true.

Given a topos E together with geometric morphisms f̃ : E → Set and g̃ : E →
Set[LocRing] and a natural transformation η̃ : f̃−1 ◦ g−1 ⇒ g̃−1 ◦ f−1 (these data
correspond to a local ring OE in E together with a ring homomorphism φ : A→ OE),
there is a canonical geometric morphism h : E → Sh(Spec(A)) (determined by
requiring that h−1F ∼= F0 := φ−1[O×

E ]), and this morphism renders the lower
left triangle commutative up to a natural isomorphism, but it renders the upper
right triangle commutative only up to a non-invertible natural transformation
(corresponding to the non-invertible ring homomorphism A[F−1

0 ]→ OE).
The observation that the square is not a lax pullback is joint with Peter Arndt and

Matthias Hutzler. The observation raises two questions: What is the lax pullback
(which exists by general theory), if it’s not Sh(Spec(A))? And how can Sh(Spec(A))
be described as a pullback? The following two propositions answer these questions.
The geometric morphism Set → Set[Ring] which they implicitly refer to is the
morphism g mentioned above.

Proposition 12.26. Let A be a ring. The lax pullback (Set⇒Set[Ring] Set[LocRing])
is the big Zariski topos of Spec(A) (built using one of the parsimonious sites, as
described in Section 15).

Proof. The claim can be checked by hand, but it’s more instructive to employ the
general theory of classifying toposes. In the situation

(Set[T ]⇒Set[T0] Set[T
′]) //

��

Set[T ′]

f

��
Set[T ]

g
//

η

2:

Set[T0],

where T0, T , and T
′ are arbitrary geometric theories, the lax pullback classifies the

geometric theory whose models consist of a model M of T , a model N of T ′, and a
homomorphism G(M)→ F (N) of T0-models. The constructions G and F are given
by the geometric morphisms g and f as follows:

Any object of Set[T ] can be obtained by geometric constructions from UT , the
universal model of T in Set[T ]. In particular, the pullback g−1UT0

, which is a
model of T0, can be obtained by geometric constructions from UT . Therefore the
geometric morphism g displays a way to turn the generic model of T into a model
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of T0 using only geometric constructions. The same constructions can be applied to
any model M of T , yielding a model G(M) of T0.

In the concrete situation at hand, the theory T is the empty theory (admitting
in any topos a unique model M), the theory T ′ is the theory of local rings, and T0
is the theory of rings. The T0-model G(M) is the ring A. The T0-model F (N) of a
local ring N is the underlying ring of N .

Therefore the lax pullback (Set⇒Set[Ring] Set[LocRing]) classifies ring homomor-
phisms A → R where R is a local ring, that is, local A-algebras. It’s well-known
that Zar(Spec(A)) classifies these as well. □

Remark 12.27. The pseudo pullback of the geometric morphism Set[LocRing]→
Set[Ring] along Set→ Set[Ring] is not very interesting: It is the largest subtopos
of Set where the given ring A is local. Assuming classical logic, this subtopos is
either the trivial topos (if A is not local) or Set (if A is local).

Proposition 12.28. Let A be a ring. The pullback of the spectrum of the generic
ring along Set→ Set[Ring] is the spectrum of A.

Proof. There are two related ways of making the statement precise. Firstly, the
spectrum of the generic ring U can be interpreted as a (locally ringed) locale
internal to Set[Ring]. Locales can be pulled back along geometric morphisms (even
though the pullback of a frame along a geometric morphism typically fails to be
a frame) [143]. In this way Spec(U) pulls back to a locale internal to Set, that is
an ordinary external locale. The claim is that this locale is canonically isomorphic
to Spec(A).

A second way to interpret the statement of the proposition is to regard the spec-
trum of the generic ring as a localic geometric morphism with codomain Set[Ring].
The claim is then that the diagram

Sh(Spec(A)) //

��

ShSet[Ring](Spec(U))

��
Set

g
// Set[Ring]

is a pullback diagram in the 2-category of toposes.
Using the language of classifying locales and classifying toposes, both claims are

easy to establish. The pulled-back locale (or topos) classifies the pulled-back geo-
metric theory [143, Corollary 5.4]. Since the description of the theory which Spec(U)
classifies – the theory of filters of U – is itself geometric, the pulled-back theory is
the theory of filters of g−1U ∼= A.29 □

Proposition 12.29. (1) Let A be an R-algebra. The local spectrum Spec(A|R)
is the pullback of Spec(U ′′|R) along the geometric morphism Set→ E given
by A, where U ′′ is the generic R-algebra contained in the classifying topos E
of R-algebras.

(2) Let X be a scheme (or a locally ringed locale). Let A be an OX-algebra.
The relative spectrum SpecX(A) is the pullback of Spec(U ′′|OX) along the
geometric morphism Sh(X)→ E given by A, where U ′′ is the generic OX-
algebra contained in the classifying Sh(X)-topos E of OX-algebras.

Proof. Straightforward modification of the proof of Proposition 12.28. □

29In the notation of [143, Section 5], the theory of filters of U is represented by a GRD system
with G = U and R = 1⨿ U2 ⨿ U2 ⨿ 1⨿ U2 (one summand for each axiom scheme).
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Remark 12.30. The big Zariski topos Zar(Spec(A)) can be obtained as the pullback
of the big Zariski topos of the generic ring U , if both toposes are understood to be
defined using the parsimonious sites as described in Section 15.

12.7. Limits in the category of locally ringed locales. The category of
ringed locales has small limits, by the naive construction. For instance, the fiber
product X ×Z Y of ringed locales is given by the fiber product of the underlying
locales and the structure sheaf π−1

X OX ⊗π−1
Z OZ

π−1
Y OY . More generally, the limit of

a small diagram of ringed locales is given by the limit L of the underlying locales
and the colimit of the pulled-back structure sheaves (computed in the category of
sheaves of rings on L).

However, when applied to a diagram of locally ringed locales, the ringed locale
which this simple construction yields is in general not locally ringed. This can be
nicely understood from the internal point of view: Let R be a local ring. Let R→ A
and R → B be local R-algebras which are furthermore local over R. Then the
tensor product A⊗R B is in general not a local ring. Indeed, this fails even in the
easiest case, where all rings involved are fields: The rings R and C are local, and the
inclusion R→ C is local, but C⊗RC ∼= C⊗RR[X]/(X2+1) ∼= C[X]/(X2+1) ∼= C×C
is not.

The following proposition explains that the true limit in the category of locally
ringed locales is obtained by relocalizing the limit in the category of ringed locales.

Proposition 12.31. The category of locally ringed locales has all small limits.

Proof. For notational simplicity, we describe how products in the category of locally
ringed locales can be constructed. The general case is entirely analogous.

Let X and Y be locally ringed locales. Their product P as ringed locales has
two defects: Firstly, it’s not locally ringed. Secondly, the ring-theoretic parts of
the projection morphisms πX : P → X and πY : P → Y aren’t local, that is, don’t
reflect invertibility.

The first issue could be solved by constructing, internally to Sh(P ), the ordinary
spectrum of OP . From the external point of view, this would yield a locally ringed
locale equipped with morphisms of ringed, but not of locally ringed, locales to X
and Y .

To solve both issues, we need to employ a refined spectrum construction, similar to
the modification required by the internal account of the relative spectrum: Internally
to Sh(P ), we construct the classifying locale of the theory of those filters of OP
which simultaneously lie over the filter of units of π−1

X OX and which lie over the

filter of units of π−1
Y OY . This locale is a sublocale of Spec(OP ), the largest such

that the morphisms to (pt, π−1
X OX) and to (pt, π−1

Y OY ) are morphisms of locally
ringed locales.

The externalization of the internal locally ringed locale obtained in this way is
the sought product of X and Y in the category of locally ringed locales. □

Remark 12.32. The category of locally ringed locales embeds as a (non-full)
coreflective subcategory into the category of ringed locales; the coreflector maps a
ringed locale (X,OX) to the externalization of Spec(OX) (constructed internally
to Sh(X)). However, as is familiar in situations where the embedding is not full [4],
it’s in general not the case that limits in LRL are computed by applying the
coreflector to the limit computed in RL. Employing the language of the proof of
Proposition 12.31, applying the coreflector only solves the first issue, but not the
second.
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It’s instructive to determine the points of limits in LRL, even though a locale
is of course not determined by its points. For instance, the construction in Propo-
sition 12.31 shows that the points of the product X × Y of locally ringed locales
in LRL are in canonical one-to-one correspondence with tuples (x, y, F ), where x is
a point of X, y is a point of y, and F is a filter of OX,x ⊗Z OY,y which lies over the
filter of units of OX,x and of OY,y. In classical logic, those tuples are in canonical
one-to-one correspondence with tuples (x, y, p), where x and y are as before and p
is a prime ideal of k(x)⊗Z k(y).

Similarly, points of the fiber product X ×Z Y are in canonical one-to-one corre-
spondence with tuples (x, y, F ), where x is a point of X and y is a point of y such
that both map to the same point z of Z, and F is a filter of OX,x ⊗OZ,z

OY,y lying
over the filter of units of OX,x and of OY,y (and therefore automatically of OZ,z).
In classical logic, those tuples are in canonical one-to-one correspondence with
tuples (x, y, p), where x and y are as before and p is a prime ideal of k(x)⊗k(z) k(y).

Remark 12.33. By the adjunction ( )L ⊣ ( )P relating locales and topological
spaces, limits of locally ringed spaces which happen to be sober can be computed
by regarding them as locally ringed locales by ( )L, computing their limit in LRL,
and taking the associated topological space of the limit by ( )P .

Small diagrams of arbitrary locally ringed spaces admit limits as well. Indeed,
the proof of Proposition 12.31 was adapted from Gillam’s proof of this fact [57,
Corollary 5].

12.8. Relative Proj construction. Similar issues as with the relative spectrum
arise with the Proj construction: The standard definition of the Proj construction
as a topological space of homogeneous prime ideals gives rise to a space which
can’t intuitionistically be shown to satisfy the expected universal property. The
construction has to be reimagined as a locale instead of a topological space. A
certain sublocale of this locale then yields the relative Proj construction when
interpreted in the internal language of the little Zariski topos of a base scheme (or a
locally ringed locale).

Definition 12.34. The Proj construction of an N-graded ring S is the locale with
frame of opens given by

T (Proj(S)) := {a ⊆ S | a is a homogeneous radical ideal such that

∀x :S. xS+ ⊆ a⇒ x ∈ a},

where S+ =
⊕

i>0 Si is the irrelevant ideal.

A quick way to see that the partial order T (Proj(S)) is a frame is to recognize
that it’s the frame of opens of a sublocale of Spec(S). The associated nucleus j :
T (Spec(S))→ T (Spec(S)) is given by

j(a) := (
√
ah : S+),

where ah is the homogenization of a, the ideal of S generated by all homogeneous

components of the elements of a. Since a ⊆ ah ⊆
√
ah ⊆ j(a), a radical ideal a is an

element of T (Proj(S)) if and only if a = j(a).
One way to derive this definition is to start, within a classical context, with the

general expression for the nucleus associated to the subspace of Spec(S) consisting
of those prime ideals which are homogeneous and don’t contain S+, and then rewrite
this expression to not refer to prime ideals.

Definition 12.35. A filter F ⊆ S in an N-graded ring S is homogeneous if and
only if, for any element a :S, the filter F contains a if it contains at least one of the
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homogeneous components of a. It meets the irrelevant ideal if and only if F ∩ S+ is
inhabited.

In classical logic, a subset is a homogeneous filter meeting the irrelevant ideal
if and only if its complement is a homogeneous prime ideal not containing the
irrelevant ideal. Intuitionistically, neither direction can be shown.

Proposition 12.36. Let S be an N-graded ring. Then Proj(S) is the classifying
locale of any of the following geometric theories.

(1) The theory of homogeneous filters of S meeting the irrelevant ideal, that is
the theory of Remark 12.4 supplemented by the following two axiom schemes:
•
∨
i(ai ∈ F ) ⊢ a ∈ F (one axiom for each decomposition a =

∑
i ai of

an element of S into homogeneous components)
• ⊤ ⊢

∨
a∈S+

(a ∈ F ) (one axiom)

(2) The theory given by one atomic proposition “a ∈ Fi” for each homogeneous
element a of degree i in S and axioms given by the following axiom schemes:
• ⊤ ⊢ 1 ∈ F0 (one axiom)
• st ∈ Fi+j ⊣⊢ s ∈ Fi ∧ t ∈ Fj (two axioms for each i, j ≥ 0, s ∈ Si,
t ∈ Sj)
• 0 ∈ Fi ⊢ ⊥ (one axiom for each i ≥ 0)
• s+ t ∈ Fi ⊢ s ∈ Fi ∨ t ∈ Fi (one axiom for each i ≥ 0, s, t ∈ Ai)
• ⊤ ⊢

∨
i≥1

∨
a∈Si

(a ∈ Fi) (one axiom)

(3) The same theory as in (2), but with atomic propositions only for homogeneous
elements of degree ≥ 1 and without the first axiom “⊤ ⊢ 1 ∈ F0”.

Proof. That Proj(S) coincides with the classifying locale of the theory given in (1),
can be verified by a direct calculation. By the general theory, the nucleus associated
to the quotient theory given in (1) maps a radical ideal a : T (Spec(S)) to the least
fixed point above of a of the map

b 7−→ b ∨
∨
a :S

(√
(ai)i ∩

(√
(a)→ b

))
∨
(√

(a)a∈S+
→ b

)
,

where (c→ b) = (b : c) is the Heyting implication and “∨” is the join in T (Spec(S)).
We omit the intermediate steps of the calculation.

The theories given in (1) and in (2) are bi-interpretable. The interpretation of
the atomic propositions “a ∈ Fi” of theory (2) using the signature of theory (1)
is “a ∈ F”. Verifying the axioms is straightforward. Conversely, the interpretation
of “a ∈ F” in the signature of theory (2) is “

∨
i(ai ∈ Fi)”, where a =

∑
i ai is the

decomposition into homogeneous components. For verifying the axioms, one needs
the lemma that∨

i

(si ∈ Fi) ∧
∨
j

(tj ∈ Fj) ⊣⊢
∨
n

( ∑
i+j=n

sitj ∈ Fn
)

is derivable in theory (2), for any decompositions s =
∑
i si and t =

∑
j tj of

elements of S into homogeneous components. In the guise “
√
(si)i ∩

√
(tj)j =√

(
∑
i+j=n sitj)n” this is a familiar fact on the content of polynomials [13, Proposi-

tion 1].
Also theories (2) and (3) are bi-interpretable. The interpretation of “a ∈ F0” in

the signature of theory (3) is “
∨
i≥1

∨
h∈Si

(ha ∈ Fi)”. □

Corollary 12.37. Let S be an N-graded ring. The points of Proj(S) are in canonical
one-to-one correspondence with the homogeneous filters of S meeting the irrelevant
ideal.
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Proof. Points of Proj(S) are given by models of the theory of homogeneous filters
of S meeting the irrelevant ideal in Set. □

Remark 12.38. The same presentation as in Proposition 12.36(3) has been used
to construct Proj(S) not as a locale, but as a distributive lattice [44].

Definition 12.39. Let S be an N-graded ring. The generic homogeneous filter
meeting the irrelevant ideal is the subsheaf F ↪→ S over Proj(S) generated by the

sections a over D+(a) := j(
√
(a)).

Equivalently, the generic homogeneous filter meeting the irrelevant ideal is the
pullback of the generic filter in Sh(Spec(S)) to Sh(Proj(S)).

Definition 12.40. Let S be an N-graded ring. The structure sheaf of Proj(S) is
the homogeneous localization S[F−1]0 of the ring S at the generic homogeneous
filter meeting the irrelevant ideal, that is the degree-zero part of S[F−1]. The tilde
construction of a graded S-module M is M∼ :=M [F−1]0.

The locally ringed locale Proj(S) and the tilde construction defined in this way
enjoy their familiar properties. For instance, we have the following lemma.

Lemma 12.41. Let S be an N-graded ring.

(1) Let f :S be homogeneous of degree d ≥ 1. Then D+(h) ∼= Spec(S[f−1]0).
(2) Assume that S is generated as an S0-algebra by S1. Let M and N be

graded S-modules. Then M∼ ⊗OProj(S)
N∼ ∼= (M ⊗S N)∼.

(3) Under the same assumption as in (2), the twisting sheaves O(m) := (S(m))∼

are finite locally free of rank 1.

Proof. For the first statement, it suffices to verify that the theories of homogeneous
filters of S meeting the irrelevant ideal and containing h and of filters of S[f−1]0
are bi-interpretable. It’s slightly more convenient to use the presentation given by
Proposition 12.36(2) for the former theory.

The interpretation of “q ∈ F” for q :S[f−1]0 in the signature of the theory given
by Proposition 12.36(2) is∨

{(x ∈ Fdi) | q = x/f i for some x :S, i ≥ 0}.

Conversely, the interpretation of “a ∈ Fi” in the signature of the theory of filters
of S[f−1]0 is “xd/hi ∈ F”.

The second statement follows from the calculation

M∼ ⊗OProj(S)
N∼ =M [F−1]0 ⊗S[F−1]0 N [F−1]0

∼= (M ⊗S N)[F−1]0 ∼= (M ⊗S N)[F−1]0 = (M ⊗S N)∼.

The first isomorphism maps x/s⊗ y/t to (x⊗ y)/(st). By the assumption that S
is generated as an S0-algebra by S1, the generic filter contains a homogeneous
element h of degree 1 from the internal point of view of Sh(Proj(S)). Therefore the
map has an inverse sending (a⊗ b)/u, where a and b are homogeneous of degrees i
and j, to (hja)/u⊗ b/hj . The second isomorphism is because the tensor product is
a geometric construction and therefore commutes with constructing the constant
sheaf.

For the proof of the third statement, we show that (S(m))∼ is a finite free module
of rank 1 from the internal point of view. We again use that the generic filter contains
a homogeneous element h :S of degree 1 from the internal point of view. Such an
element allows to define an isomorphism OProj(S) = S[F−1]0 → S(m)[F−1]0 = O(m)

by mapping x/s to (hmx)/s if m ≥ 0 and to x/(h−ms) otherwise. □
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Definition 12.42. Let R be a ring. Let S be an N-graded R-algebra. The local
Proj construction of S over R is the sublocale Proj(S|R) of Proj(S) with frame of
opens given by

T (Proj(S|R)) := {a : T (Proj(S)) | ∀f :R. ∀s :S. (⌜f inv.⌝⇒ s ∈ a)⇒ fs ∈ a}
and with the pullback of OProj(S) as the structure sheaf.

Proposition 12.43. Let R be a ring. Let S be an N-graded R-algebra. Then the local
Proj construction Proj(S|R) is the classifying locale of the theory of homogeneous
filters of S meeting the irrelevant ideal and lying over the filter of units.

Proof. Direct calculation similar to the proof of Proposition 12.36. □

Since pullback and localization commute, the structure sheaf of Proj(S|R) can
also be described as S[F−1]0, where by abuse of notation we mean by “F” the
pullback of the generic filter on Proj(S) to Proj(S|R). This filter has the special
property

Sh(Proj(S|R)) |= ∀r :R. r ∈ F ⇒ ⌜r inv. in R⌝.

Theorem 12.44. Let X be a scheme (or a locally ringed locale). Let S be an N-
graded OX-algebra. Then the externalization E(Proj(S|OX)) coincides with the
relative Proj construction ProjX(S) as locally ringed locales over X.

Proof. For simplicity, we assume that S is generated as an S0-algebra by S1. In
this case, the expected universal property of the relative Proj construction is that
it’s a locally ringed locale over X such that, for all locally ringed locales µ : Y → X
over X, the set HomLRL/X(Y,ProjX(S)) is canonically isomorphic (by pullback of
the standard such datum on ProjX(S)) to the set of pairs (L, ψ) such that

• L is a line bundle on Y and
• ψ : µ∗S →

⊕
n≥0 L⊗n is a graded morphism of OY -algebras such that the

degree-1 part of ψ is a surjective morphism µ∗S1 → L
modulo equivalence. For instance, it is known that this property is satisfied in the
case that X is a scheme and S is quasicoherent [126, Tag 01O4].

We verify that E(Proj(S|OX)) enjoys the same property, even if X is not a
scheme or S is not quasicoherent. For the rest of the proof, we switch to the internal
universe of Sh(X).

The local Proj construction is a locally ringed locale over (pt,OX) by the unique
morphism ! : Proj(S|OX)→ pt of locales and by the canonical morphism !♯ : OX →
S0 → S[F−1]0 = OProj(S|OX) of local rings.

As the standard datum on Proj(S|OX), we choose the line bundle O(1) (pulled
back to Proj(S|OX)) together with the canonical morphism !∗S → ⊕n≥0O(1)⊗n.

Let Y be a locally ringed locale over (pt,OX). Let a pair (L, ψ) be given. In the
internal language of Sh(Y ), we define a filter by the formula

F ′ := {s :S | ⌜there exists i such that (ψ(si ⊗ 1)) is a basis of L⊗i⌝} ⊆ S,
where si refers to the homogeneous component of s of degree i. Since L⊗i is finite free
of rank 1, a one-element family in L⊗i is a basis if and only if it’s a generating family.
This observation can be repeatedly used to verify that F ′ is homogeneous, meets the
irrelevant ideal, and lies over the filter of units. Since Proj(S|OX) is the classifying
locale of such filters (Proposition 12.43), we obtain a morphism f : Y → Proj(S|OX)
of locales which is unique with the property that f−1F = F ′.

To obtain a morphism Y → Proj(S|OX) of locally ringed locales, it remains to
define a morphism f ♯ : f−1OProj(S|OX) = S[F ′−1]0 → OY . A canonical choice is

x/s 7→ ⌜ the coefficient of ψ(x⊗ 1) with respect to the basis (ψ(s⊗ 1))⌝.

We omit further verifications. □

https://stacks.math.columbia.edu/tag/01O4
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12.9. A constructive account of scheme theory. Scheme theory as classically
set up heavily relies on prime ideals and therefore only works well in a classical
context, where the law of excluded middle and (at least some forms of) the axiom
of choice are available. However, the actual mathematical ideas often do not
fundamentally require classical logic; we don’t begin the proof that the kernel of a
morphism between quasicoherent sheaves of modules is quasicoherent by supposing
that it’s not. Instead, classical logic is only needed because the usual foundations of
scheme theory involving locally ringed spaces require it.

In this section, we sketch how scheme theory can be developed in an intuitionistic
metatheory; there are several reasons why it’s desirable to have such an account.
Firstly, as is familiar from constructive treatments of other subjects, the constraint
to set up all definitions in an intuitionistically sensible way is a useful guiding
principle which can increase the perceived elegance of the theory and result in more
direct proofs.

It would be interesting to know which advanced results in algebraic geometry
actually require classical logic (or at least classicality hypotheses on the ground
ring); to study this question, one has to use a foundation which doesn’t itself require
classical logic just for organizational purposes.30 McLarty and other researchers
study a similar question: Which axioms of set theory are actually needed for
algebraic geometry, in particular for proving Fermat’s Last Theorem? [96]

Secondly, one might be interested in concrete computations and might therefore
leverage the fact that one can mechanically extract algorithms from constructive
proofs. For instance, an intuitionistic proof that some cohomology is finite dimen-
sional yields an algorithm for computing the dimension and even a basis.

Finally, one might want to apply scheme theory in the intuitionistic internal
universe of the little Zariski topos of a base scheme, in order to generalize results of
absolute scheme theory to relative scheme theory with little effort and no duplication
of proofs. The starting point for such a transfer is that locally ringed locales over
a locally ringed locale X look like locally ringed locales over the point from the
internal point of view of Sh(X), as discussed in Section 12.1.

The internal language of the big Zariski topos, presented in Part III, is too a
vehicle for relative scheme theory; however, its language looks quite different from
what one is accustomed to.

In this section, we only sketch how the basics of constructive scheme theory could
look like. Some parts are certainly folklore among constructive mathematicians, but
to the best of our knowledge no coherent summary appeared in print before.

There is a vast literature on algorithmic computations in algebraic geometry (to
exemplarily cite just two references, Eisenbud’s textbook on syzygies [48] and the
GAP project [132] are well-known). However, these results are often still set in
a classical context, relying on classical logic for termination or correctness proofs.
They therefore don’t contain an intuitionistic development of scheme theory.

Constructive algebra. Any constructive development of scheme theory needs to
rest on a constructive development of commutative algebra. Such an account is
readily available [98, 89].

Local models. As discussed in Section 12.2, defining the spectrum of a ring as
a topological space isn’t sensible from a constructive point of view. A working
alternative is defining the spectrum as a locally ringed locale, employing the frame
of radical ideals. By considering sheaves over it, this yields a locally ringed topos;

30For instance, some results in linear algebra can intuitionistically only be shown for discrete fields
– fields such that any element is zero or not zero. Such hypotheses are computationally meaningful
and will entail similar hypotheses for some results in algebraic geometry.
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this topos can also be presented by a more parsimonious site, namely the site
whose objects are the elements of the ring and whose coverings are those finite
families (gi → f)i such that

√
(f) =

√
(gi)i. This construction is due to Joyal [76,

51, 134] and was further explored by several researchers [43, 44]. It’s also possible
to employ the framework of formal topology [118].

The universal property of the localic spectrum ensures that morphisms Spec(B)→
Spec(A) of locally ringed locales (or locally ringed toposes) are in canonical one-
to-one correspondence with ring homomorphisms A→ B, as it should be. There
are two ways for explicitly constructing a morphism between spectra. One is to
specify a morphism of frames going in the other direction. For instance, given a
ring homomorphism φ : A→ B, one can map a radical ideal a ⊆ A to

√
aB ⊆ B;

this yields a morphism T (Spec(A))→ T (Spec(B)).
Using the device of classifying locales, there is also another way which more

closely mimics the classical approach of taking preimages of prime ideals. To give
a morphism Spec(B)→ Spec(A) of locales amounts to give a model of the theory
of filters of A in Sh(Spec(B)). The sheaf topos over Spec(B) contains the generic
filter F of B; given a ring homomorphism φ : A→ B, this filter can be turned into
a filter of A by taking the preimage φ−1[F ].

Classically, the induced map Spec(B) → Spec(A) would be described by p 7→
φ−1[p], where p ranges over all prime ideals of B, and after defining the map in
this way, one would have to verify its continuity; constructively, we can describe
it as F 7→ φ−1[F ], where F is just a single special filter, and get continuity for
free. For more on this way of pretending that morphisms between locales are just
maps between points, we highly recommend an expository survey by Vickers on this
topic [141].

As we have seen in Section 11, for deriving transfer principles it’s useful to be
able to quickly gauge properties of constant sheaves over Spec(A). For topological
spaces, Lemma 11.1 could be used to this effect. For locales in an intuitionistic
metatheory, the lemma has to be modified slightly.

Definition 12.45. (1) A locale X is overt if and only if the unique mor-
phism X → pt of locales is open.

(2) A positivity predicate on a frame P is a predicate on the set of elements
of P , written “U > 0” for U :P , such that for any element U :P and any
subset M ⊆ P ,
• if U > 0 and U ⪯

∨
M , then there exists an element V ∈ M such

that V > 0, and
• if U > 0 =⇒ U ⪯

∨
M , then U ⪯

∨
M .

Example 12.46. The frame of open subsets of a topological space X has a positivity
predicate, given by declaring U > 0 if and only if U is inhabited.

Example 12.47. Assuming classical logic, any frame admits the positivity predicate
given by declaring U > 0 if and only if U ̸= ⊥.

Proposition 12.48. A locale X is overt if and only if its frame of opens admits a
positivity predicate.

Proof. Instructive unraveling of the definitions. □

Lemma 12.49. Let φ be a first-order formula in which arbitrary sets and elements
may occur as parameters. Let X be a locale and let U be an open of X. Consider
the following statements:

(1) U |= φ (with the same abuse of notation as in Lemma 11.1).
(2) U ⪯

∨
{⊤ |φ}.
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(3) (If X has a positivity predicate.) U > 0 =⇒ φ.
(4) φ.

Then:

• “(4) ⇒ (2)”.
• If φ is a geometric formula, then “(1) ⇔ (2)”.
• If all subformulas of φ appearing as antecedents of implications satisfy
“(1) ⇒ (2)” (for instance, because they are geometric formulas or because φ
doesn’t contain any “⇒” signs), then “(2) ⇒ (1)”.
• If X is overt, then “(1) ⇔ (2) ⇔ (3)”.

Proof. The implication “(4) ⇒ (2)” is trivial. The other claims can be checked by
induction on the structure of φ. □

Remark 12.50. It is no coincidence that the conditions in Lemma 12.49 are
reminiscent of the conditions in Lemma 6.25. In fact, associated to any locale X is
a modal operator □X on Set, which implicitly appeared in Lemma 12.49. It maps a
truth value φ to the truth value JX ⪯

∨
{⊤ |φ}K. The associated sublocale pt□X

of
the one-point locale is the image of the unique locale morphism X → pt.

Proposition 12.51. The localic spectrum of a ring A is overt if and only if any
element of A is nilpotent or not nilpotent.

Proof. For the “if” direction, we can define a positivity predicate by declaring a > 0
if and only if a contains an element which is not nilpotent.

For the “only if” direction, let f :A be an arbitrary element. Then√
(f) ⊆

∨
{
√
(1) |

√
(f) > 0}

⊆
∨
{
√
(1) | f is not nilpotent}

= {s :A | s is nilpotent or f is not nilpotent}.

Considering that f ∈
√
(f), it follows that f is nilpotent or f is not nilpotent. □

Remark 12.52. I don’t know when the local spectrum Spec(A|R) is overt. This
question is related to openness of morphisms between schemes as follows. Let X be a
scheme (in a classical context). Let A be a quasicoherent OX -algebra. Then the rela-
tive spectrum SpecX(A) exists as a topological space, and is given by the externaliza-
tion of the local spectrum Spec(A|OX). If the canonical morphism SpecX(A)→ X
is open, then the induced morphism of locales is open as well (the converse doesn’t
hold in general [92, Proposition IX.7.5]). This is the case if and only if Spec(A|OX)
is an overt locale from the internal point of view of Sh(X).

Since Proposition 12.51 shows that the spectrum of a ring is in general not overt,
Lemma 12.49 is not applicable to the spectrum in its full power. However, there is
a substitute which is often sufficient: For a ring element f :A, it holds that√

(f) ⊆
∨
{⊤ |φ} if and only if ⌜f is nilpotent⌝ ∨ φ.

The case that f is nilpotent often trivializes the situation, allowing to extend
Lemma 12.49, at least morally. For instance, it still holds that an A-module M is
finitely generated if and only if M is finitely generated as an A-module from the
internal point of view of Spec(A). (This then implies that M is finitely generated
if and only if M∼ is of finite type, as in the proof of Lemma 11.11.) The “only if”
direction is straightforward. For the “if” direction, we may assume that we’re given a
covering

√
(1) =

∨
i

√
(fi) such that, for each i, there are elements xi1, . . . , xi,ni :M

satisfying √
(fi) |= ∀x :M. ∃a1, . . . , ani :A. x =

∑
j ajxij .
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Without loss of generality, we may assume that the covering is finite. We can then
verify that the joint system (xij)ij generates M . Let x :M . For each index i, there

exists a finite covering
√

(fi) =
∨
k

√
(gik) such that, for each index k, there exist

elements a1, . . . , ani
:A such that

gik is nilpotent or x =
∑
j ajxij .

If the second case occurs for at least one pair (i, k) of indices, we are done. Else
all the gik are nilpotent. This implies that all the fi are nilpotent, which in turn
implies that the unit of A is nilpotent. Thus A is the zero ring. In this case x = 0;
thus we are done as well.

Gluing. The following definition is intuitionistically sensible:

Definition 12.53. An affine scheme is a locally ringed locale which is isomorphic
to the spectrum of a ring. A scheme is a locally ringed locale which is locally (on
an open cover) isomorphic to the spectrum of a ring.

It’s crucial that we’re able to verify the affine communication lemma [137,
Lemma 5.3.2] in this setting; this is the lemma which ensures that for many
properties, there is no difference between mandating that they hold for the members
of some open affine cover and that they hold on any affine open. Its validity rests
solely on the following technical statement.

Proposition 12.54. Let (X,OX) be a locally ringed locale. Let U and V be opens
of X such that (U,OX |U ) and (V,OX |V ) are affine. Then the meet U ∧ V admits
a covering by opens which are simultaneously standard opens of (U,OX |U ) and
of (V,OX |V ).

Proof. Since U is affine,

U ∧ V =
∨
{W ⪯ U ∧ V |W ↪→ U is a standard open}.

For any such open W ,

W =
∨
{W ′ ⪯W |W ′ ↪→W ↪→ V is a standard open}

since V is affine. We show that any such open W ′ is also standard open in U ; this
suffices to establish the claim.

Since W is standard open in U , there is a function f : Γ(U,OX) such that W =
D(f), where

D(f) =
∨
{A ⪯ X |A |= ⌜f inv.⌝}.

SinceW ′ is standard open in V , there is a function g : Γ(V,OX) such thatW ′ = D(g).
The restriction g|W can be regarded as an element of Γ(U,OX)[f−1]; as such, it
is of the form h/fn. Then W ′ = D(f) ∧D(h) = D(fh). The open W ′ therefore

coincides, as an open of U , with
√
(fh) and is thus standard open in U . □

Properties of sheaves. Schemes in the sense of Definition 12.53 can’t intuition-
istically be shown to have enough points [134]. Classically, they can; this ensures
that classically there is no difference between the category of schemes as usually
defined and the category of schemes in the sense of Definition 12.53.

As a consequence, properties of morphisms of sheaves can’t be checked on
stalks. For instance, for a morphism α : G → H of sheaves on a locale X to be
an epimorphism it’s not enough that αx : Gx → Hx is surjective for all locale-
theoretic points of X. Instead, for every local section s :H(U) there has to be a
covering U =

∨
i Ui such that, for each i, there is a preimage of s|Ui

.
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Many of the results in Section 3 and Section 4 thus have to be made into
definitions. For instance, a sheaf of modules should be declared flat if and only if it
is flat as an ordinary module from the internal point of view.

The results in Section 11.4 can be used to keep up the appearance that testing
on stalks suffices. For instance, let α :M∼ → N∼ be a morphism of quasicoherent
sheaves on Spec(A). The points of Spec(A) are the filters of A; but as remarked it
doesn’t suffice to test the stalks αF :M [F−1]→ N [F−1]. However, it does suffice
to test, internally to Sh(Spec(A)), the map M [F−1] → N [F−1] (which is just α),
where F is the generic filter.

Big toposes. Just as classically, the big Zariski topos of a scheme S can be defined
as the topos of sheaves over the parsimonious sites (Aff/S)lfp or (Sch/S)lfp (details
about the possible choices for the site are in Section 15). The proof that this topos
classifies local rings over S is intuitionistically valid.

We don’t know whether all of the common subtoposes of the big Zariski topos
corresponding to finer topologies like the étale or fppf topology have all the properties
which are classically expected of them. In any case, if it’s classically known that
the subtopos of the big Zariski topos corresponding to a finer topology classifies
a certain explicitly presented geometry theory, one could adopt such a result as a
definition in an intuitionistic context. For instance, the big étale topos of a scheme S
can be defined as the classifying topos of separably closed local rings over S and
the big fppf topos can be defined as the classifying topos of fppf-local rings over S
(Section 21).

Cohomology. We don’t know how a general constructive framework for cohomology
might look like (besides Čech cohomology, which has its well-known shortcomings)
and can only remark that Grothendieck’s approach using injective resolutions
can’t work, since it’s consistent with Zermelo–Fraenkel set theory that no nontrivial
injective abelian groups exist [24], and that the account of Kempf [78] looks promising,
since he employs flabby resolutions instead of injective ones.

However, Barakat and Lange-Hegermann pioneered constructive approaches to
cohomology of certain base schemes, which are not only mathematically elegant but
also work very well in practice (much more efficiently than Čech methods). We refer
to their articles for details [14, 15].

13. Higher direct images and other derived functors

13.1. Flabby sheaves. Recall that a sheaf F of sets on a topological space (or
a locale) X is flabby if and only if, for any open subset U ⊆ X the restriction
map F(X)→ F(U) is surjective.

Flabbiness is a local property, even though it doesn’t seem like that at first sight:
If the restrictions F|Ui

of F to the members of an open covering X =
⋃
i Ui are

flabby, then the verification that F is flabby can’t proceed as follows. “Let s ∈ F(U)
be an arbitrary section. Since each F|Ui is flabby, the section s|U∩Ui extends to a
section on Ui.” The reason is that the individual extensions obtained in this way
might not glue.

A correct proof employs Zorn’s lemma in a typical way, considering a maximal
extension and then verifying that the subset this maximal extension is defined on is
all of X.

Since flabbiness is a local property, it’s not unreasonable to expect that flabbiness
can be characterized in the internal language. The following proposition shows that
this is indeed the case.

Proposition 13.1. Let F be a sheaf of sets on a topological space X (or a locale).
Then the following statements are equivalent:
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(1) F is flabby.
(2) “Any section of F can be locally extended”: For any open U ⊆ X and any

section s ∈ F(U) there is an open covering X =
⋃
i Vi such that, for each i,

there is an extension of s to U ∪ Vi (that is, a section s′ ∈ F(U ∪ Vi) such
that s′|U = s).

(If X is a space instead of a locale, this can be equivalently formulated
as follows: For any open subset U ⊆ X, any section s ∈ F(U), and any
point x ∈ X, there is an open neighborhood V of x and an extension
of s to U ∪ V .)

(3) From the point of view of the internal language of Sh(X), for any subsingle-
ton K ⊆ F there exists an element s :F such that s ∈ K if K is inhabited.
More precisely,

Sh(X) |= ∀K ⊆ F . (∀s, s′ :K. s = s′) =⇒
∃s :F . (K is inhabited⇒ s ∈ K).

(4) The canonical map F → P≤1(F), s 7→ {s} is final from the internal point of
view, that is

Sh(X) |= ∀K :P≤1(F). ∃s :F . K ⊆ {s},
where P≤1(F) is the object of subsingletons of F .

Proof. The implication “(1) ⇒ (2)” is trivial. The converse direction uses a typ-
ical argument with Zorn’s lemma, considering a maximal extension. The equiv-
alence “(2) ⇔ (3)” is routine, using the Kripke–Joyal semantics to interpret the
internal statement. Condition (4) is a straightforward reformulation of Condi-
tion (3). □

Condition (2) of the proposition is, unlike the standard definition of flabbiness,
manifestly local. Also its equivalence with Condition (3) and Condition (4) is
intuitionistically valid; therefore one might consider to adopt Condition (2) as the
definition of flabbiness.

The object P≤1(F) of subsingletons of F can be interpreted as the object of
partially-defined elements of F . In this view, the empty subset is the maximally
undefined element and a singleton is a maximally defined element. In classical logic,
there are no further examples of partially-defined elements, but intuitionistically,
there might; and indeed, in the model of intuitionistic logic provided by Sh(X),
there are many more. An explicit description of the sheaf P≤1(F) is given in
Remark 13.10.

The proposition shows that a sheaf F is flabby if and only if any partially-defined
element of F can be refined to an honest element of F .

13.2. Injective sheaves. Recall that an object I of a category C is injective if
and only if, for any monomorphism X ↪→ Y in C and any morphism X → I, there
is an extension such that the diagram

X �
� //

��

Y

~~
I

commutes. Equivalently, an object I is injective if and only if the Hom func-
tor HomC( , I) : Cop → Set maps monomorphisms in C to surjective maps. This
general definition is often specialized to one of these cases: to the category of
modules over a ring, to the category of set-valued sheaves on a topological space,
and to the category of sheaves of OX -modules on a ringed space (X,OX).
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The definition is seldom applied in the category of sets, since in a classical context
it’s easy to show that a set is injective if and only if it’s inhabited, thereby completely
settling the question which objects are injective in a trivial manner.

The question is more interesting in an intuitionistic setting, since intuitionistically
one cannot prove that inhabited sets are injective [2]; but one can still verify that
any set embeds into an injective set: The powerset P(X) and even the smaller
set P≤1(X) of subsingletons of a given set X are injective. This fact is well-known
in the constructive mathematics community, but for convenience we spell out the
proof as Lemma 13.9.

For a cartesian or monoidal closed category C, there is also the notion of an
internally injective object. This is an object I such that the internal Hom func-
tor [ , I] : Cop → C maps monomorphisms in C to epimorphisms. In the special
case that C is a elementary topos with a natural numbers object, such as the topos
of set-valued sheaves on a space, this condition can be rephrased in several ways.
The following proposition lists five of these conditions. The equivalence of the first
four is due to Harting [64].

Proposition 13.2. Let E be an elementary topos. Then the following statements
about an object I ∈ E are equivalent.

(1) I is internally injective.
(2) The functor [ , I] : Eop → E maps monomorphisms in E to morphisms for

which any global element of the target locally (after change of base along an
epimorphism) possesses a preimage.

(3) For any morphism p : A → 1 in E, the object p∗I has property (1) as an
object of E/A.

(4) For any morphism p : A → 1 in E, the object p∗I has property (2) as an
object of E/A.

(5) From the point of view of the internal language of E, the object I is injective.31

Proof. The implications “(1) ⇒ (2)”, “(3) ⇒ (4)”, “(3) ⇒ (1)”, and “(4) ⇒ (2)”
are trivial.

The equivalence “(3) ⇔ (5)” follows directly from the interpretation rules of the
stack semantics.

The implication “(2) ⇒ (4)” employs the extra left adjoint p! : E/A → E of
p∗ : E → E/A (which maps an object (X → A) to X), as in the usual proof that
injective sheaves remain injective when restricted to smaller open subsets: We have
that p∗ ◦ [ , p∗I]E/A ∼= [ , I]E ◦ p!, the functor p! preserves monomorphisms, and
one can check that p∗ reflects the property that global elements locally possess
preimages. Details are in [64, Thm. 1.1].32

The implication “(4) ⇒ (3)” follows by performing an extra change of base, since
any non-global element becomes a global element after a suitable change of base. □

Somewhat surprisingly, and in stark contrast with the situation for internally
projective objects (which are defined dually), internal injectivity coincides with
external injectivity for sheaf toposes over spaces.

Theorem 13.3. Let X be a topological space (or a locale). An object I ∈ Sh(X) is
injective if and only if it is internally injective.

Proof. For the “only if” direction, let I be an injective sheaf of sets. Then I satisfies
Condition (2) in Proposition 13.2, even without having to pass to covers.

31In Section 2, we have only introduced the internal language for sheaf toposes. The general
definition is in [122, Section 7].
32Harting formulates the statement for abelian group objects, and has to assume that E contains a
natural numbers object to ensure the existence of an abelian version of p!.
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For the “if” direction, let I be an internally injective object. Let m : E ↪→ F
be a monomorphism in Sh(X) and let k : E → I be an arbitrary morphism. We
want to show that there exists an extension F → I of k along m. To this end, we
consider the sheaf defined by the internal expression

G := J{k′ : [F , I] | k′ ◦m = k}K.

Global sections of G are extensions of the kind we’re looking for. Therefore it suffices
to show that G is flabby. We do this by verifying Condition (3) of Proposition 13.1
in the internal language of Sh(X).

Let K ⊆ G be a subsingleton. We consider the injectivity diagram

m[E ] ∪ F ′ � � //

��

F

zzI

where F ′ is the set {s :F |K is inhabited} and the solid vertical arrow is defined in
the following way: It should map an element s ∈ F ′ to k′(s), where k′ is any element
of K; and it should map an element m(u) ∈ m[E ] to k(u). These prescriptions
determine a well-defined map.

Since I is injective from the internal point of view we’re taking up here, there
exists a dotted map rendering the diagram commutative. This map is an element
of G. Furthermore, if K is inhabited, then this map is an element of K. □

Theorem 13.4. Let (X,OX) be a ringed topological space (or a ringed locale).
An OX-module I is injective if and only if it is internally injective.

Proof. Proposition 13.2 can be adapted from sheaves to sets to sheaves of mod-
ules, with the same proof. The extra left adjoint p! : ModSh(X)/A(OX × A) →
ModSh(X)(OX) required by the proof maps a module M → A to the internal direct
sum

⊕
a :AM(a).

The proof of Theorem 13.3 can be adopted as well. It suffices to change “[F , I]”
to “[F , I]Mod(OX)” (denoting the Hom sheaf of OX -linear morphisms F → I)
and “m[E ]∪F ′” to “m[E ] +F ′′”, where F ′′ := {s :F | s = 0 or K is inhabited}. □

Remark 13.5. The proof of Theorem 13.3 crucially rests on Proposition 13.1 and
therefore on Zorn’s lemma, to ensure that the sheaf G defined in the proof, which
has the property that any of its sections can be locally extended, admits a global
section. The proof is therefore not intuitionistically valid.

On a related note, we don’t think that the statement of Theorem 13.3 can be
generalized to arbitrary (Grothendieck) toposes. The proof gradually refines the
trivial generalized element of G (defined on the empty stage) to a global element.
Such a procedure is not really meaningful for sheaf toposes over sites for which not
any object is a subobject of the terminal object.

13.3. Internal proofs of common lemmas.

Lemma 13.6. A sheaf of sets or a sheaf of modules is injective if and only if it is
locally injective.

Proof. By Theorem 13.3 respectively Theorem 13.4, injectivity can be characterized
in the internal language. Any such property is local. □

Lemma 13.7. Let X be a topological space (or a locale).

(1) Let I be an injective sheaf of sets over X. Let F be an arbitrary sheaf of
sets. Then Hom(F , I) is flabby.
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(2) Let I be an injective sheaf of modules over some sheaf OX of rings over X.
Let F be an arbitrary sheaf of modules. Then HomOX

(F , I) is flabby.

Proof. We first cover the case of sheaves of sets. By Theorem 13.3 and Proposi-
tion 13.1, it suffices to give an intuitionistic proof of the following statement: If I
is an injective set and F is an arbitrary set, then partially defined elements of the
set [F, I] of all maps F → I can be refined to honest elements.

Thus let a subsingleton K ⊆ [F, I] be given. We consider the injectivity diagram

F ′ //

��

F

~~
I

where F ′ is the subset {s :F |K is inhabited} ⊆ F and the solid vertical map
sends s ∈ F ′ to f(s), where f is an arbitrary element of K. This association is
well-defined. Since I is injective, a dotted lift as indicated exists. If K is inhabited,
this lift is an element of K.

The same kind of argument applies to the case of sheaves of modules, relying on
Theorem 13.4 and defining F ′ as the submodule {s :F | s = 0 or K is inhabited}. □

Corollary 13.8. Injective sheaves of sets and injective sheaves of modules are
flabby.

Proof. Follows from the previous lemma by considering the special cases F := 1
respectively F := OX . □

Lemma 13.9. Let X be a topological space (or a locale). Any sheaf of sets over X
can be embedded into an injective (therefore flabby) sheaf of sets.

Proof. By Proposition 13.1, it suffices to give an intuitionistic proof of the following
statement: Any set F can be embedded into an injective set.

As already indicated, there are at least two simple ways how F can be embedded
into an injective set: by embedding F in its powerset P(F ) or by embedding F
in P≤1(F ), the set of subsingletons of F . For conciseness, we only verify that P≤1(F )
is injective.

So let m : A ↪→ B be an injective map and let k : A→ P≤1(F ) be an arbitrary
map. Then we can extend k to a map k′ : B → P≤1(F ) by defining for y :B

k′(y) :=
⋃
k[m−1[{y}]]

= {s :F | s ∈ k(x) for some x ∈ A such that m(x) = y}. □

Remark 13.10. The Godement construction provides a well-known way of embed-
ding an inhabited sheaf of sets F into an injective sheaf, namely the sheaf of not
necessarily continuous sections of the étale space of F :

U ⊆ X 7−→
∏
x∈U
Fx.

The sheaf P≤1(F) does not coincide with this construction. Instead by Definition 2.8,
it is the sheaf with

U ⊆ X 7−→ {⟨V, s⟩ |V ⊆ U open, s ∈ F(V )}.

It’s not possible to describe the Godement construction in the internal language
of Sh(X), since the Godement construction depends on the underlying set of X, but
the sheaf topos of X doesn’t remember this set. For instance, if X is an inhabited
indiscrete topological space, then Sh(X) is equivalent to Set.
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Remark 13.11. It’s not known to me whether it’s possible to intuitionistically
prove that any module can be embedded into a module which satisfies the internal
flabbiness criterion of Proposition 13.1. This would give an internal proof of the
well-known fact that any sheaf of modules can be embedded into a flabby sheaf
of modules. The naive candidates don’t work: The set P≤1(F ) doesn’t admit a
canonical module structure (though it does admit the structure of a commutative
monoid), and the free module over that set is not flabby in general.

Since by the Godement construction the statement that any sheaf of modules can
be embedded into a flabby sheaf of modules is true in many models of intuitionistic
logic, the sheaf toposes over topological spaces,33 it’s not entirely unreasonable to
believe that such an intuitionistic proof is possible.34

On the other hand, it’s certainly not possible to intuitionistically prove that
any module can be embedded into an injective module, since it’s consistent with
Zermelo–Fraenkel set theory that no nontrivial injective abelian groups exist [24].

Lemma 13.12. Let X be a ringed space (or a ringed locale). Let 0→ E ′ α−→ E β−→
E ′′ → 0 be a short exact sequence of OX-modules. If E ′ is flabby, then the induced
sequence

0 −→ Γ(X, E ′) −→ Γ(X, E) −→ Γ(X, E ′′) −→ 0

is exact.

Proof. Since taking global sections is left exact (being a right adjoint functor), it
suffices to verify that the map Γ(X, E)→ Γ(X, E ′′) is surjective. We’ll do this by
showing, in the internal language of Sh(X), that the sheaf of preimages of a given
global section s ∈ Γ(X, E ′′) is flabby and therefore has a global section.

In the internal language, this sheaf has the description F := {u : E |β(u) = s}. To
verify the internal condition of Proposition 13.1, let a subsingleton K ⊆ F be given.
Since β is surjective, there is a preimage u0 ∈ F . The translated set K − u0 ⊆ E is
still a subsingleton, and its preimage under α is as well. By the assumption on E ′,
there is an element v : E ′ such that v ∈ α−1[K − u0] if α−1[K − u0] is inhabited.
We’ll now verify that u0 + α(v) ∈ K if K is inhabited.

So assume that K is inhabited. Then K − u0 is as well. Since the image of its
unique element under β is zero and the given sequence is exact, the set α−1[K − u0]
is inhabited as well. Therefore v ∈ α−1[K − u0]. Thus u0 + α(v) ∈ K. □

Lemma 13.13. Let X be a ringed space (or a ringed locale). Let 0→ E ′ α−→ E β−→
E ′′ → 0 be a short exact sequence of OX-modules. If E ′ and E ′′ are flabby, then E is
flabby as well.

Proof. We verify the condition of Proposition 13.1 in the internal language of Sh(X).
Let K ⊆ E be a subsingleton. Then its image β[K] ⊆ E ′′ is a subsingleton as

well. Since partial elements of E ′′ can be refined to honest elements, there is an
element s : E ′′ such that β[K] ⊆ {s}.

Since β is surjective, there is an element t0 : E such that β(t0) = s.
The preimage α−1[K − t0] ⊆ E ′ is a subsingleton. This partial element can be

refined to an honest element, so there exists an element u : E ′ such that α−1[K−t0] ⊆
{u}.

33However it should be noted that the Godement construction doesn’t work in an intuitionistic

metatheory, unless the underlying set of points of the given topological space is postulated to have
decidable equality.
34There is a metatheorem guaranteeing that a statement is intuitionistically provable if and only if
it holds in the sheaf topos over any topological space [10, Theorem B]. However, this metatheorem
requires the considered statements to be of a certain form, which in particular forbids them from
mentioning the object of truth values. The internal statements given in Proposition 13.1 depend
on this object in a crucial way.
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The partial elementK can thereby refined to the honest element t := t0+α(u). □

13.4. Tor and sheaf Ext. The following lemma expresses a prototype result
for constructing sheaves in the internal language. We’ll use it to internally define
derived functors.

Lemma 13.14. Let X be a ringed topological space (or a ringed locale). Let φ(E) be
a property of sheaves of OX-modules, formulated in the internal language of Sh(X).
Let ψ(f) be a property of morphisms of sheaves of OX-modules, formulated in the
internal language of Sh(X) and stable under composition. Assume that

(1) Sh(X) |= ∃E OX -module. φ(E) and
(2) Sh(X) |= ∀E , E ′ OX -modules. φ(E) ∧ φ(E ′) =⇒ ∃!f : E → E ′ linear. ψ(f).

Then there exists a sheaf E of OX-modules such that Sh(X) |= φ(E), and any two
such sheaves are isomorphic via a unique isomorphism which satisfies ψ from the
internal point of view.

Proof. This is a reformulation of the well-known fact that we have descent for sheaves
of OX -modules. By the first assumption, there is an open covering X =

⋃
i Ui

such that for each i, there is an OX |Ui
-module Ei with Ui |= φ(Ei). By the second

assumption and by Proposition 2.6, for each pair (i, j) of indices there is a unique
morphism fij : Ei|Ui∩Uj → Ej |Ui∩Uj such that Ui∩Uj |= ψ(fij). Since the property ψ
is stable under composition, these morphisms are isomorphisms which satisfy the
cocycle condition. Thus the OX -modules Ei glue to a global OX -module E , which
satisfies property φ because it does so locally.

The uniqueness claim is immediate by Proposition 2.6 and by the assumption
that property ψ is stable under composition. □

Lemma 13.14 can be generalized in two ways: from sheaves of modules to other
kinds of algebraic structures, for instance complexes of sheaves of modules; and from
sheaf toposes over locales to more general Grothendieck toposes, by the descent
theorem for Grothendieck toposes. We will use the former, but not the latter
generalization.

Lemma 13.15. Let X be a ringed space (or a ringed locale). From the internal
point of view of Sh(X), any OX-module admits a resolution by injective OX-modules,
and any two such are related by a morphism of complexes which is unique up to
homotopy with the property that it induces the identity on the resolved module.

Proof. There can’t be an intuitionistic proof of this fact, since it’s consistent with
Zermelo–Fraenkel set theory that no nontrivial injective abelian groups exist [24]. But
working in a classical metatheory, it’s well-known that, for any open subset U ⊆ X,
the category of sheaves of OX |U -modules has enough injectives. Since externally
injective sheaves of modules look like injective modules from the internal point of
view, by (the easy part of) Theorem 13.4, the internal statement “any OX -module
can be embedded into an injective OX -module” holds.

Under the assumption of the existence of enough injectives, the usual proof that
any object admits a resolution by injective objects is intuitionistically valid. We
can therefore interpret this proof in the internal language of Sh(X) and conclude –
were it not for a subtle fine point regarding the failure of the axiom of countable
choice in Sh(X).

A resolution is an infinite complex of modules. The assumption of the existence
of enough injectives allows us to extend any finite partially-constructed injective
resolution to a longer one; but collecting all of the resulting injective objects into a
complete resolution requires some form of choice.

There are two ways to counter this problem. If one wants to prove the lemma
exactly as stated, one has to construct the injective resolution externally (and appeal
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to the axiom of choice in the metatheory) instead of internally constructing it step
by step. But for many purposes, there’s also an alternative: Often, a full injective
resolution isn’t actually needed. For instance, for evaluating an n-th derived functor
on an object, it suffices to have a finite partial injective resolution. If one adopts this
stance, then it’s enough to adopt the statement “any OX -module can be embedded
into an injective OX -module” as an axiom in the internal language. □

Remark 13.16. It’s known that the axiom of choice suffices to construct injective
resolutions of abelian groups,35 and also that the axiom of choice implies the law
of excluded middle in the presence of the other axioms of set theory (Diaconescu’s
theorem). Lemma 13.15 shows that the axiom “any abelian group can be embedded
into an injective abelian group” does not imply the law of excluded middle, since
(assuming the axiom of choice in the metatheory) this statement is true in the
internal language of the sheaf topos over any topological space and such toposes
typically do not satisfy the law of excluded middle.

We use Lemma 13.15 as follows to construct the sheaf Ext in the internal language.
Let E and F be OX -modules over a ringed space (or a ringed locale). Internally,
we define Extn(E ,F) := Hn([E , I•]Mod(OX)) where 0 → F → I• is an injective

resolution and [E , Ik]Mod(OX) is the set of OX -linear maps E → Ik. The module
constructed in this way depends on the chosen injective resolution, but for any two
such resolutions, there is a unique isomorphism in cohomology which is induced by
a morphism of resolutions.

Externally, this definition gives rise to a well-defined sheaf on X, by arguing
similarly as in the proof of Lemma 13.14: We obtain OX -modules on an open
cover; on intersections, we find coherent isomorphisms by the uniqueness statement;
therefore we can glue. The OX -module constructed in this way coincides with the
sheaf Ext as usually conceived.

Along the same lines, we can construct Tor sheaves internally. Let E and F be OX -
modules. Assume that OX and F are coherent. Internally, we define T orn(E ,F) :=
Hn(E ⊗OX

P•), where P• → F → 0 is a projective resolution. Such a resolution
exists; in fact, we can resolve F by finite free modules (which are projective even
without the axiom of choice) by the coherence assumptions on F and OX . As
with Extn, the module constructed in this way is unique up to a unique isomorphism
induced by a morphism of resolutions.

13.5. Higher direct images. Higher direct images are thought of as a relative
“fiberwise” version of cohomology. One way to make this precise is to show that
higher direct images can be made sense of internally to the topos of sheaves over
the base, where they then look like ordinary cohomology.

Let f : Y → X be a morphism of ringed locales. As discussed in Section 12.1,
there is a locale I(Y ) internal to Sh(X) mirroring Y ; from the point of view of Sh(X),
the given morphism f looks like the unique morphism I(Y )→ pt.

Let E be a sheaf of OY -modules on Y . This sheaf corresponds to a sheaf on I(Y ).
Internally to Sh(X), we can take an injective resolution J • of this sheaf and
define Hn(I(Y ), E) := Hn(Γ(I(Y ),J •)). Just like with sheaf Ext and Tor presented
in Section 13.4, this internal description gives rise to a sheaf of OX -modules on X;
the sheaf constructed in this way coincides with the higher direct image Rnf∗(E) as
usually defined.

35More precisely, it is intuitionistically provable that any abelian group admits a resolution by
divisible groups, even a canonical such. Some form of choice is needed to verify that such a
resolution is actually a resolution by injective abelian groups.
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The conception of higher direct images as internal cohomology entails that basic
statements about cohomology yield corresponding statements about higher direct
images. For instance:

• That R≥1id∗(E) vanishes is a reflection of the fact that H≥1(pt, E) vanishes.
• Čech methods to compute cohomology entail Čech methods to compute
higher direct images.
• The computation of the cohomology of projective n-space over a ring imme-
diately yields the higher direct images of the canonical morphism PnS → S
for any base scheme S.

Also the failure of higher direct images to commute with arbitrary base change
gains a logical interpretation. Let

Y ′ g′ //

f ′

��

Y

f

��
X ′

g
// X

be a pullback diagram of locally ringed locales. Let E be a sheaf of modules on Y .
If taking cohomology was a geometric construction, then it would be preserved by
pullback along arbitrary geometric morphisms. Since higher direct images are just
cohomology from the internal point of view, we would therefore have a canonical
isomorphism

g∗(Rnf∗(E)) ∼= Rnf ′∗((g
′)∗E).

However, taking cohomology is not a geometric construction, and indeed in general
there is no such isomorphism. It’s an open question whether the well-known cases
where there is such an isomorphism can be treated by a purely or mostly logical
framework.



PART III

The big Zariski topos

The preceding part demonstrated that working in the internal universe of the little
Zariski topos of a scheme S, the topos of sheaves on S, is useful for simplifying local
work on S. The basic tenet was that sheaves of modules look just like plain modules
and that theorems of intuitionistic algebra yield theorems about sheaves.

But the little Zariski topos is not particularly suited for dealing with schemes
over S. For this, we need a related topos. For the scope of this introduction only,
we blithely employ the following slightly problematic definition which we’ll correct
in Section 15. We’ll keep the base scheme S fixed throughout this part.

For some material in this part, we assume basic familiarity with classifying
toposes.

14. Basics

Definition 14.1 (provisional). The big Zariski topos Zar(S) of a scheme S is the
topos of sheaves on the Grothendieck site Sch/S of schemes over S.

Explicitly, an object of Zar(S) is a functor F : (Sch/S)op → Set satisfying the
gluing condition with respect to ordinary Zariski coverings: If X =

⋃
i Ui is a cover

of an S-scheme X by open subsets, the canonical diagram

F (X) −→
∏
i

F (Ui) −−−−→→
∏
j,k

F (Uj ∩ Uk)

should be an equalizer diagram.

Internal language. Just like the topos of sheaves on a topological space or on a
locale admits an internal language, so does the big Zariski topos. The necessary
modifications of the Kripke–Joyal semantics (Definition 2.1) are straightforward.
Instead of defining recursively the meaning of “U |= φ” for open subsets U ⊆ S, we
define the meaning of “T |= φ” for S-schemes T and slightly rewrite the rules for
implication and universal quantification. Instead of

U |= φ⇒ ψ :⇐⇒ for all open V ⊆ U :

V |= φ implies V |= ψ

U |= ∀s :F . φ(s) :⇐⇒ for all sections s ∈ Γ(V,F) on open V ⊆ U :

V |= φ(s)

they have to read as follows.

T |= φ⇒ ψ :⇐⇒ for all morphisms T ′ → T in Sch/S:

T ′ |= φ implies T ′ |= ψ

T |= ∀s :F. φ(s) :⇐⇒ for all morphisms T ′ → T in Sch/S and

all sections s ∈ Γ(T ′, F ):

T ′ |= φ(s)

141
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The analogues of Proposition 2.4 and Proposition 2.5 are true for the internal
language of the big Zariski topos:

Proposition 14.2. Let T be an S-scheme and φ be a formula over T .

(1) If T |= φ and if there is an intuitionistic proof that φ implies a further
formula ψ, then T |= ψ.

(2) Let T ′ → T be a morphism of S-schemes. If T |= φ, then T ′ |= φ.
(3) If T =

⋃
i Ti is an open covering and if Ti |= φ for all i, then T |= φ.

Proof. The proofs of Proposition 2.4 and Proposition 2.5 carry over. □

When working with the internal language of the little Zariski topos, we often
used the fact that if a formula holds on some open subset U , then it also holds on
all open subsets contained in U . Proposition 14.2(2) states a stronger version of
this: All properties which can be expressed using the internal language of the big
Zariski topos are automatically stable under base change.

Important objects in the big Zariski topos. It’s convenient to introduce
notation for objects which often appear when working with the big Zariski topos.

Let X be an S-scheme. Its functor of points, which maps an S-scheme T
to HomS(T,X), is an object of Zar(S). We denote it by “X”.

From the internal point of view of Zar(S), such a functor X looks like a single set.
It can be pictured as the “set of points of X”, where “point” doesn’t mean “point of
the underlying topological space of X”, but rather “T -point of X”, where T varies
over all S-schemes. The internal language of the big Zariski topos hides any explicit
mentions of the stage T ; it is therefore a device for reifying the multitude of points
of X, defined on varying stages, as a single entity.

Particularly important is A1
S , the functor of points of the affine line over S. The

object S is the terminal object in Zar(S). This fits into the philosophy: From the
point of view of the big Zariski topos, the base scheme should simply look like a
point. The functor of points of S ⨿ S looks like a two-element set from the internal
point of view.

Let F be a sheaf of sets on S. For reasons explained in Section 16, we de-
note by “π−1F” the induced sheaf on Sch/S mapping an S-scheme (f : T → S)
to Γ(T, f−1F).

Let F be a sheaf of OS-modules. We denote by “FZar” the induced sheaf on Sch/S
mapping an S-scheme (f : T → S) to Γ(T, f∗F).

A first example illustrating the Kripke–Joyal translation rules. Since all
the sets A1

S(T )
∼= Γ(T,OT ) carry ring structures and do so in a compatible way, the

object A1
S can be endowed with a canonical structure as a ring object in Zar(S).

For a particular S-scheme T , the ring A1
S(T ) will almost never be a field, but the

system of these rings, conceptualized as a single entity from the internal point of
view, does satisfy a field axiom. In the case S = SpecZ, this was first observed by
Kock [82].

Proposition 14.3. The ring A1
S is a field from the internal point of view of Zar(S),

in the sense that
Zar(S) |= ∀f :A1

S . ¬(f = 0)⇒ ⌜f inv.⌝.

Proof. According to the Kripke–Joyal semantics of Zar(S), we have to show that
for any S-scheme T and any function f ∈ Γ(T,OT ) the statement T |= ¬(f = 0)
implies T |= ⌜f inv.⌝. The antecedent states that, for any T -scheme T ′, if the
pullback of f to T ′ vanishes, then T ′ is the empty scheme.

As with the analogous statement about the little Zariski topos (Lemma 3.2), the
consequent means that f is invertible in Γ(T,OT ).
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The claim follows by considering the particular T -scheme T ′ := V (f). Since f
vanishes on V (f), this subscheme is empty and therefore its complement D(f) is all
of T . □

The field property can be interpreted as follows. A function f not being the
zero function does not imply that it’s invertible. But if f is universally nonzero in
that the only scheme such that pullback of f to that scheme vanishes is the empty
scheme, then f is indeed invertible.

We’ll revisit the field property in Section 18.4; it turns out that it has a deeper
reason than the manual proof given here showed.

15. On the proper choice of a big Zariski site

Unlike with the construction of the little Zariski topos, set-theoretical issues of
size arise when constructing the big Zariski topos. These can be solved in several
different manners, yielding toposes which are not equivalent, and actually differ in
some important aspects, but otherwise enjoy very similar properties.

Naive approach. Some authors construct the big Zariski topos of S as the topos
of sheaves over the site Sch/S of all schemes over S. This option is quite attractive
since the Yoneda embedding Sch/S → Sh(Sch/S), which sends an S-scheme to its
functor of points, is fully faithful, therefore the internal language of Sh(Sch/S) can
distinguish arbitrary schemes.

However, because Sch/S is not essentially small, forming the sheaf topos is not
possible in plain Zermelo–Fraenkel set theory.

Since it’s still possible to meaningfully speak of individual functors (Sch/S)op → S,
we can attach a Kripke–Joyal semantics to Sh(Sch/S), as long as we keep in mind
that Sh(Sch/S) might not contain a subobject classifier and might not be cartesian
closed. From the internal point of view, powersets and function sets might therefore
not exist.

Using Grothendieck universes. We could also assume the existence of a Gro-
thendieck universe U containing S and construct Zar(S) as the topos of sheaves
over the small site SchU/S, the category of S-schemes contained in U .

By the comparison lemma (see, for instance, [33, Theorem 3.7]), we could also
construct Zar(S) as the topos of sheaves over AffU/S, the category of S-schemes
in U which are affine (as absolute schemes), and obtain an equivalent topos.

In this case, the Yoneda functor Sch/S → Zar(S) might not be faithful, but the
restricted Yoneda functor SchU/S → Zar(S) will.

Approach of the Stacks Project. The Stacks Project proposes a more nuanced
approach, namely expanding a given setM0 of schemes containing S to a supersetM
which is closed (up to isomorphism) under several constructions [126, Tag 000H]:
fiber products, countable coproducts, domains of open and closed immersions and
of morphisms of finite type, spectra of local rings OX,x, spectra of residue fields,
and others.

The Stacks Project then defines Zar(S) as Sh(SchM/S), where SchM/S is the
small category of S-schemes in M , or equivalently as Sh(AffM/S). This approach
has the advantage that one doesn’t have to assume the existence of a Grothendieck
universe; the partial universe M can be constructed entirely within ZFC set theory
using transfinite recursion.
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Employing parsimonious sites. From a topos-theoretical point of view, it’s
natural to settle for an even more parsimonious site: the site (Sch/S)lfp consisting
of the S-schemes which are locally of finite presentation over S, or equivalently
the essentially small site (Aff/S)lfp of the S-schemes which are locally of finite
presentation over S and affine (as absolute schemes).36

In the special case that S = Spec(A) is affine, this site is the dual of the category
of finitely presented A-algebras; in this case the topos-theoretic points of the resulting
topos are precisely the local A-algebras, and moreover, the resulting topos is the
classifying topos of the theory of local A-algebras, such that for any Grothendieck
topos E , geometric morphisms E → Sh((Aff/S)lfp) correspond to local A-algebras
internal to E . A textbook reference for these facts is [92, Section VIII.6].

In contrast, the toposes arising when using the larger sites have categories of
points which contain further objects in addition to all local A-algebras; and no
simple description of the theory they classify is known.37

A further advantage of these parsimonious sites is that they don’t require arbitrary
choices of a starting set M0 or of a way of expanding M0 to a sufficiently ample
set M of schemes.

However, the parsimonious sites also have a serious disadvantage, namely that
with them, the Yoneda functor is only fully faithful when restricted to (Sch/S)lfp.
For instance, in the case S = Spec(Z), the schemes Spec(Q) and the empty scheme
have isomorphic functors of points by Proposition 11.19. Therefore Spec(Q) looks
like the empty set from the internal point of view.

In the following, we do not commit to a single one of these options for resolving
the set-theoretical size issues, but rather keep any of them in mind. This approach
will sometimes necessitate phrases such as “for any S-scheme T contained in the
site used to define Zar(S)”, which might seem awkward to a topos-theorist when
taken out of context, since the site used to construct a Grothendieck topos is not at
all uniquely determined by the resulting topos.

We will indicate the few places where the choice of site makes a difference. When
the definition of the Kripke–Joyal semantics for Zar(S) refers to S-schemes, it
actually refers only to the S-schemes contained in the site. Similarly, one has to
restrict oneself to such schemes in the statement of Proposition 14.2. Proposition 14.3
holds for any choice of site.

It’s possible to define the big Zariski topos of a scheme without recourse to
classical scheme theory; we discuss this in Section 16.5.

Remark 15.1. Some authors define the big Zariski topos of S as the topos of
sheaves over the category of affine S-schemes (that is, S-schemes f : X → S where f
is affine) contained in some universe. In case that the diagonal morphism S → S×S
is affine, the resulting topos is equivalent to what we regard as the big Zariski topos
of S, when defined using the same universe. This is because in this case morphisms

36It’s not reasonable to restrict to the even smaller site consisting of the finitely presented S-schemes,
since open immersions can fail to be finitely presented. We want the site used to construct Zar(S)

to be closed under domains of open immersions, for instance to facilitate a comparison with the
little Zariski topos Sh(S), whose site does contain all open subsets of S. Furthermore, since a
finitely presented S-scheme might not admit an open covering by finitely presented S-schemes

which are affine (as absolute schemes), the toposes Sh((Sch/S)fp) and Sh((Aff/S)fp) can differ.
37The category of points of a presheaf topos [Cop, Set] coincides with Ind(Cop), the ind-completion

of Cop. This general fact explains that in the case that C is the category of finitely presented A-
algebras, the category of points coincides with the category of A-algebras, since Ind(Alg(A)fp) ≃
Alg(A). For the larger sites, understanding the structure of their points is therefore tantamount
to understanding the structure of the ind-completion of their dual category (and understanding
which points of the presheaf topos are also points of the sheaf topos).
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of the form Spec(A)→ S are affine and affine morphisms with codomain S can be
refined by such morphisms.

16. Relation between the big and little Zariski toposes

The big Zariski topos Zar(S) is a topos over the little Zariski topos Sh(S) in that
there is a canonical geometric morphism

π : Zar(S) −→ Sh(S)

with direct and inverse image parts given by

π∗E = E|Sh(S) and π−1F = ((T
f−→ S) 7→ Γ(T, f−1F)).

Since π−1 is fully faithful, this geometric morphism is connected; and furthermore,
it is a local geometric morphism (a further right adjoint π! which is fully faithful
exists).

By general results on local geometric morphisms, the adjoint pair (π∗ ⊣ π!) is
a geometric morphism which is right inverse to π and which exhibits Sh(S) as
a subtopos of Zar(S), similarly to how Set is a subtopos of a sheaf topos over a
local topological space. In this context, it’s customary to introduce notation for
the idempotent monad ♯ and the idempotent comonad ♭ arising from the adjoint
triple π−1 ⊣ π∗ ⊣ π!:

♯E = π!(E|Sh(S)) and ♭E = π−1(E|Sh(S)).

In the case that S = Spec(A) is an affine scheme and we employ one of the
parsimonious sites to construct Zar(S), it’s well-known that Sh(S) classifies local
localizations of A and that Zar(S) classifies arbitrary local A-algebras. On points,
the morphism π sends a local A-algebra φ : A→ R to the local localization A→
A[(φ−1[R×])−1], and its right inverse sends a local localization A → A[F−1] to
itself.

16.1. Recovering the big Zariski topos from the little Zariski topos. What
does Zar(S) classify in the case that S is an arbitrary scheme? We don’t know a
nontautologous answer to this question, but we can answer a related one: What
does Zar(S) classify as seen from the internal point of view of Sh(S)?

To make sense of this question, we employ a slight extension of Shulman’s stack
semantics which allows to refer to locally internal categories [103] over a base topos E
from the internal language. Using this extension, a locally internal category over E
looks like a locally small category from the internal point of view of E . In particular,
a geometric morphism f : F → E gives rise to a locally internal category (which
over an object A ∈ E is given by the E/A-enriched category F/f−1A) which will
look like an ordinary topos from the internal point of view of E .

For instance, the trivial E-topos E will look like Set and the slice topos E/X will
look like Set/X from the internal point of view of E .

Theorem 16.1. In the situation that the site used to construct Zar(S) is one of
the parsimonious sites, the big Zariski topos Zar(S) is, from the internal point of
view of Sh(S), the classifying topos of the theory of local OS-algebras which are local
over OS.

For an arbitrary topos F over Set, the concept of an “OS-algebra in F” doesn’t
make any sense – in contrast to the concept of an A-algebra in F , which can either
be defined as a ring homomorphism A→ R in F (where A is the pullback of A ∈ Set
to F) or as a ring object which is equipped with an A-indexed family of endomor-
phisms satisfying suitable axioms. However, for a Sh(S)-topos f : F → Sh(S), the
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concept of an OS-algebra in F is meaningful: It’s a ring homomorphism f−1OS → R
in F .

Similarly, there is no absolute “geometric theory of OS-algebras”. However, there
is a geometric theory of OS-algebras internal to Sh(S). Theorem 16.1 should be
viewed in this light. A detailed account of internal geometric theories and internal
classifying toposes is given in [66, Chapter II].

The proviso “local over OS” is as in the discussion of the relative spectrum from
the internal point of view (Section 12).

Proof of Theorem 16.1. We have to verify that, from the point of view of Sh(S), the
topos Zar(S) contains a canonical local and local-over-OS OS-algebra and that for
any Grothendieck topos F , pulling back this canonical algebra yields an equivalence
between the category of geometric morphisms F → Zar(S) and the category of local
and local-over-OS OS-algebras in F .

The canonical local and local-over-OS OS-algebra in Zar(S) is the algebra ♭A1
S →

A1
S . Indeed, the ring A1

S is local and the homomorphism ♭A1
S → A1

S is local, since
its restriction to any sheaf topos Sh(X), where f : X → S is an S-scheme contained
in the site used to define Zar(S), is local: It’s the morphism f ♯ : f−1OS → OX .

We now want to verify the universal property, which expressed internally to Sh(S)
reads as

Hom(E ,Zar(S)) ≃ category of local and local-over-OS OS-algebras in E .

Externally, this means that for any open subset U ⊆ S and any topos E over Sh(S)/U ,

HomSh(S)/U (E ,Zar(S)/π−1U) ≃
category of local and local-over-π−1OS π−1OS-algebras in E .

We will verify this equivalence in the case that S = Spec(A) is affine and that S = U .
This suffices to establish the theorem, since Sh(S)/U ≃ Sh(U), Zar(S)/π−1U ≃
Zar(U), and since the internal language is local.

So let f : E → Sh(Spec(A)) be a Sh(Spec(A))-topos. By the universal property
of Zar(Spec(A)) as the classifying topos of local A-algebras, a geometric morphism g :
E → Zar(Spec(A)) is uniquely determined by a local A-algebra φ : A→ B in E . By
the universal property of Sh(Spec(A)) as the classifying topos of local localizations
of A, the composition π ◦ g : E → Sh(Spec(A)) is uniquely determined by the local
localization A→ g−1π−1OSpec(A) = g−1(♭A1

S) in E .
In the composition

A −→ ♭A1
S −→ A1

S ,

the first morphism is a local localization and the second morphism is local. Since these
properties can be formulated as geometric implications,38 they are preserved by the
functor g−1. Since furthermore such a factorization is unique, the localization A→
g−1(♭A1

S) which determines π ◦ g coincides with the localization A[(φ−1[B×])−1].
Referring directly to the involved filters, the filter f−1F which determines π ◦ g
(where F is the generic filter of A in Sh(Spec(A))) coincides with the filter φ−1[B×].

38A ring homomorphism α : R → T is a localization (that is, isomorphic to the canonical localization

morphism R → R[S−1] for some multiplicative subset S) if and only if the canonical comparison
morphism R[(α−1T×)−1] → T is bijective. This is the case if and only if

∀y :T. ∃x :R. ∃s :R. ⌜α(s) inv.⌝ ∧ α(s)y = x and

∀x :R. α(x) = 0 ⇒ ∃s :R. ⌜α(s) inv.⌝ ∧ sx = 0.
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This explains the first equivalence in the chain

HomSh(Spec(A))(E ,Zar(Spec(A)))
≃ category of local algebras φ : A→ B in E such that φ−1B× = f−1F
≃ category of local algebras ψ : f−1OSpec(A) → B in E such that ψ is local.

The second equivalence maps an algebra φ to A[(φ−1B×)−1]→ B; conversely, an
algebra ψ is mapped to the composition A→ f−1OSpec(A)

ψ−→ B. □

Similarly to how Theorem 16.1 shows how the big Zariski topos of S looks like
from the point of view of Sh(S), it’s possible to give an internal description of what
the big Zariski topos of an arbitrary relative spectrum over S looks like. We state
and verify such a description in Theorem 16.9.

It is well-known that the points of Zar(Spec(R)), when constructed using one
of the parsimonious sites, are in canonical bijection with the local R-algebras; for
instance, this follows from the description of Zar(Spec(R)) as the classifying topos of
the theory of local R-algebras. For the case of a general base scheme, we introduce
the following definition.

Definition 16.2. A ring over S is a ring A together with a morphism Spec(A)→ S
of locally ringed locales. A morphism of rings over S is a ring homomorphism which
is compatible with the structure morphisms to S.

In the special case that S = Spec(B) is an affine scheme, a ring over S in the
sense of Definition 16.2 is the same as an B-algebra.

Proposition 16.3. In the situation that one of the parsimonious sites is used to
define Zar(S), the category of points of Zar(S) is canonically equivalent to the full
subcategory of the rings over S whose underlying ring is local.

Proof. By Theorem 16.1, a point of Zar(S) is given by a point of Sh(S), that is by a
point s of S,39 together with a local OS,s-algebra A which is local over OS,s. These
data define a ring over S, namely the ring A together with the composite Spec(A)→
Spec(OS,s)→ S. Since the structure morphism OS,s → A is local, this composite
maps the focal point of Spec(A) to the given point s ∈ S.

Conversely, let a local ring A together with a morphism f : Spec(A) → S of
locally ringed locales be given. Let x ∈ Spec(A) be the focal point of Spec(A). We
set s := f(x); then A is an OS,s-algebra by (f ♯)x. It is local over OS,s since f ♯ is a
local homomorphism.

These constructions are mutually inverse since the morphisms Spec(OS,s)→ S
are monomorphisms in the category of locally ringed locales. □

Remark 16.4. In the situation that one of the parsimonious sites is used to define
the big Zariski topos of S, it classifies the theory of local rings over S. This is a
restatement of Theorem 16.1. Explicitly, the theory of local rings over S is given by:

(1) A theory which Sh(S) classifies.
(2) Structure and axioms for a ring R.
(3) Structure and axioms which guarantee that the interpretation of R in any

cocomplete topos coincides with the pullback of OS .
(4) Structure and axioms for a local ring A and a local homomorphism R→ A.

39The topos-theoretic points of the topos of sheaves over a topological space T are in canonical

bijection with the locale-theoretic points of T , that is with locale morphisms 1 → T . If T is sober,
such points are in canonical bijection with the elements of the underlying set of T . In a classical
metatheory, schemes are sober [126, Tag 01IS]. If one wants the proof to work intuitionistically,
the base scheme S has to be defined in a intuitionistically sensible way, for instance as a locally
ringed locale. Correspondingly, the point s of S has to be interpreted in the locale-theoretic sense.

https://stacks.math.columbia.edu/tag/01IS
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The fourth item can be substituted by:

(4’) Structure and axioms for a local ring A and a morphism Spec(A)→ (pt, R)
of locally ringed locales.

This is because such a morphism is given by a local homomorphism R→ OSpec(A)

of sheaves of rings which in turn is given by a local ring homomorphism R →
Γ(Spec(A),OSpec(A)) = A. (Taking global sections of a local homomorphism of
sheaves of rings yields a homomorphism of rings which will typically fail to be local.
However, here taking global sections coincides with calculating the stalk at the focal
point of Spec(A), and pullback preserves locality of ring homomorphisms.)

Corollary 18.16 gives a description of the theory which the big Zariski topos of P1
Z

classifies, building upon Remark 16.4.

16.2. Recovering the little Zariski topos from the big Zariski topos.
Theorem 16.1 shows that Zar(S) can be reconstructed from Sh(S) (and its structure
sheaf OS). Similarly, it’s possible to reconstruct Sh(S) from Zar(S) (and the
canonical morphism ♭A1

S → A1
S).

Theorem 16.5. In the situation that the site used to construct Zar(S) is one of the
parsimonious sites, the little Zariski topos Sh(S) is the largest subtopos of Zar(S)
where the canonical morphism ♭A1

S → A1
S is an isomorphism.

In other words, the little Zariski topos is the largest subtopos E ↪→ Zar(S)
such that Zar(S) |= (⌜♭A1

S → A1
S is bijective⌝)□ (where □ is the modal operator

corresponding to the subtopos), that is that the pullback of the canonical mor-
phism ♭A1

S → A1
S to E is an isomorphism.

In the case that S = Spec(A) is affine, we also have the ring A in Zar(S) available.
In this case the condition is equivalent to

Zar(S) |= ⌜A→ A1
S is a localization⌝□,

since in the composition A→ ♭A1
S → A1

S the first morphism is a localization.

Proof of Theorem 16.5. The little Zariski topos is a subtopos of the big Zariski topos
via the right inverse s of π : Zar(S)→ Sh(S), the geometric morphism (π∗ ⊣ π!). The
pullback of ♭A1

S → A1
S to Sh(S) is therefore the morphism (♭A1

S)|Sh(S) → A1
S |Sh(S),

that is OS → OS , which is an isomorphism.
Let f : E ↪→ Zar(S) be any subtopos such that the pullback of ♭A1

S → A1
S to E is an

isomorphism. We want to verify that f factors over the inclusion s : Sh(S) ↪→ Zar(S).

E �
� f //

!!

Zar(S)

Sh(S)
, �

s

::

A candidate for a morphism E → Sh(S) witnessing this factorization is the compos-
ite π◦f . It remains to show that s◦(π◦f) = f . Both s◦(π◦f) and f are morphisms
of Sh(S)-toposes, where E is regarded as a Sh(S)-topos by the composition π ◦ f .
By the universal property of the big Zariski topos given in Theorem 16.1, they are
therefore uniquely determined by the OS-algebra they classify.

The morphism s ◦ (π ◦ f) classifies the OS-algebra f−1π−1s−1A1
S = f−1(♭A1

S).
The morphism f classifies the OS-algebra f−1A1

S . Since f
−1(♭A1

S)→ f−1A1
S is an

isomorphism, these algebras coincide. □
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16.3. Change of base. Let f : X → S be a morphism of schemes. In any of the
situations that

(1) the parsimonious sites are used to construct the big Zariski toposes and f
is locally of finite presentation, or

(2) the same (Grothendieck or partial) universe is used for constructing both
Zariski toposes and both X and S are contained in the universe,

the morphism f induces an essential geometric morphism Zar(X)→ Zar(S) which
we again denote by “f”. Explicitly, the big Zariski toposes are related by the adjoint
triple f! ⊣ f−1 ⊣ f∗ with

f∗ : Zar(X) −→ Zar(S), F 7−→ ((T
g−→ S) 7→ F (T ×S X)),

f−1 : Zar(S) −→ Zar(X), E 7−→ ((T
g−→ X) 7→ E(T

g−→ X
f−→ S)),

f! : Zar(X) −→ Zar(S), F 7−→ ((T
g−→ S) 7→

∐
h:T→X

F (T
h−→ X)).

In situation (2), the well-definedness of these functors is trivial. In situation (1),
the well-definedness rests on the lemma that an S-morphism h : T → X is locally
of finite presentation if T and X are locally of finite presentation over S [126,
Tag 02FV].

The objects of Zar(S) listed on page 142 pull back as expected:

• Let Y be an S-scheme. Then f−1Y = Y ×S X, by the universal property
of the fiber product.
• In particular, f−1A1

S = A1
X , since A1

S ×S X = A1
X .

• Let F be a sheaf of sets on S. Then f−1π−1
S F = π−1

X f−1F .
• Let F be a sheaf of OS-modules. Then f−1FZar = (f∗F)Zar.

The functors f! ⊣ f−1 induce an equivalence

Zar(X) ≃ Zar(S)/X,

explicitly described by

F 7−→ (f!F → f!1),

((T
g−→ X) 7→ {s ∈ (f−1E)(T ) |α(s) = g})←− [ (E α−→ X).

From the internal point of view of Zar(S), the big Zariski topos of X is therefore
simply Set/X, the category of X-indexed families of sets or equivalently the cat-
egory of sheaves on X considered as a discrete locale. This fits nicely with the
philosophy that “S-schemes are plain unstructured sets from the internal point of
view of Zar(S)”.40

In contrast, for the little Zariski toposes, there is no similarly simple description
of the little Zariski topos of X as a slice of the little Zariski topos of S. From the
internal point of view of Sh(S), the topos Sh(X) looks like the topos of sheaves over
a locale which is not discrete, and the topos Zar(X) doesn’t even look like a topos
of sheaves over an arbitrary locale (discrete or not).

The internal language of a slice topos E/I admits a simple description from the
point of view of E . Namely, for any formula φ over E/I,

E/I |= φ iff E |= ∀i : I. φ(i).

40The requirement on f mentioned at the beginning of this subsection is really necessary. For

instance, let f be the unique morphism Spec(Q) → Spec(Z). This morphism is not locally of
finite presentation. By Proposition 11.19, if the parsimonious sites are used, the functor of
points Q ∈ Zar(Spec(Z)) coincides with the functor of points of the empty scheme and is thus the
initial object in Zar(S). Therefore Zar(Spec(Z))/Q is the trivial topos. In contrast, Zar(Spec(Q))
is not.

https://stacks.math.columbia.edu/tag/02FV
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For the right hand side to make sense, it has to be interpreted in the following way.
Any object (p : M → I) of E/I which appears in φ, for instance as a domain of
quantification, has to be substituted by the internal expression “p−1[{i}]” denoting
the fiber of p over i : I.41 For example, if (p :M → I) is such an object of E/I,

E/I |= ⌜M is inhabited⌝

iff E |= ∀i : I. ⌜the fiber of p over i is inhabited⌝

iff E |= ∀i : I. ∃m :M. p(m) = i.

Thanks to this description of the internal language of a slice topos, the equiva-
lence Zar(X) ≃ Zar(S)/X is useful for lifting internal characterizations concerning
properties of S-schemes to properties of morphisms of S-schemes. For instance, we
will see in Proposition 19.37 that the structure morphism of an S-scheme f : Y → S
is surjective if and only if Zar(S) |= ¬¬(⌜Y is inhabited⌝). This automatically
implies (Corollary 19.38) that a morphism p : Y → X of S-schemes is surjective if
and only if

Zar(S) |= ∀x :X. ¬¬(⌜the fiber of p over x is inhabited⌝).

Many properties of morphisms in algebraic geometry, and all properties which can
be characterized using the internal language of the big Zariski topos, are stable under
base change. For those kinds of properties P , if a morphism Y → X is P , then for any
point x ∈ X the base change Yx → Spec(k(x)) along Spec(k(x))→ X is P as well.
The converse is usually false, but the motto “a morphism is P if all its fibers are P in a
continuous fashion” is still useful for intuition. The equivalence Zar(X) ≃ Zar(S)/X
makes this motto precise: For any morphism p : Y → X of S-schemes and any
formula φ(M) of Zar(S) containing a free variable M ,

Zar(X) |= φ(Y ) iff Zar(S) |= ∀x :X. φ(p−1[{x}]),

that is Y has property φ when regarded as an X-scheme if and only if all the fibers
of Y → X have property φ when regarded as S-schemes.

The family of geometric morphisms

Sh(X)→ Zar(X)→ Zar(S)

with inverse image E 7→ E|Sh(X), where X ranges over all S-schemes contained
in the site used to define Zar(S), is jointly surjective. That is, the restriction
functors Zar(S)→ Sh(X) are jointly conservative. This fact, together with the fact
that these functors commute with geometric constructions, is frequently useful to
relate truth in Zar(S) with truth in all of the Sh(X).

Lemma 16.6. (1) The functor π−1 from OS-modules to π−1OS-modules com-
mutes with tensor product.

(2) The functor π∗ from A1
S-modules to OS-modules commutes with tensor

product.
(3) The A1

S-module EZar associated to an OS-module E (defined on page 142) is
canonically isomorphic to π−1E ⊗π−1OS

A1
S.

(4) The functor E 7→ EZar from OS-modules to A1
S-modules commutes with

tensor product.

41This substitution is less ad hoc as it might at first appear. The internal language of a topos E
is dependently typed, meaning that the types one can quantify over may depend on previously

introduced values. Types in the empty context, depending on no values, correspond to objects of E.
Types in the context of a variable i : I correspond to objects (p : M → I) of E/I. For instance,
in this case one can form formulas of the form “∀i : I. ∀m :M(i). ψ(i,m)”. If in the translation
process using the Kripke–Joyal semantics a formal variable i was substituted by a generalized
element i0 : A→ I, the expression “M(i0)” has to be interpreted as the pullback i∗0M .
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Proof. Forming the tensor product is a geometric construction. It is therefore
preserved by π−1 and by π∗, since both functors are inverse-image-parts of geometric
morphisms. Claim (3) follows from the calculation

(π−1E ⊗π−1OS
A1
S)|Sh(X)

∼= (π−1E)|Sh(X) ⊗(π−1OS)|Sh(X)
A1
S |Sh(X)

∼= (f−1E)⊗f−1OS
OX

∼= f∗E
for S-schemes (f : X → S) contained in the site used to define Zar(S). Finally,
claim (4) follows by using a standard property for tensor products (whose proof is
intuitionistic and therefore valid in Zar(S)):

(E ⊗OS
F)Zar ∼= π−1(E ⊗S F)⊗π−1OS

A1
S

∼= (π−1E ⊗π−1OS
π−1F)⊗π−1OS

A1
S

∼= (π−1E ⊗π−1OS
A1
S)⊗A1

S
(π−1F ⊗π−1OS

A1
S)

∼= EZar ⊗A1
S
FZar. □

Example 16.7. Constructing, internally in Zar(S), the module Ω1
A1

S |♭A1
S
of Kähler

differentials of the ring morphism ♭A1
S → A1

S yields the “universal cotangent sheaf”

X 7−→ Γ(X,Ω1
X|S).

This is because constructing the module of Kähler differentials is a geometric
construction and the restriction functors Zar(S)→ Zar(X) commute with geometric
constructions, so

JΩ1
A1

S |♭A1
S
K|Sh(X)

∼= Ω1
(A1

S |Sh(X))|((♭A1
S)|Sh(X))

∼= Ω1
OX |f−1OS

∼= Ω1
X|S

for any S-scheme (f : X → S) contained in the site used to define Zar(S).
This universal cotangent sheaf doesn’t enjoy any finiteness properties from the

internal point of view. For instance, it isn’t finitely generated, because else all the
individual cotangent sheaves Ω1

X|S would be of finite type (even with a uniform

bound on the number of generators, if S is quasicompact) by Proposition 18.1.
We feel that the significance of the canonical morphism ♭A1

S → A1
S hasn’t been

adequately explored yet.

Remark 16.8. Some care is needed when dealing with the modalities ♭ and ♯,
since they are not compatible with change of base. If f : X → S is a morphism of
schemes, then in general f−1(♭E) ̸∼= ♭(f−1E), since

f−1(♭E) = ((T
g−→ X) 7→ Γ(T, g−1f−1(E|Sh(S)))), but

♭(f−1E) = ((T
g−→ X) 7→ Γ(T, g−1(E|Sh(X)))).

A special case in which the canonical morphism f−1(♭E)→ ♭(f−1E) is an isomor-
phism is when f is an open immersion.

A consequence of the fact that ♭ and ♯ aren’t compatible with change of base
is that these modalities can’t be defined in the internal language of Zar(S), since
any construction which can be described in the internal language is automatically
compatible with change of base. However, the modalities can still be used and their
general properties can even be elementarily axiomatized [9].

16.4. The big Zariski topos of a relative spectrum.

Theorem 16.9. Let A be a quasicoherent OS-algebra. In the situation that the
parsimonious sites are used for constructing big Zariski toposes, the big Zariski topos
of SpecS(A) is, from the internal point of view of Sh(S), the classifying topos of the
theory of local A-algebras which are local over OS.
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Proof. The proof is similar to the proof of Theorem 16.1. Let X = SpecS(A)
and f : X → S be the canonical morphism. The big Zariski topos of SpecS(A)
is a Sh(S)-topos by the composition Zar(SpecS(A)) → Zar(S) → Sh(S). The
pullback of OS along this geometric morphism is f−1(♭A1

S). A canonical OS-algebra
in Zar(SpecS(A)) is therefore

f−1(♭A1
S) −→ ♭A1

X −→ A1
X .

This algebra is indeed local and local over f−1(♭A1
S).

For verifying the universal property, it suffices to restrict to the case that S =
Spec(R) is affine, as in the proof of Theorem 16.1, and consider a geometric
morphism f : E → Sh(S). In this case A = A∼ and X = SpecS(A) = Spec(A).
Let α : R → A be the structure morphism of A. We then have the chain of
equivalences

HomSh(S)(E ,Zar(X))

≃ cat. of local algebras φ : A→ B in Zar(X) such that α−1φ−1B× = f−1F
≃ cat. of local algebras ψ : f−1A → B such that f−1OS → f−1A → B is local.

The first equivalence maps a geometric morphism g : E → Zar(X) to A→ g−1A1
X .

The second equivalence acts as follows. Given an algebra φ : A → B such
that α−1φ−1B× = f−1F , we can factor R → A → B uniquely as a localiza-
tion R→ C followed by a local homomorphism C → B. By the condition on filters,
the localization C is isomorphic to f−1OS . From the description A = A[F−1] it
is apparent that A → B factors over A → f−1A. In this way, we obtain mor-
phisms f−1OS → f−1A → B. □

The only reason why we have supposed that A is quasicoherent in the statement
of Theorem 16.9 is because else SpecS(A) might fail to be a scheme, whereby the
notion “big Zariski topos of SpecS(A)” is not defined.

In fact, we propose the following definition: If (X,OX) is an arbitrary locally
ringed locale (or even a locally ringed topos), then the big Zariski topos of X should
be the classifying Sh(X)-topos of the theory (internal to Sh(X)) of local OX -algebras
which are local over OX . The following proposition shows that this definition is
consistent with Theorem 16.1 and with Theorem 16.9.

Proposition 16.10. Let A be an OS-algebra. The following constructions, per-
formed internally to Sh(S), yield canonically equivalent toposes:

(1) Constructing first the local spectrum X := Spec(A|OS) and then, internally
to ShSh(S)(X), the classifying topos of the theory of OX-algebras which are
local over OX .

(2) Constructing the classifying topos of the theory of A-algebras which are local
over OS.

If furthermore A is finitely presented as an OS-algebra from the internal point of
view of Sh(S), then the following construction yields the same result as well:

(3) Constructing first the big Zariski topos of S as the classifying topos of
local OS-algebras which are local over OS and then constructing, internally
to that topos, the slice topos over [AZar,A1

S ]Alg(A1
S).

Proof. If S is indeed a scheme, as is supposed throughout Part III, and A is quasico-
herent, then all three constructions yield the big Zariski topos of SpecS(A) (defined
using one of the parsimonious sites). For the first construction, this is by Theo-
rem 12.10 and Theorem 16.1; for the second construction, this is by Theorem 16.9;
and for the third construction, this is by Theorem 16.1, Proposition 18.8, and the
description of the slice topos in Section 16.3. However, the claim also holds if A is
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not quasicoherent or if S is an arbitrary locally ringed locale, and it’s instructive to
see the proof in this more general situation.

We work in the internal universe of Sh(S). Let E be an arbitrary (Grothendieck)
topos. Then E-valued points of the three toposes are given by:

(1) a filter F ⊆ A lying over the filter of units of OS together with a local AF -
algebra R which is local over AF

(2) a local A-algebra which is local over OS
(3) a local OS-algebra R which is local over OS together with an element of

the stalk of [AZar,A1
S ]Alg(A1

S) at the point corresponding to R

In the case that A is finitely presented, the stalk appearing in description (3) is
canonically isomorphic to the set of R-algebra homomorphisms A⊗OS

R→ R, as
discussed in Lemma 6.45.

With these descriptions, the equivalence is immediate. For instance, a datum (F ⊆
A,AF → R) as in description (1) gives rise to the datum (OS → AF → R) as in
description (2). Conversely, the structure morphism of a datum as in description (2)
can be factored as a localization followed by a local homomorphism to yield a datum
as in (1). □

16.5. Constructing the big Zariski topos without recourse to classical
scheme theory. Given a scheme S, is it possible to construct the big Zariski topos
of S without recourse to classical scheme theory? Without employing a site which
refers to schemes as classically conceived?

Taken literally, this question is ill-posed, since the datum S is given as a classical
scheme. A better question is: Is it possible to setup the basics of the theory of
schemes using only big Zariski toposes, preferably even in an intuitionistic fashion?

This is indeed possible, and we wish to sketch how this can be done. Given a base
ring A, the big Zariski topos of Spec(A) can be defined as the topos of sheaves over
the parsimonious site Alg(A)opfp consisting of (formal duals) of finitely presented A-

algebras. We can then declare an A-scheme to be an object of Zar(Spec(A))
having certain properties, for instance being a finitely presented synthetic scheme
(Definition 19.49).

The big Zariski topos of such an A-scheme X can then simply be defined as the
slice topos Zar(Spec(A))/X, in accordance with the equivalence noted in Section 16.3.
This slice topos can serve as the base over which further schemes and their big
Zariski toposes can be constructed.

Inaccessible to this approach to scheme theory are schemes which are not locally
of finite presentation over the base ring. If one wants to account for such schemes,
one has to substitute the parsimonious site for a larger one; however, some problems
remain, as indicated in Section 19.10.

17. The double negation modality

Proposition 17.1. Let φ be a formula over S. Consider the following statements:

(1) Zar(S) |= ¬¬φ.
(2) For all points s ∈ S, there is a field extension K | k(s) such that Spec(K)→

Spec(k(s)) → S is contained in the site used to define Zar(S) and such
that Spec(K) |= φ.

(3) For all closed points s ∈ S, there is a finite field extension K | k(s) such
that Spec(K) |= φ.

Then:

• Condition (2) implies condition (1). The converse holds if the site used to
define Zar(S) is closed under taking spectra of residue fields (this is satisfied
for all sites listed in Section 15 except for the parsimonious sites).
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• If one of the parsimonious sites is used to define Zar(S) and S is locally
Noetherian, condition (1) implies condition (3). The converse holds if
additionally S is locally of finite type over a field.

Proof. We begin with showing that condition (2) implies condition (1). By the
Kripke–Joyal translation, we need to verify that

∀(X → S).
(
∀(T → X). (T |= φ)⇒ T = ∅

)
=⇒ X = ∅,

where the universal quantifiers range over all schemes contained in the site used to
define Zar(S). So let such an S-scheme f : X → S be given. We show that the fiber
over any point s ∈ S is empty. By assumption, there is a field extension K | k(s)
such that Spec(K)→ Spec(k(s))→ S is contained in the site used to define Zar(S)
and such that Spec(K) |= φ. The base change T of the fiber Xs to Spec(K) as
indicated in the diagram

T //

��

Xs
//

��

X

��
Spec(K) // Spec(k(s)) // S

is contained in the site used to define Zar(S) as well, therefore saying “T |= φ” is
meaningful. And indeed T |= φ, since Spec(K) |= φ. Therefore T = ∅. Thus Xs = ∅
as claimed.

For the direction “(1) ⇒ (2)”, let a point s ∈ S be given. Since we assume
that the site used to define Zar(S) contains the S-scheme X := Spec(k(s)) and
since X ̸= ∅, the assumption implies that there exists a nonempty X-scheme T
such that T |= φ. Since T is nonempty, there exists a point t ∈ T . By the
morphism Spec(k(t)) → T → X, the field K := k(t) is an extension of k(s), and
since Spec(K)→ T → X → S is contained in the site, we have Spec(K) |= φ.

The proof that condition (1) implies condition (3) in the case that one of the
parsimonious sites is used to define Zar(S) and that S is locally Noetherian is similar.
For a closed point s ∈ S, the residue field k(s) can be computed as A/m, where A is
the ring of functions of an open affine neighborhood of s and m is a maximal ideal in A.
Since A is Noetherian, the ideal m is finitely generated and therefore A/m is finitely
presented as an A-algebra. Thus the canonical morphism Spec(k(s))→ Spec(A)→
S is locally of finite presentation and thereby contained in the parsimonious site.
The hypothesis is therefore applicable to X := Spec(k(s)) and yields a nonempty X-
scheme T which is locally of finite presentation over X such that T |= φ.

Since the structure morphism T → X is locally of finite presentation, the scheme T
inherits the property to be locally Noetherian from X. Let U ⊆ T be a nonempty
open affine subset and let t ∈ U be a point which is closed in U . With the same
reasoning as above, the canonical morphism Spec(k(t)) → U → T is therefore
contained in the parsimonious site. Thus Spec(k(t)) |= φ. The field K := k(t) is
finitely presented as a k(s)-algebra. By Noether normalization, it is also of finite
dimension as a k(s)-vector space.

Finally, we verify that condition (3) implies condition (1) if one of the parsimonious
sites is used to define Zar(S) and if S is locally of finite type over a field (and therefore
in particular Noetherian). We adopt the notation of the proof of “(2) ⇒ (1)”. The
argument there shows that all fibers of f over closed points are empty. If X is not
empty, it contains a closed point x (since X is locally of finite type over a field, any
point which is closed in an open affine neighborhood will do). Since X is locally of
finite type over a field, the point f(x) is closed in S. Therefore x is contained in the
fiber over a closed point; a contradiction. □
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Remark 17.2. The proof of Proposition 17.1 uses classical logic in a substantial
way, since repeatedly the lemma that a scheme is trivial if it doesn’t have any
points was used. Even if scheme theory is set up in an intuitionistically sensible
way (for instance by defining a scheme to be a locally ringed locale which is locally
isomorphic to the locale-theoretic spectra of rings as discussed in Section 12.2), one
should therefore not expect the proposition to admit an intuitionistic proof without
additional hypotheses.

Lemma 17.3. Let f : X → S and g : Y → S be S-schemes which are locally
contained in the site used to define Zar(S). In the case that the site is one of the
parsimonious sites, further assume that f and g are quasicompact and quasiseparated.
The following statements are equivalent:

(1) The image of f coincides with the image of g topologically.
(2) Zar(S) |= ¬¬(⌜X inhabited⌝)⇔ ¬¬(⌜Y inhabited⌝).

Proof. By Proposition 19.37, which we’ll prove below, statement (2) is equivalent
to:

For any S-scheme h : T → S contained in the site used to define Zar(S),
the morphism X ×S T → T is surjective if and only if Y ×S T → T is.

We verify that this statement implies statement (1). Let s ∈ im(f). Then the
canonical morphism Xs → Spec(k(s)) is surjective. Therefore there exists an S-
scheme h : T → S which is contained in the site used to define Zar(S) such
that X ×S T → T is surjective and such that s ∈ im(h): If Zar(S) is defined using
a Grothendieck or partial universe, this claim is trivial, since we can take T :=
Spec(k(s)). If Zar(S) is defined using one of the parsimonious sites, we employ the
technique of relative approximation.42

The assumption yields that the induced morphism Y ×S T → T is surjective.
Since s ∈ im(h), also s ∈ im(g).

The proof of the converse containment relation is analogous.
The direction “(1) ⇒ (2)” is immediate, since

im(X ×S T → T ) = h−1 im(f) = h−1 im(g) = im(Y ×S T → T ). □

Remark 17.4. Let f : X → S be contained in the site used to define Zar(S). In
the case that the site is one of the parsimonious sites, further assume that f is
quasicompact and quasiseparated. The expression “¬¬(⌜X is inhabited⌝)” of the
internal language of Zar(S) denotes the subfunctor of the terminal functor S = 1 ∈
Zar(S) given by

(h : T → S) 7−→ {⋆ | im(h) ⊆ im(f)}.

If f is an open immersion, then this functor coincides with the functor of points
of X, since the set-theoretic image of a morphism of schemes is contained in an
open subset U ⊆ S if and only if it factors over the open immersion U ↪→ S.

If f is a closed immersion, this functor is the functor of points of the formal
completion of S along X. More generally, for an arbitrary S-scheme X and a closed
subscheme Z ↪→ X (such that both X and S are locally contained in the site used

42More specifically, we may assume that S is affine. Then the lemma on relative approximation [126,
Tag 09MV] can be applied to write Spec(k(s)) as a directed limit of an inverse system of finitely

presented S-schemes Ti with affine transition maps. Let U ⊆ X be an open affine subset containing
a preimage of s. The property that U ↪→ X → Spec(k(s)) is surjective descends to one of the
morphisms U ×S Ti → Ti [126, Tag 07RR]. In particular, the morphism X×S Ti → Ti is surjective.
We can therefore take T := Ti. The image of Ti → S contains s since Spec(k(s)) → S factors
over Ti → S.

https://stacks.math.columbia.edu/tag/09MV
https://stacks.math.columbia.edu/tag/07RR
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to define Zar(S)), the internal expression “{x :X | ¬¬(x ∈ Z)}” denotes the functor
of points of the formal completion of X along Z. For instance, the expression

{f :A1
S | ¬¬(f = 0)} = {f :A1

S | ⌜f is nilpotent⌝}

denotes the formal neighborhood of the origin in the affine line A1
S . (The equiva-

lence ¬¬(f = 0)⇔ ⌜f is nilpotent⌝ is by Proposition 18.29.)

18. Sheaves of rings, algebras, and modules

Proposition 18.1. Let E be an OS-module. Properties of E and of the induced A1
S-

module EZar are related as follows:

• E is finite locally free if and only if EZar is finite free as an A1
S-module from

the internal point of view of Zar(S).
• E is of finite type if and only if EZar is finitely generated as an A1

S-module
from the internal point of view of Zar(S).
• E is of finite presentation if and only if EZar is finitely presented as an A1

S-
module from the internal point of view of Zar(S).

Proof. The “if” directions follow just as in Proposition 4.3. The proofs of the “only
if” directions can too proceed by hand, further exploiting only that generators
and relations are stable under base change. But there’s also a more conceptual
proof: From the point of view of Sh(S), the A1

S-module EZar admits the descrip-
tion EZar = E ⊗OS

A1
S , where the underline denotes the constant sheaf construction

(which externally is interpreted by the functor π−1 described in Section 16). By
Lemma 12.49 (generalized from locales to toposes), the OS-module E inherits any
property from E which is of a certain logical form, and the properties under discussion
are stable under tensoring. □

An analogous result holds for sheaves of algebras and their finiteness conditions.
Coherence is missing from the list in Proposition 18.1 since coherence is not

stable under pullback (for instance, the pullback of OSpec(Z) is not stable under any
morphism X → Spec(Z) for which OX is not coherent) and can therefore not be
characterized by any formula in the internal language of a big Zariski topos whose
site is sufficiently encompassing.

However, coherence is stable under pullback along locally finitely presented
morphisms. This observation misled me to erroneously state in an earlier version
of this text, as Proposition 18.2: “Let E be an OS-module. If the induced A1

S-
module EZar is coherent from the internal point of view of Zar(S), then E is coherent.
The converse holds if Zar(S) is defined using one of the parsimonious sites.”

However, as Felix Cherubini and Matthias Hutzler have pointed out, this claim
is false. In contrast, we have:

Proposition 18.2. From the point of view of Zar(S) (irrespective of whether S can
be covered by spectra of coherent rings), it is not the case that A1

S is coherent.

The issue is that kernels and tensor products do not commute (but kernels and
localization do, explaining why we have Proposition 4.3 for the little Zariski topos)
and hence already kernels of linear maps A1

S → A1
S fail to be finitely generated.

Details are provided in a forthcoming paper on internal algebraic geometry by Felix
Cherubini, Thierry Coquand and Matthias Hutzler.

Proposition 18.3. The inclusion functor

ModSh(S)(OS) −→ ModZar(S)(A1
S), E 7−→ EZar

is fully faithful.
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Proof. This follows from the following string of isomorphisms, employing the adjunc-
tion π−1 ⊣ π∗ and the fact that π∗ commutes with tensor product by Lemma 16.6.

HomMod(A1
S)(EZar,FZar) = HomMod(A1

S)(π
−1E ⊗π−1OS

A1
S , π

−1F ⊗π−1OS
A1
S)

∼= HomMod(π−1OS)(π
−1E , π−1F ⊗π−1OS

A1
S)

∼= HomMod(OS)(E , π∗(π−1F ⊗π−1OS
A1
S))

∼= HomMod(OS)(E , π∗π−1F ⊗π∗π−1OS
π∗A1

S))

∼= HomMod(OS)(E ,F ⊗OS
OS)

∼= HomMod(OS)(E ,F). □

Caveat 18.4. The inclusion functor from the category of OS-modules to the
category of A1

S-modules is right exact, and preserves even arbitrary colimits, but is
not left exact.

18.1. Relative spectrum.

Definition 18.5. In the context of a specified local ring R, the synthetic spectrum
of an R-algebra A is

Spec(A) := [A,R]Alg(R),

the set of R-algebra homomorphisms from A to R.

Example 18.6. The synthetic spectrum of R is the one-element set. More generally,
the synthetic spectrum of the algebra R[X1, . . . , Xn]/(f1, . . . , fm) is the solution
set {x :Rn | f1(x) = · · · = fn(x) = 0}.
Example 18.7. The synthetic spectrum of R/(f) is Jf = 0K, the truth value of the
formula “f = 0”, the subsingleton set {⋆ | f = 0}. If classical logic is available, then
this set contains ⋆ or is empty, depending on whether f is zero or not. Similarly,
the synthetic spectrum of R[f−1] is J⌜f inv.⌝K.

Proposition 18.8. Let A0 be an OS-algebra (not necessarily quasicoherent). Then
the synthetic spectrum of the A1

S-algebra (A0)
Zar, as constructed in the internal

language of Zar(S), is the functor of points of SpecS A0.

Proof. The Hom set occurring in the definition of the synthetic spectrum is in-
terpreted by the internal Hom when using the internal language. For any S-
scheme f : T → S contained in the site used to define Zar(S), we have the following
chain of isomorphisms.

JSpec(A)K(T ) = [(A0)
Zar,A1

S ]Alg(A1
S)(T )

∼= HomZar(S)(T , [(A0)
Zar,A1

S ]Alg(A1
S))

∼= HomZar(S)(T × (A0)
Zar,A1

S)...

∼= HomZar(S)/T (T × (A0)
Zar, T × A1

S)...

∼= HomAlgZar(T )(A1
T )((f

∗A0)
Zar,A1

T )

= HomAlgZar(T )(A1
T )(π

−1(f∗A0)⊗π−1OT
A1
T ,A

1
T )

∼= HomAlgZar(T )(π
−1OT )(π

−1(f∗A0),A1
T )

∼= HomAlgSh(T )(OT )(f
∗A0,OT )

∼= HomAlgSh(S)(OS)(A0, f∗OT )
∼= HomS(T, SpecS A0).

The omitted subscripts “. . .” should denote that we’re only taking the subset of
the Hom set where, for each fixed first argument, the morphisms are morphisms
of A1

S-algebras. □
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If X ∈ Zar(S) is an arbitrary object, there is a canonical morphism X →
Spec([X,A1

S ]). In the internal language of Zar(X) it looks like the “inclusion into
the double dual”:

x 7−→ (x), where (x) : [X,A1
S ]→ A1

S , φ 7→ φ(x).

The following proposition shows that bijectivity of this map is related to X being
the functor of points of an affine S-scheme (an S-scheme whose structure morphism
to S is affine).

Proposition 18.9. Let X ∈ Zar(S) be a Zariski sheaf. Consider the following
statements:

(1) The sheaf X is isomorphic to the functor of points of an affine S-scheme.
(2) In the internal language of Zar(S), the A1

S-algebra [X,A1
S ] is synthetically

quasicoherent (Definition 18.18) and the canonical map X → Spec([X,A1
S ])

is bijective.

If one of the parsimonious sites is used to define Zar(S) or if, internally, the
algebra [X,A1

S ] is finitely presented, then “(2) ⇒ (1)”. The converse holds in any
of the following situations:

• The affine S-scheme which X represents is of finite presentation over S.
• The site used to define Zar(S) is defined using a partial universe and the
affine S-scheme which X represents is of finite type over S.
• The affine S-scheme which X represents is contained in the site used to
define Zar(S). (This situation subsumes the previous ones.)

Proof. The direction “(2) ⇒ (1)” is straightforward, since the assumption ex-
presses X as the functor of points of the relative spectrum of a quasicoherent OS-
algebra. Theorem 18.19, which is needed to obtain the sought quasicoherent OS-
algebra, is applicable.

For the converse direction, we abuse notation and denote the given affine S-
scheme whose functor of points is X by “f : X → S”. Then f∗OX is quasicoherent
and the canonical morphism X → SpecS f∗OX is an isomorphism. In any of the
listed situations, the internal Hom [X,A1

S ] is canonically isomorphic to (f∗OX)Zar,

since for any object T
g−→ S of the site used to define Zar(S) we have that

[X,A1
S ](T )

∼= HomZar(S)(T , [X,A1
S ])
∼= HomZar(S)(T ×X,A1

S)

∼= HomZar(S)(T ×X,A1
S)
∼= HomZar(S)(T ×S X,A1

S)

∼= A1
S(T ×S X) ∼= (g∗f∗OX)(T ) = (f∗OX)Zar(T ).

Therefore [X,A1
S ] is quasicoherent. The map induced by the isomorphism X →

SpecS f∗OX on the level of functors of points is precisely the canonical map X →
Spec([X,A1

S ]) as defined in the internal language; therefore this map is bijective
from the internal point of view. □

Remark 18.10. The condition in Proposition 18.9 that Spec(A) is representable
by an object of the site used to define Zar(S) is slightly unnatural from a topos-
theoretic point of view, since the conclusion of the Scholium depends only on the
topos over the site and not the site itself. In fact, the condition can be weakened
and made more natural at the same time: It suffices to require that Spec(A) is
locally representable by an object of the site.

The following corollary answers a question by Madore [93, entry 2002-07-07:044].

Corollary 18.11. A morphism f : X → S of schemes is finite if, from the internal
point of view of Zar(S), the canonical map X → Spec([X,A1

S ]) is bijective and
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the A1
S-algebra [X,A1

S ] is synthetically quasicoherent and finitely generated. The
converse holds if X is locally contained in the site used to define Zar(S).

Proof. Immediate using Proposition 18.9 and Proposition 18.1. □

Remark 18.12. Let A0 be an OS-algebra. Then one can form, internally to Zar(S),
two locales related to A0: the discrete locale on the synthetic spectrum of (A0)

Zar,
and the local spectrum of (A0)

Zar over A1
S as described in Definition 12.4. These

locales don’t coincide. In fact, the pullback of a discrete locale is discrete, whereas
the pullback of the local spectrum to any of the little Zariski toposes Sh(X),
where f : X → S is an S-scheme contained in the site used to define Zar(S), is
the relative spectrum SpecX(f∗A0), which is typically not discrete as an X-locale.
(This is because the local spectrum construction is geometric, by Proposition 12.29.)

There is, however, a comparison morphism from the discrete locale on the
synthetic spectrum to the local spectrum. On points, it sends an A1

S-algebra
homomorphism φ : (A0)

Zar → A1
S to the filter φ−1[(A1

S)
×].

One can also form, internally to Zar(S), the classifying topos of (A0)
Zar-algebras

which are local over A1
S . This topos doesn’t coincide with the (toposes of sheaves

over) the mentioned two locales, either. The pullback of that classifying topos to
any of the Sh(X) is the big Zariski topos of SpecX(f

∗A0) (built using one of the
parsimonious sites).

18.2. Relative Proj construction.

Definition 18.13. In the context of a specified local ring R, the synthetic Proj of
an N-graded R-algebra A which is generated as an A0-algebra by A1 is the set

Proj(A) := (set of all surj. graded R-algebra homomorphisms A→ R[T ])/R×.

Example 18.14. The synthetic Proj of R[X0, . . . , Xn] is canonically isomorphic to
the set of points [x0 : · · · : xn] with at least one invertible coordinate.

Proposition 18.15. Let A be an N-graded OS-algebra (not necessarily quasico-
herent). Assume that A is generated as an A0-algebra by A1. Then the synthetic
Proj of the A1

S-algebra AZar, as constructed in the internal language of Zar(S), is
the functor of points of ProjS A.

Proof. We omit the somewhat tedious verification. □

The following corollary was prompted by a question on MathOverflow [37]. We
are grateful to Yuhao Huang for the impulse.

Corollary 18.16. The big Zariski topos of the projective line P1
Z, when constructed

using a parsimonious site, classifies the theory of “a local ring together with a
point [a : b]” (that is a pair (a, b) of ring elements, where at least one coordinate is
invertible, up to multiplication by units). Explicitly, this theory is given by:

(1) A sort A together with function symbols, constants, and axioms expressing
that A is a local ring.

(2) A sort P (to be thought of as the set of [a : b] with a, b :A where at least one
coordinate is invertible) together with a relation ⟨·, ·, ·⟩ on A×A× P and
the following axioms:
• ⌜a inv.⌝ ∨ ⌜b inv.⌝ ⊣⊢a,b:A ∃p :P. ⟨a, b, p⟩
• ⟨a, b, p⟩ ∧ ⟨a, b, p′⟩ ⊢a,b:A, p,p′:P p = p′

• ⊤ ⊢p:P ∃a, b :A. ⟨a, b, p⟩
• ⟨a, b, p⟩ ∧ ⟨a′, b′, p⟩ ⊣⊢a,a′,b,b′:A, p:P ∃s :A. ⌜s inv.⌝ ∧ a′ = sa ∧ b′ = sb

(3) A constant of sort P .
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Proof. The big Zariski topos of P1
Z is a topos over the big Zariski topos of Spec(Z);

from the point of view of Zar(Spec(Z)), it is the classifying topos of a point [a : b]
where a, b :A1

SpecZ , since Zar(P1
Z) ≃ Zar(Spec(Z))/P1

Z as discussed in Section 16.3

and P1
Z
∼= {[a : b] | a, b :A1

SpecZ} by Proposition 18.15 and Example 18.14. The
big Zariski topos of Spec(Z) classifies local rings. Therefore the claim follows by
considering the combined geometric theory.

An alternative proof builds upon Remark 16.4 and the description of the theory
which the little Zariski topos of P1

Z classifies (Proposition 12.36). Combining these,
we see that Zar(P1

Z) classifies the theory of a homogeneous filter F of Z[X,Y ] meeting
the irrelevant ideal together with a local homomorphism α : Z[X,Y ][F−1]0 → A
into a local ring A. Such data gives rise to a point [α(X/u) : α(Y/u)], where u is a
homogeneous element of degree 1 contained in F ; and conversely any point [a : b]
gives rise to a filter

F := {f ∈ Z[X,Y ] | fn(a, b) is invertible in A for some n ≥ 0},
where fn is the homogeneous component of degree n of f , and a local homomor-
phism α : Z[X,Y ][F−1]0 → A mapping f/g to f(a, b)/g(a, b). □

18.3. Quasicoherence. The goal of this section is to give an internal characteriza-
tion of quasicoherence. We’ll build several notions of synthetic algebraic geometry
on quasicoherence; it is therefore central to the theory.

Lemma 18.17. Let E be an A1
S-module. Let S =

⋃
i Ui be an open covering

such that the restrictions E|Zar(Ui) are quasicoherent, that is of the form (Ei)Zar for

quasicoherent OUi-modules Ei. Then E is quasicoherent, that is of the form (E0)Zar
for a quasicoherent OS-module E0.

Proof. The given modules Ei glue to a quasicoherent OS-module E0, and the sheaf
condition ensures that E is isomorphic to (E0)Zar. Details are given in [126,
Tag 03DN]. □

Definition 18.18. An R-module E is synthetically quasicoherent if and only if, for
any finitely presented R-algebra A, the canonical R-module homomorphism

E ⊗R A −→ [Spec(A), E] = [[A,R]Alg(R), E]

which maps a pure tensor x ⊗ f to the function (φ 7→ φ(f)x) is bijective. Here
and in the following, the set [Spec(A), E] is the set of all maps Spec(A) → E,
and [A,R]Alg(R) is the set of all R-algebra homomorphisms A→ R.

This definition has the following interpretation. The codomain of the displayed
canonical map is the set of all E-valued functions on Spec(A). Elements of E ⊗R A
induce such functions; these induced functions can reasonably be called “algebraic”.
In a synthetic context, there should be no other E-valued functions as these algebraic
ones, and different algebraic expressions should yield different functions. This is
precisely what the postulated bijectivity expresses.

The notion of synthetic quasicoherence is only meaningful in an intuitionistic
context. For instance, even R itself can’t be synthetically quasicoherent in the
presence of the law of excluded middle, since it forces the canonical evaluation
morphism R[T ] → [R,R] (obtained by setting A := R[T ] in the definition of
synthetic quasicoherence) to never be bijective: If R is finite, then the evaluation
morphism isn’t injective, since

∏
x∈R(T − x) is mapped to the same function as the

zero polynomial is. If R is infinite, then R[T ] has cardinality |R| while the set of
functions R→ R has strictly greater cardinality.

Theorem 18.19. Let E ∈ Zar(S) be an A1
S-module. If E is quasicoherent, that is

of the form (E0)Zar for some quasicoherent OS-module E0, then E is synthetically

https://stacks.math.columbia.edu/tag/03DN
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quasicoherent from the internal point of view of Zar(S). The converse holds in any
of the following situations:

(1) The site used to construct Zar(S) is one of the parsimonious sites.
(2) The functor E maps directed limits of inverse systems of S-schemes with

affine transition morphisms to colimits in Set.
(3) From the internal point of view of Zar(S), the module E is even finitely

presented.

Proof. Let E = (E0)Zar for a quasicoherent OS-module E0. To verify that E is
synthetically quasicoherent, we have to verify a condition for A1

S-algebras A in any
slice Zar(S)/T . If such an algebra is finitely presented from the internal point of
view, then there is a covering T =

⋃
i Ti such that each of the restrictions of the

algebra to the schemes Ti is of the form (A0)
Zar for some finitely presented OTi

-
algebra A0. Without loss of generality, we will just assume that A itself is of the
form (A0)

Zar for a finitely presented OS-algebra A0.
By Proposition 18.8, the interpretation JSpec(A)K of the internal spectrum is the

functor of points of SpecS A0. For any S-scheme f : T → S contained in the site
used to define Zar(S), we consider the fiber product

SpecT (f
∗A0)

f ′
//

p′

��

SpecS A0

p

��
T

f
// S.

Since SpecT (f
∗A0) → S is contained in the site (for any of our admissible sites),

we may conclude using the following chain of isomorphisms:

[Spec(A), E](T ) ∼= HomZar(S)(T , [Spec(A), E]) ∼= HomZar(S)(T × Spec(A), E)

∼= HomZar(S)(T ×S SpecS A0, E) ∼= E(SpecT (f
∗A0))

∼= Γ(SpecT (f
∗A0), (p

′)∗f∗E0) ∼= Γ(T, (p′)∗(p
′)∗f∗E0)

∼= Γ(T, f∗E0 ⊗OT
f∗A0) ∼= (E0 ⊗OS

A0)
Zar)(T )

∼= ((E0)Zar ⊗A1
S
(A0)

Zar)(T ) ∼= (E ⊗A1
S
A)(T ).

The antepenultimate isomorphism is because pullback of modules in Sh(S) to
modules in Sh(T ) commutes with tensor product. The penultimate isomorphism
is because pullback of a sheaf in Sh(S) to a sheaf in Zar(S) commutes with tensor
product (Lemma 16.6).

For the converse direction, we first verify that the restriction E|Sh(T ) to the
little Zariski topos of any S-scheme T contained in the site used to define Zar(S) is
a quasicoherent OT -module. For this, we employ the quasicoherence criterion of
Theorem 8.3: For any open affine subset T ′ ⊆ T and any function h ∈ Γ(T ′,OT ) we
verify that the canonical morphism

E|Sh(T )[h
−1] −→ j∗(E|Sh(D(h))) (†)

is an isomorphism, where j : D(h) ↪→ T ′ denotes the inclusion. This follows from the
assumption of synthetic quasicoherence by considering the A1

S-algebra A := A1
S [h

−1]
(in the slice Zar(S)/T ′): This expresses that the canonical morphism

E ⊗A1
S
A1
S [h

−1] −→ [Spec(A), E] (‡)

is an isomorphism (of A1
S-modules in Zar(S)/T ′). Restricting the domain to Sh(T ′)

yields the sheaf E|Sh(T ′) ⊗OT ′ OT ′ [h−1], since restricting commutes with the geo-
metric constructions “forming the tensor product” and “localizing away from h”.
Since Spec(A) is the functor of points of D(h), restricting the codomain to Sh(T ′)
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yields the sheaf j∗(E|Sh(D(h))). The canonical morphism (†) which we want to rec-
ognize as an isomorphism is therefore the restriction of the canonical morphism (‡)
which we know to be an isomorphism.

A natural candidate for a quasicoherent OS-module E0 with E ∼= (E0)Zar is E0 :=
E|Sh(S). We’ll show that this candidate indeed fits. Let f : T → S be any S-scheme
contained in the site used to define Zar(S). We assume for the time being that f is
of finite presentation and affine, so T ∼= SpecS A0 for some finitely presented OS-
algebra A0. We want to verify that the canonical morphism

f∗(E|Sh(S)) −→ E|Sh(T ) (§)

is an isomorphism. Since the functor f∗ from quasicoherent OT -modules to quasico-
herent OS-modules reflects isomorphisms (the morphism f being affine) and the
domain and codomain of morphism (§) are quasicoherent, it suffices to verify that
its image under f∗ is an isomorphism. This image is the canonical morphism

E|Sh(S) ⊗OS
A0 −→ f∗(E|Sh(T )).

The assumption of synthetic quasicoherence, applied to the finitely presented A1
S-

algebra A := (A0)
Zar, shows that this morphism is an isomorphism.

In situation (1), the only step left to do is to generalize the argument in the
previous paragraph to morphisms f : T → S which are locally of finite presentation.
This works out because there are open covers of S and T such that the appropriate
restrictions of f are of finite presentation and affine. The assumption of synthetic
quasicoherence then needs to be applied to A1

S-algebras in suitable slices of Zar(S),
showing that the canonical morphism (§) is locally an isomorphism and therefore
globally as well.

In situation (2), we may by Lemma 18.17 assume without loss of generality that S
is affine. We then employ the technique of approximating general S-schemes by S-
schemes of finite presentation. Specifically, let f : T → S be an arbitrary S-scheme
contained in the site used to define Zar(S). Without loss of generality, we may
assume that T is an affine scheme. Thus T is quasicompact and quasiseparated,
and S is quasiseparated since it is affine. We may therefore apply the lemma of
relative approximation [126, Tag 09MV] to deduce that T is a directed limit of an
inverse system of S-schemes fi : Ti → S of finite presentation with affine transition
maps. These S-schemes are contained in the site used to define Zar(S). Furthermore,
they inherit quasicompactness and quasiseparatedness from S. Therefore we can
apply a comparison result on the categories of quasicoherent modules [126, Tag 01Z0]:

E(T ) = E(lim
i
Ti) ∼= colim

i
E(Ti) ∼= colim

i
Γ(Ti, f

∗
i E0) ∼= Γ(T, f∗E0).

In situation (3), we may assume by Lemma 18.17 that E is the cokernel of
a morphism α : (A1

S)
m → (A1

S)
n of A1

S-modules. This morphism induces a
morphism α|Sh(S) : OmS → OnS of OS-modules. One can then check that E is

canonically isomorphic to (cok(α|Sh(S)))Zar, by using that the restriction func-

tors ModZar(S)(A1
S)→ ModSh(X)(OX) are jointly conservative and right exact. □

Scholium 18.20. Let E ∈ Zar(S) be a quasicoherent A1
S-module. Let A ∈ Zar(S)

be a quasicoherent A1
S-algebra such that JSpec(A)K ∈ Zar(S) is representable by an

object of the site used to define Zar(S). Then the canonical morphism

E ⊗A1
S
A −→ [Spec(A), E]

is an isomorphism.

Proof. The second paragraph of the proof of Theorem 18.19 applies. □

https://stacks.math.columbia.edu/tag/09MV
https://stacks.math.columbia.edu/tag/01Z0
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Remark 18.21. As noted in Remark 18.10 in a slightly different context, the
condition in Scholium 18.20 that Spec(A) is representable by an object of the site is
unnatural from a topos-theoretic point of view and should be weakened to require
only local representability.

However, the condition can’t be dropped completely. For instance, if we employ
the parsimonious sites and consider S = SpecZ, E = A1

S , and A = (KS)Zar
(where KS is the sheaf of rational functions on S, which in this case is the constant
sheaf Q), then JSpec(A)K is the functor of points of the Z-scheme Spec(Q). By
Proposition 11.19, this functor coincides with the functor of points of the empty Z-
scheme on the parsimonious sites; therefore Spec(A) = ∅ from the internal point of
view. Thus the codomain of the canonical morphism is the zero algebra, but the
domain is not.

The internal quasicoherence condition for the little Zariski topos (Theorem 8.3)
is related to the notion of synthetic quasicoherence as follows. Recall that an OS-
module E0 is quasicoherent if and only if, from the internal point of view of Sh(S), the
localized module E0[f−1] is a sheaf with respect to the modal operator (⌜f inv.⌝⇒
) for any function f :OS . The sublocale associated with this modal operator is

the open sublocale j : Spec(OS [f−1]|OS) ↪→ pt. The condition can therefore also
be put in the form

Sh(S) |= ∀f :OS . ⌜E0[f−1] −→ j∗j
−1(E0[f−1]) is bijective⌝.

One can verify that the functor j∗ ◦ j−1 is canonically isomorphic to the func-
tor [J⌜f inv.⌝K, ], hence to the functor [Spec(OS [f−1]), ]. Since E0[f−1] ∼=
E0 ⊗OS

OS [f−1], the condition can therefore also be put in the form

Sh(S) |= ∀f :OS . E0 ⊗OS
OS [f−1] −→ [Spec(OS [f−1]), E0].

The synthetic quasicoherence condition therefore implies the condition which char-
acterizes quasicoherence in the little Zariski topos as a special case.

Lemma 18.22. Let J ↪→ A1
S be an ideal such that A1

S/J is of the form (E0)Zar for
an OS-module E0. Let I be the kernel of the epimorphism OS ↠ E0 induced by the
quotient morphism A1

S → A1
S/J . Then, for any S-scheme (f : X → S) contained in

the site used to define Zar(S), there is a canonical isomorphism

im(f∗I → OX) ∼= J |Sh(X).

Proof. The short exact sequence 0→ J → A1
S → A1

S/J → 0 of A1
S-modules in Zar(S)

remains exact when restricted to Sh(X), since restricting to Sh(X) is taking the
inverse image along a geometric morphism. Hence the sequence 0 → J |Sh(X) →
OX → f∗E0 → 0 is exact. On the other hand, the short exact sequence 0→ I →
OS → E0 → 0 yields the short exact sequence 0 → im(f∗I → OX) → OX →
f∗E0 → 0. □

Remark 18.23. The quotient A1
S/

√
(0) in Zar(S) is an example for a sheaf of mod-

ules which is not quasicoherent even though all of its restrictions to the little Zariski
toposes Sh(X) for morphisms f : X → S are: Since taking the quotient and taking

the radical of an ideal are geometric constructions, we have (A1
S/

√
(0))|Sh(X)

∼=
OX/

√
(0). These sheaves of modules are quasicoherent (Example 8.7). However,

in general, f∗(OS/
√
(0)) ̸∼= OX/

√
(0). A specific counterexample is S = Spec(k)

and X = Spec(k[T ]/(T 2)). In this case f∗(OS/
√

(0)) ∼= f∗(OS) ∼= OX ̸∼= OX/
√

(0).

Caveat 18.24. The kernel of a morphism of quasicoherent A1
S-modules, computed

in the category of all A1
S-modules, is in general not quasicoherent. This fact is

evident from Lemma 18.22. In the notation of that lemma, the A1
S-module J is in
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general not quasicoherent, since if it was, the restriction J |Sh(X) would be canonically
isomorphic to f∗I.

The category of quasicoherent A1
S-modules possesses kernels, since it is equivalent

to the category of quasicoherent OS-modules by Proposition 18.3, but the inclusion
from quasicoherent A1

S-modules to arbitrary A1
S-modules does not preserve them.

Lemma 18.25. Let Zar(S) be defined using one of the parsimonious sites. Then
tensor products of synthetically quasicoherent modules and cokernels of morphisms
between synthetically quasicoherent modules are synthetically quasicoherent from the
internal point of view of Zar(S).

Proof. By Theorem 18.19 and the description of the slice toposes of Zar(S) given in
Section 16.3, the first claim reduces to the fact that the tensor product of quasicoher-
ent A1

S-modules is quasicoherent. Indeed, the tensor product of (E0)Zar with (F0)
Zar

is (E0 ⊗OS
F0)

Zar by Lemma 16.6 and the tensor product of quasicoherent OS-
modules is quasicoherent.

The second claim reduces to the statement that the cokernel of a morphism α :
(E0)Zar → (F0)

Zar, calculated in the category of A1
S-modules, coincides with (cok(α|Sh(S)))∼

and that the cokernel of a morphism of quasicoherent OS-modules is quasicoher-
ent. □

It’s somewhat embarassing that we didn’t give an internal proof of Lemma 18.25.
Also we don’t know whether the result holds when using one of the larger sites
(the given proof doesn’t generalize to this situation since Theorem 18.19 can’t be
applied). We expand on this in Section 22.

Lemma 18.26. Let A and B be A1
S-algebras. The canonical map

HomAlg(A1
S)(A,B) −→ HomZar(S)(JSpec(B)K, JSpec(A)K)

is bijective in the following situations:

(1) The algebra B is finitely presented.
(2) The algebra B is quasicoherent and the functor JSpec(B)K ∈ Zar(S) is locally

representable by an object of the site used to define Zar(S). (This situation
subsumes the previous one.)

Proof. By Scholium 18.20, the canonical morphism B → [Spec(B),A1
S ] is an isomor-

phism. Hence the claim follows by the following entirely formal calculation:

Hom(JSpec(B)K, JSpec(A)K)

= Hom([B,A1
S ]Alg(A1

S), [A,A1
S ]Alg(A1

S))

∼= Hom([B,A1
S ]Alg(A1

S) ×A,A1
S)A1

S-homomorphism in the second argument

∼= HomAlg(A1
S)(A, [[B,A1

S ]Alg(A1
S),A1

S ])

∼= HomAlg(A1
S)(A, [JSpec(B)K,A1

S ])

∼= HomAlg(A1
S)(A,B). □

It’s a basic fact that for an OS-algebra A0, the canonical map

HomAlg(OS)(A0, f∗OX) −→ HomLRL/S(X,SpecS(A0))

is bijective for any S-scheme (f : X → S). One should not expect that the similar
statement that for an A1

S-algebra A, the canonical map

HomAlg(A1
S)(A, [X,A1

S ]) −→ HomZar(S)(X, JSpec(A)K)

is bijective for arbitrary functors X ∈ Zar(S) is bijective, holds. This is because the
objects of Zar(S) are quite a bit more general than locally ringed spaces (or locales)
over S.
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18.4. Properties of the affine line. The ring object A1
S in the big Zariski topos

enjoys several special properties, some of which are unique in that they’re only
possible in an intuitionistic context. We compile here a short list of such properties.
As was already mentioned, at least one of them, the field property, was already
noticed in the 1970s by Kock [82].

The statements and proofs in this subsection are formulated in the internal
language. The proofs only use the fact that A1

S is a synthetically quasicoherent local
ring. This supports the meta-claim that synthetic quasicoherence is a strong and
meaningful condition.

Proposition 18.27. A1
S is a field in the sense that any element which is not zero

is invertible: ∀x :A1
S . ¬(x = 0)⇒ ⌜x inv.⌝. More generally, for any number n ≥ 0,

∀x1, . . . , xn :A1
S . ¬(x1 = 0 ∧ · · · ∧ xn = 0) =⇒

(⌜x1 inv.⌝ ∨ · · · ∨ ⌜xn inv.⌝).

Proof. Let x :A1
S be such that ¬(x = 0). We consider the quasicoherence condition

for the finitely presented A1
S-algebra A := A1

S/(x). Since Spec(A) ∼= Jx = 0K =
J⊥K = ∅, the condition posits that the canonical homomorphism

A1
S/(x) −→ [∅,A1

S ]

is an isomorphism. Since its codomain is the zero algebra, so is A1
S/(x). Therefore 1 ∈

(x), that is, x is invertible.
The more general statement follows in the same way, by using the quasicoherence

condition for A := A1
S/(x1, . . . , xn). This yields 1 ∈ (x1, . . . , xn). Since A1

S is a local
ring, one of the xi is invertible. □

Proposition 18.28. A1
S is not a reduced ring:

¬
(
∀x :A1

S .
(∨
n≥0

xn = 0
)
⇒ x = 0

)
.

Proof. Assume that A1
S is reduced. Then the set ∆ := {ε ∈ A1

S | ε2 = 0} is
equal to {0}. By the quasicoherence criterion applied to the finitely presented A1

S-
algebra A := A1

S [T ]/(T
2), the canonical map

A1
S [T ]/(T

2) −→ [Spec(A1
S [T ]/(T

2)),A1
S ]
∼= [∆,A1

S ]

is an isomorphism. It maps [T ] to zero (the value of T at 0 ∈ ∆). Thus T ∈ (T 2)
and therefore 1 = 0 in A1

S . This is a contradiction. □

In classical logic, Proposition 18.27 and Proposition 18.28 would directly con-
tradict each other; only an intuitionistic context allows for fields which are not
reduced.

That A1
S is not reduced, irrespective of the reducedness of the base scheme S,

should not come as a surprise: Reducedness is not stable under base change, but
all statements of the internal language of Zar(S) are. If A1

S was reduced, then
all S-schemes (at least those contained in the site used to construct Zar(S)) would
be reduced as well. In contrast, the structure sheaf OS is reduced from the point of
view of the little Zariski topos if and only if S is reduced (Proposition 3.3).

Proposition 18.29. The following statements about an element x :A1
S are equiva-

lent:

(1) x is not invertible.
(2) x is nilpotent.
(3) x is not not zero.
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Proof. Let x :A1
S be not invertible. We consider the quasicoherence condition for

the finitely presented A1
S-algebra A := A1

S [x
−1]. Since Spec(A) ∼= J⌜x inv.⌝K = ∅,

it follows that A1
S [x

−1] = 0, similarly to the proof of Proposition 18.27. Thus x is
nilpotent.

Let x :A1
S be a nilpotent element. Thus xn = 0 for some number n ≥ 0. If x

was nonzero, then x and therefore xn would be invertible, in contradiction to 0 ̸= 1
since A1

S is a local ring.
Let x :A1

S be not not zero. Then x is not invertible, since if x was invertible,
then x would be nonzero. □

Summarizing, the following facts about nilpotents hold in the internal universe
of the big Zariski topos. Firstly, it’s not true that A1

S is reduced. But this doesn’t
mean that there actually exist nilpotent elements which are not zero. In fact, any
nilpotent is not not zero.

Proposition 18.30. Any function A1
S → A1

S is given by a unique polynomial
in A1

S [T ].

Proof. Immediate by considering the quasicoherence condition for the finitely pre-
sented A1

S-algebra A := A1
S [T ] and noticing that Spec(A) ∼= A1

S . □

This statement too cannot be satisfied in classical logic: for infinite fields the
existence part fails and for finite fields the uniqueness part fails.

In synthetic differential geometry, the axiom of microaffinity is central to the
theory. It is fulfilled by the image of R1 in any well-adapted model of synthetic
differential geometry, and also by A1

S ∈ Zar(S). This fact is well-known; we include
the proof only to show that it is a consequence of synthetic quasicoherence.

Proposition 18.31. A1
S fulfills the axiom of microaffinity: Let ∆ = {ε :A1

S | ε2 = 0}.
Let f : ∆→ A1

S be an arbitrary function. Then there are unique elements a, b :A1
S

such that f(ε) = a+ bε for all ε : ∆.

Proof. Immediate from the definition of synthetic quasicoherence, considering the
finitely presented A1

S-algebra A1
S [T ]/(T

2). □

Proposition 18.32. A1
S is anonymously algebraically closed, in the following sense:

Any monic polynomial p :A1
S [T ] of degree at least one does not not have a zero.

Proof. Let p :A1
S [T ] be a monic polynomial of degree at least one. Assume that p

doesn’t have a zero in A1
S . Then the spectrum of A := A1

S [T ]/(p) is empty. The
quasicoherence condition for A therefore implies that A1

S [T ]/(p) is zero. This means
that p is invertible in A1

S [T ]. A basic lemma in commutative algebra (whose standard
proof is constructive) then implies that with the exception of the constant term
in p, all coefficients are nilpotent. This contradicts the assumption that p is monic
of degree at least one. □

Proposition 18.33. A1
S is infinite in the following sense: For any number n ≥ 0

and any given elements x1, . . . , xn :A1
S, there is not not an element y which is

distinct from all of the xi.

Proof. The polynomial f(T ) := (T − x1) · · · (T − xn) + 1 does not not have a
zero y :A1

S , since A
1
S is anonymously algebraically closed. This element cannot equal

any of the elements xi, since f(xi) = 1 is not zero. □

Proposition 18.34. A1
S fulfills the following version of the Nullstellensatz: Let

f1, . . . , fm ∈ A1
S [X1, . . . , Xn] be polynomials without a common zero in (A1

S)
n. Then

there are polynomials g1, . . . , gm ∈ A1
S [X1, . . . , Xn] such that

∑
i gifi = 1.
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Proof. We consider the quasicoherence condition for the finitely presented A1
S-

algebra A := A1
S [X1, . . . , Xn]/(f1, . . . , fm). Since Spec(A) ∼= {x ∈ (A1

S)
n | f1(x) =

. . . = fm(x) = 0} = ∅, the condition implies that A is the zero algebra just as in the
verification of Proposition 18.27. □

Remark 18.35. The Krull dimension of the ring OS of the little Zariski topos
coincides with the dimension of S (Proposition 3.13). The analogous statement
for A1

S in the big Zariski topos is false. Unless S is the empty scheme, the internal
statement

Zar(S) |= ⌜A1
S is of Krull dimension ≤ n⌝

is false for any natural number n ≥ 0: Since the property of having Krull dimension ≤
n is a geometric implication, this statement would imply that for any S-scheme X
(contained in the site used to define Zar(S)) the ring OX in Sh(X) is of Krull
dimension ≤ n.

The ring A1
S in Zar(S) is therefore an example for a ring of infinite Krull dimension

which nevertheless fulfills a field condition. A ring in the big Zariski topos which
does reflect the dimension of S is ♭A1

S . The scheme S is of dimension ≤ n if and
only if ♭A1

S is of Krull dimension ≤ n from the internal point of view of Zar(S).

19. Basic constructions of relative scheme theory

With A1
S at hand, we can perform many of the usual constructions of (relative)

scheme theory internally.

19.1. Group schemes. The functors associated to the standard group schemes Ga,
Gm, GLn, and µn are given by the internal expressions

Ga := A1
S (as an additive group),

Gm := {x :A1
S | ⌜x inv.⌝},

GLn := {M : (A1
S)
n×n | ⌜M inv.⌝},

µn := {x :A1
S |xn = 1}.

19.2. Affine and projective space. Affine n-space over S is given by (A1
S)
n,

i. e. internally the set of n-tuples of elements of A1
S . The functor of points of

projective n-space over X, with all its nontrivial topological and ring-theoretical
structure, is described by the naive expression

Pn := {(x0, . . . , xn) : (A1
S)
n+1 |x0 ̸= 0 ∨ · · · ∨ xn ̸= 0}/∼,

where the equivalence relation is the usual rescaling relation from the internal point
of view. This example was suggested by Zhen Lin Low (private communication).

More generally, for an S-scheme X, affine and projective n-space over X are
given by X × (A1

S)
n and X × Pn, respectively.

19.3. Tangent bundle. For an S-scheme X, the internal Hom [∆, X] ∈ Zar(S)
describes the tangent bundle of X, i. e. the S-scheme SpecX Sym(Ω1

X/S)→ X → S,

as can be seen by chasing the definitions [28, Lemma 5.12.1]. Intuitively, a map f :
∆→ X from the internal point of view is given by slightly more data than merely
the point f(0); one also has to specify first-order information.

This description of the (not necessarily locally trivial) tangent bundle fits nicely
with the intuition of tangent vectors as infinitesimal curves, and in fact is precisely
the definition of the tangent bundle in synthetic differential geometry [81, Def. 7.1].
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19.4. The tilde construction. Let A be an A1
S-algebra. If the functor JSpec(A)K

is representable by a scheme contained in the site used to define Zar(S), then Sec-
tion 16.3 described the big Zariski topos of that scheme as the slice topos Zar(S)/ Spec(A).
From the point of view of Zar(S), this topos looks like “Set/ Spec(A)”, the topos
of Spec(A)-indexed families of sets.

In this picture, the three functors f! ⊣ f−1 ⊣ f∗ relating Zar(S) and Zar(S)/ Spec(A)
look as follows. We set X := Spec(A).

(1) The functor f! maps a family (Mx)x:X to its dependent sum
∐
x:XMx, the

“total space” of the family.
(2) The functor f−1 maps a set N to the constant family (N)x:X .
(3) The functor f∗ maps a family (Mx)x :X to its dependent product, the

set
∏
x:XMx of sections of the projection (

∐
x:XMx)→ X.

The affine line over X is the constant family A1
X = (A1

S)x:X .
We can canonically associate an A1

X -module E∼ to a given A-module E. This
module lives in the topos Set/X, so is anX-indexed family of A1

S-modules. Explicitly,
it is the family

E∼ := (E ⊗A A1
S)x:X ,

where for the tensor product in the component x :X the ring A1
S is regarded as

an A-algebra by the A1
S-homomorphism x : A→ A1

S . To render the dependence of
the tensor product on x explicit, we use the familiar notation E(x) := E ⊗A A1

S to
denote the fiber of E over x.

Conversely, given an A1
X -module F = (Fx)x:X , there is a canonically associated A-

module given by calculating the dependent product. In analogy with the classical
situation, we write

Γ(X,F ) :=
∏
x:X

Fx

for this module.
A morphism F → F ′ of A1

X -modules is an X-indexed family (Fx → F ′
x)x:X of

morphism of A1
S-modules.

Proposition 19.1. The functor ( )∼ : Mod(A)→ Mod(A1
X) is left adjoint to the

functor Γ(X, ) : Mod(A1
X)→ Mod(A).

Proof. For anA-module E and an A1
X -module F , the required bijection HomA1

X
(E∼, F ) ∼=

HomA(E,Γ(X,F)) is given by

(αx : E(x)→ Fx)x:X 7−→ (v 7→ (αx([v ⊗ 1]))x:X)

with inverse given by

(v ⊗ f 7→ f · β(v)x)←− [ β. □

It’s fruitful to study the unit of the adjunction ( )∼ ⊣ Γ(X, ) in more detail.

Definition 19.2. An A-module E has cohesive fibers if and only if the canonical
linear map E →

∏
x:X E(x) is a bijection.

Ordinary modules in classical logic almost never have cohesive fibers. Intuitively,
the law of excluded middle allows to define “discontinuous” elements of

∏
x:X E(x).

These can’t be induced from elements v :E, whose values [v⊗ 1] :E(x) always “vary
continuously” in x :X. In particular, the trivial A-module A won’t have cohesive
fibers in a classical context, since A might not be a product of copies of the base
ring.

However, in the intuitionistic context of the internal language of the big Zariski
topos, the law of excluded middle is not available to define discontinuous families of
values. And indeed, we have the following proposition.
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Proposition 19.3. Assume that there is a quasicoherent OS-algebra A0 such
that A = AZar

0 . Further assume that JSpec(A)K is locally representable by an object
of the site used to define Zar(S). Let E0 be a quasicoherent A0-module. Then (E0)Zar
has cohesive fibers from the internal point of view of Zar(S).

Proof. This just reflects the fact that the canonical morphism E0 → f∗((E0)∼),
where f : SpecS(A0) → S is the structure morphism of the relative spectrum
and (E0)∼ is the result of applying the (ordinary) relative tilde construction to E0,
is an isomorphism [126, Tag 01SB]. □

Corollary 19.4. Let Zar(S) be defined using one of the parsimonious sites. Assume
that A is a finitely presented A1

S-algebra. Then the following statements hold from
the internal point of view of Zar(S).

(1) The algebra A satisfies the following “higher-typed” version of the synthetic
quasicoherence condition: Any A-module which is synthetically quasicoherent
as an A1

S-module (for instance because it is finitely presented) has cohesive
fibers.

(2) For any A1
X-module F = (Fx)x:X such that Fx is a synthetically quasico-

herent A1
S-module for all x :X, the canonical map Γ(X,F )∼ → F is an

isomorphism.

Proof. The first claim is immediate from Proposition 19.3 and Theorem 18.19. The
second claim is an internal rendition of [126, Tag 01SB]. □

Remark 19.5. Since the internal language of Set/ Spec(A) is just ordinary language
applied to all fibers, the following properties of an A1

X -module F = (Fx)x:X are
equivalent:

(1) For any x :X, the A1
S-module Fx is synthetically quasicoherent.

(2) From the point of view of Set/ Spec(A), the A1
X -module F is synthetically

quasicoherent.

We believe that the condition that A is synthetically quasicoherent is not strong
enough to allow an internal proof of Corollary 19.4. The conclusion of Corollary 19.4
seems quite natural from a synthetic point of view; we therefore propose to adopt it
as an axiom for synthetic algebraic geometry.

19.5. Open immersions. A basic concept in the functor-of-points approach to
algebraic geometry is the concept of an open subfunctor. It is used to delimit schemes
from more general kinds of spaces: A functor is deemed to be a scheme if and only
if it admits a covering by open subfunctors which are representable.

The following definition is phrased in such a way as to apply to any of the
several ways to define the big Zariski topos Zar(S). In particular, it applies to
the definition using the site consisting of affine schemes which are locally of finite
presentation over S. If S is affine, the definition only refers to affine schemes and
open subschemes of affine schemes and is therefore suitable if one wants to found
the theory of schemes using the functorial approach.

Definition 19.6 ([47, Définition I.1.3.6 on page 10], [126, Tag 01JI]). A subfunc-
tor U ↪→ X in Zar(S) is an open subfunctor if and only if for any object (T → S)
of the site used to define Zar(S) and any x ∈ X(T ) there exists an open sub-

scheme T0 ⊆ T such that for any object (T ′ f−→ T → S) of the site used to
define Zar(S) the map T ′ → T factors over T0 if and only if X(f)(x) ∈ U(T ′).

The open subschemes T0 ⊆ T appearing in this definition are uniquely determined
by their universal property. The relation of open subfunctors to open immersions is
as follows.

https://stacks.math.columbia.edu/tag/01SB
https://stacks.math.columbia.edu/tag/01SB
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Proposition 19.7. Let X be an S-scheme.

(1) Let U ⊆ X be an open subscheme. Then the subfunctor U ↪→ X is open.
(2) If X is locally representable by an object of the site used to define Zar(S),

any open subfunctor U ↪→ X is isomorphic to the open subfunctor associated
to an open subscheme of X.

Proof. For the first claim, let (T → S) be an object of the site used to define Zar(S)
and let x ∈ X(T ). The open subscheme T0 ⊆ T required by the definition of an
open subfunctor can then be chosen as x−1[U ].

For the second claim, assuming for notational simplicity that X is directly
representable without having to pass to a cover, the desired open subscheme of X
can be obtained as the witnessing subscheme “T0” as it appears in the definition of
an open subfunctor in the special case (T → S) := (X → S). □

From the point of view of the internal language of Zar(S), a subfunctor U ↪→ X
looks like the inclusion of a subset. The natural question how one can characterize
those inclusions which externally correspond to open subfunctors is answered as
follows.

Definition 19.8. In the context of a specified local ring R, as for instance A1
S of

the big Zariski topos of a scheme, a truth value φ is open if and only if there exists
an ideal J ⊆ R such that R/J is synthetically quasicoherent (Definition 18.18) and
such that φ holds if and only if 1 ∈ J . (Section 6.1 contains generalities on truth
values.)

Example 19.9. Let f :R. Then “f is invertible” is an open truth value with
witnessing ideal J = (f). The quotient R/J is indeed synthetically quasicoherent,
since it is finitely presented. More generally, let f1, . . . , fn :R. Then “one of the fi
is invertible” is an open truth value with witnessing ideal J = (f1, . . . , fn).

In case that R fulfills the same field condition as A1
S does, one can write this

truth value also as “f1 ̸= 0 ∨ · · · ∨ fn ̸= 0”.

Definition 19.10. In the context of a specified local ring, a map U → X of sets is
a synthetic open immersion if and only if it is injective and for any x :X the truth
value of “the fiber of x is inhabited” is open.

Example 19.11. The inclusion R× ↪→ R of the invertible elements is a synthetic
open immersion, since for x :R the truth value of “the fiber of x is inhabited” equals
the truth value of “x is invertible”.

Example 19.12. Let X be a set. Let f : X → R be a function. The inclu-
sion {x :X | f(x) is invertible} ↪→ X is a synthetic open immersion.

Proposition 19.13. Let X ∈ Zar(S) be a Zariski sheaf. If a subfunctor U ↪→ X is
open, then the map U ↪→ X is a synthetic open immersion from the internal point
of view of Zar(S), that is

Zar(S) |= ∀x :X. ∃J ⊆ A1
S .

⌜J is an ideal⌝ ∧ ⌜A1
S/J is synth. quasicoherent⌝ ∧ (x ∈ U ⇔ 1 ∈ J).

The converse holds if one of the parsimonious sites is used to define Zar(S) or if
the ideals J are required to be finitely generated from the internal point of view.

We postpone the proof of this proposition in order to give a bit of context first.
Firstly, the displayed condition is only meaningful in an intuitionistic context

as provided by the big Zariski topos. In classical logic, the condition would be
trivially satisfied for any subfunctor U ↪→ X: Classically, we have (x ∈ U)∨ (x ̸∈ U).
If x ∈ U , we can pick J = (1), and if x ̸∈ U , we can pick J = (0) (whereby
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the quotient A1
S/J is isomorphic to A1

S , thus finitely presented and therefore in
particular synthetically quasicoherent).43

Proposition 19.13 is often used in the following form, which is weaker because it
only gives one direction, but which is applicable for any of our choices for the site
used to define Zar(S).

Corollary 19.14. Let X ∈ Zar(S) be a Zariski sheaf. Let U ↪→ X be a subfunctor.
If

Zar(S) |= ∀x :X.
∨
n≥0

∃f1, . . . , fn :A1
S . (x ∈ U ⇔

∨
i

⌜fi inv.⌝),

then the subfunctor is open.

Proof. We show that the assumption implies the displayed condition of Proposi-
tion 19.13 in the internal language. Given elements f1, . . . , fn as in the assumption,
we construct the ideal J := (f1, . . . , fn) ⊆ A1

S . The quotient A1
S/J is finitely pre-

sented, hence synthetically quasicoherent, and the statement that 1 ∈ J is equivalent
to one of the fi being invertible by locality of A1

S . □

The internal condition appearing in Corollary 19.14 reflects basic intuition about
openness in algebraic geometry: Intuitively, a subset is open if it is given by
inequations, so that to decide whether a point belongs to the subset one has to
check that at least one of some numbers is not zero.

Of course, in classical scheme theory, one would put some condition on these
numbers in order not to trivialize the notion. For instance, one would require that
they depend continuously on the point in some sense or, more specifically, that
these numbers are given by evaluating certain locally defined regular functions at
the point.

On first sight, such a condition seems to be lacking in Corollary 19.14. However,
it’s implicitly built into the language, since by the Kripke–Joyal semantics the
external meaning of “∃f :A1

S” is that there exist, locally on an open cover, suitable
elements of A1

S(T ), that is regular functions on T .
It’s useful to give a name for the kind of the subfunctors appearing in Corol-

lary 19.14.

Definition 19.15. • A subfunctor U ↪→ X in Zar(S) is a quasicompact
open subfunctor if and only if for any object (T → S) of the site used to
define Zar(S) and any x ∈ X(T ) there exists an open subscheme T0 ⊆ T
such that the open immersion T0 ↪→ T is quasicompact and such that for

any object (T ′ f−→ T → S) of the site used to define Zar(S) the map T ′ → T
factors over T0 if and only if X(f)(x) ∈ U(T ′).
• In the context of a specified local ring, a truth value φ is quasicompact open

if and only if there exists a finitely generated ideal J ⊆ R such that φ holds
if and only if 1 ∈ J .
• In the context of a specified local ring, a map U → X of sets is a synthetic
quasicompact open immersion if and only if it is injective and for any x :X
the truth value of “the fiber of x is inhabited” is quasicompact open.

Proof of Proposition 19.13. We begin with the “only if” direction. Let T be an S-
scheme contained in the site used to define Zar(S) and let x ∈ X(T ). By assumption

there is an open subscheme T0 ⊆ T such that, for any object (T ′ f−→ T → S) of the
site the morphism f factors over T0 if and only if X(f)(x) ∈ U(T ′).

43Strictly speaking, incompatibility with classical logic surfaces even earlier: in our synthetic

quasicoherence condition. The map E ⊗A1
S
A→ [Spec(A), E] which the condition demands to be

bijective has hardly any chance to be surjective if the law of excluded middle is available to define

maps Spec(A) → E by case distinction.
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There is a quasicoherent sheaf I of ideals on T such that T0 = D(I). We
set J := im(IZar → A1

T ). Then the quotient module A1
T /J coincides with (OT /I)Zar

and is therefore quasicoherent, hence synthetically quasicoherent from the internal
point of view of Zar(T ) by Theorem 18.19.

To verify that T |= (x ∈ U ⇔ 1 ∈ J), let an object (T ′ f−→ T → S) of the site be
given. Then we have the chain of equivalences

X(f)(x) ∈ U(T ′)

⇐⇒ T ′ → T factors over T0

⇐⇒ T ′ |= 1 ∈ im(f∗I → OT ′)

⇐⇒ T ′ |= 1 ∈ J,
where the last step follows by Lemma 18.22.

For the converse direction, let T be an S-scheme contained in the site and let x ∈
X(T ). By assumption there is an open covering T =

⋃
i Vi and ideals Ji ∈ Zar(Vi)

such that A1
Vi
/Ji is synthetically quasicoherent and such that Vi |= (x ∈ U ⇔ 1 ∈ Ji).

By Theorem 18.19, there are quasicoherent modules Ei over Vi such that A1
Vi
/Ji ∼=

(Ei)Zar. We set Ii := ker(OVi
→ Ei). One can check that D(Ii) ∩ Vj = D(Ij) ∩ Vi

for all i and j. We set T0 :=
⋃
iD(Ii).

To verify that this construction satisfies what is expected of it, let (T ′ f−→ T → S)
be an object of the site. We then have the following chain of equivalences:

T ′ → T factors over T0

⇐⇒ for all i, fi : f
−1Vi → Vi factors over D(Ii)

⇐⇒ for all i, f−1Vi |= 1 ∈ im(f∗i Ii → Of−1Vi
)

⋆⇐⇒ for all i, f−1Vi |= 1 ∈ Ji
⇐⇒ for all i, f−1Vi |= x ∈ U
⇐⇒ T ′ |= x ∈ U
⇐⇒ X(f)(x) ∈ U(T ′)

For this calculation, it’s not important that the ideals Ii are quasicoherent. The
assumption that the quotient modules A1

Vi
/Ji are quasicoherent is only needed to

ensure that Lemma 18.22 can be applied in the marked step. □

Proposition 19.16. Let X ∈ Zar(S) be a Zariski sheaf. A subfunctor U ↪→ X is
a quasicompact open subfunctor if and only if U ↪→ X is a synthetic quasicompact
open immersion from the internal point of view of Zar(S).

Proof. The proof of Proposition 19.13 can be adapted. □

Lemma 19.17. Finite conjunctions and finite disjunctions of quasicompact open
truth values are quasicompact open. If Zar(S) is defined using one of the parsimonious
sites, then furthermore finite conjunctions and finite disjunctions of open truth values
are open from the internal point of view of Zar(S).

Proof. Let φ and ψ be quasicompact open truth values with witnessing finitely
generated ideals I and J . Because the ring is local, φ ∧ ψ is equivalent to 1 ∈ I · J ,
and φ∨ψ is equivalent to 1 ∈ I+J . The ideals I ·J and I+J are finitely generated.
Therefore φ ∧ ψ and φ ∨ ψ are quasicompact open truth values.

For the case of arbitrary open truth values, we need to verify that A1
S/(I · J)

and A1
S/(I + J) are synthetically quasicoherent if A1

S/I and A1
S/J are. This second

claim from Lemma 18.25, since A1
S/(I + J) ∼= A1

S/I ⊗A1
S
A1
S/J . The first claim

follows from a similar calculation. □
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The notion of open truth values is not unique to our account of synthetic algebraic
geometry. Rather, it’s a concept in the established and more general framework of
synthetic topology [49, 88] which aims to do topology in a synthetic fashion: Any set
should have an intrinsic topology and any map should be automatically continuous
with respect to this intrinsic topology.

This automatic continuity reflects as stability of open subfunctors under pullbacks:

Lemma 19.18. Let f : X → Y be a morphism in Zar(S). Let U ↪→ Y be an
open subfunctor. Then its pullback along f , denoted “f−1U ↪→ X”, is too an open
subfunctor.

Proof. From the internal point of view of Zar(S), the subfunctor f−1U ↪→ X looks
like the inclusion of the preimage f−1[U ] ⊆ X.

So, to verify the claim, let internally an element x :X be given. We are to show
that the truth value of “x ∈ f−1[U ]” is open. This truth value equals the truth
value of “f(x) ∈ U” which is open by assumption, and is therefore open. □

Remark 19.19. In the internal language of toposes used to carry out synthetic
differential geometry, there is the concept of an Penon-open subset [104, Chapitre III]:
A subset U ⊆ X is Penon-open if and only if

∀x ∈ U. ∀y :X. (x ̸= y) ∨ (y ∈ U).

This notion is not useful in synthetic algebraic geometry, since it is much too weak:
Any subset of the one-element set 1 is Penon-open. However, not every subfunctor
of the terminal functor in Zar(S) is an open subfunctor.

In many flavors of synthetic topology, open truth values φ are ¬¬-stable in
that ¬¬φ implies φ. With a small caveat, this is true for open truth values in the
big Zariski topos as well.

Proposition 19.20. Let U ↪→ 1 be a subfunctor in Zar(S) such that Zar(S) |= ¬¬U .
Then in any of the following situations it follows that Zar(S) |= U :

(1) U is a quasicompact open truth value.
(2) U is an arbitrary open truth value and the site used to define Zar(S) is

closed under domains of closed immersions. (This is for instance satisfied
for the sites built using a Grothendieck or a partial universe. It is satisfied
for the parsimonious sites if S is locally Noetherian.)

Proof. We give two proofs, an internal one and an external one, since they employ
different ideas.

Internal proof. Since U is an open truth value, there exists an ideal J ⊆ A1
S such

that A1
S/J is synthetically quasicoherent and such that U holds if and only if 1 ∈ J .

By assumption, the element 1 is not not an element of J ; we want to verify that it’s
actually an element of J .

By Scholium 18.20, the canonical homomorphism

A1
S/J −→ [Spec(A1

S/J),A
1
S ]

is bijective; the assumptions of that scholium are satisfied in either of the two
situations. The set Spec(A1

S/J) is isomorphic to JJ = (0)K. Since ¬¬(1 ∈ J),
we also have ¬(J = (0)). Therefore Spec(A1

S/J) is empty and the codomain
of the displayed isomorphism is the zero algebra. Thus A1

S/J is trivial as well,
showing 1 ∈ J .

External proof. Since U ↪→ 1 is an open subfunctor, there is an open sub-
scheme S0 ⊆ S such that a morphism f : T → S factors over S0 if and only if U(T )
is inhabited. In both situations it’s possible to endow X := S ⊆ S0 with the struc-
ture of a closed subscheme such that X is contained in the site used to define Zar(S).
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By the universal property of S0, we have X |= ¬U . Since Zar(S) |= ¬¬U , it follows
that X is empty. Therefore S0 = S and U is globally inhabited. □

Corollary 19.21. Let γ : ∆ → X be a morphism in Zar(S). Let U ↪→ X be an
open subfunctor such that Zar(S) |= γ(0) ∈ U . Then, in any of the situations in
Proposition 19.20, the morphism γ factors over U .

Proof. We give an internal proof. Let ε ∈ ∆. Then ¬¬(ε = 0). Therefore ¬¬(γ(ε) ∈
U). Since being an element of U is ¬¬-stable, it follows that γ(ε) ∈ U . □

Remark 19.22. Subobjects U ↪→ X for which any morphism γ : ∆ → X
with γ(0) ∈ U factors over U are called “D1-open” in the literature on synthetic
differential geometry [110, p. 60]. Corollary 19.21 shows that open subfunctors
are D1-open.

In ordinary scheme theory, an inclusion of a standard open subset D(f) ↪→ X
is isomorphic to the structure morphism of the relative spectrum SpecX OX [f−1].
Inclusions of more general open subsets can typically not be described using the
relative spectrum construction, the standard example being the inclusion A2

k \{0} ↪→
A2
k whose domain is not affine.
An interesting feature of the internal universe of the big Zariski topos is that it’s

flexible enough to express any open subset as a spectrum. The contradiction is only
apparent since the algebra used for constructing such a spectrum is not in general
quasicoherent.

Proposition 19.23. Let U ↪→ 1 be an open truth value. In any of the situations of
Proposition 19.20, there is a (not necessarily quasicoherent) A1

S-algebra A such that
the inclusion is isomorphic to the morphism Spec(A)→ 1.

Proof. The open truth value U is given by an ideal J ⊆ A1
S such that A1

S/J
is synthetically quasicoherent and such that U holds if and only if 1 ∈ J . We
set A := A1

S [M
−1], where M is the multiplicatively closed subset

M := {f :A1
S | 1 ∈ J ⇒ ⌜f inv.⌝} ⊆ A1

S .

The spectrum of A is inhabited if and only if M ⊆ (A1
S)

×, in which case the unique
element of Spec(A) is the inverse of the localization morphism A1

S → A1
S [M

−1].
Thus Spec(A) is isomorphic to JM ⊆ (A1

S)
×K. Therefore we have to verify that U

holds if and only if M ⊆ (A1
S)

×.
The “only if” direction is trivial.
For the “if” direction, we exploit the ¬¬-stability of U . If ¬U , then ¬(1 ∈ J),

so M = A1
S , and since M ⊆ (A1

S)
× by assumption, it follows that zero is invertible.

This is a contradiction. Thus ¬¬U . □

Remark 19.24. The radical
√
J of the ideal J appearing in Proposition 19.13 is

unique: It is equal to the radical ideal

K := {f :A1
S | ⌜f inv.⌝⇒ (x ∈ U)} ⊆ A1

S .

It’s obvious that J ⊆ K and therefore
√
J ⊆ K. For the converse direction, let f ∈ K

be given. Since A1
S/J is synthetically quasicoherent, the canonical map

(A1
S/J)[f

−1] −→ [Spec(A1
S [f

−1]),A1
S/J ]

is bijective. Since Spec(A1
S [f

−1]) ∼= J⌜f inv.⌝K, the image of 1 is zero: If Spec(A1
S [f

−1])
is inhabited, the element f is invertible and therefore x is an element of U . This
implies that 1 ∈ J . Thereby A1

S/J = 0. By injectivity of the canonical map, the
algebra (A1

S/J)[f
−1] is zero. Therefore fn ∈ J for some natural number n.
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Remark 19.25. In view of the previous remark, one might hope to be able
to simplify the condition in Proposition 19.13 as follows: “For any x :X, the
quotient A1

S/K modulo the ideal K = {f :A1
S | ⌜f inv.⌝⇒ (x ∈ U)} is synthetically

quasicoherent.” However, this doesn’t work out. This statement implies the
condition in the proposition, but the converse direction does not hold, since A1

S/K
∼=

A1
S/
√
J might fail to be synthetically quasicoherent. For instance that’s the case

if U = ∅; then K =
√
(0) by Proposition 18.29. The quotient A1

S/
√

(0) is not
synthetically quasicoherent by Remark 18.23.

Remark 19.26. There is the notion of an open geometric morphism of toposes.
For the big Zariski toposes, this notion is not related to open morphisms or open
immersions between schemes: If X → S is any morphism of schemes, the in-
duced geometric morphism Zar(X)→ Zar(S) is isomorphic to the canonical mor-
phism Zar(S)/X → Zar(S), as detailed in Section 16.3. Geometric morphisms of
the form E/A→ E are always open.

19.6. Closed immersions.

Definition 19.27. In the context of a specified local ring R, as for instance A1
S of

the big Zariski topos of a scheme, a truth value φ is closed if and only if there exists
an ideal J ⊆ R such that R/J is synthetically quasicoherent (Definition 18.18) and
such that φ holds if and only if J = (0).

In other words, a truth value Z ⊆ 1 is closed if and only if Z is isomorphic to the
spectrum of a synthetically quasicoherent quotient algebra of R.

Example 19.28. Let f :R. Then “f = 0” is a closed truth value with witnessing
ideal J = (f). More generally, if f1, . . . , fn :R, the truth value “f1 = · · · = fn = 0”
is closed with witnessing ideal (f1, . . . , fn).

Definition 19.29. In the context of a specified local ring, a map Z → X of sets is
a synthetic closed immersion if and only if it is injective and for any x :X the truth
value of “the fiber of x is inhabited” is closed.

Example 19.30. The inclusion {0} ↪→ R is a synthetic closed immersion. More
generally, for any functions f1, . . . , fm : Rn → R, the inclusion of the set of their
common zeros in Rn is a synthetic closed immersion.

Example 19.31. Let X be a set. Let f : X → R be a function. The inclu-
sion {x :X | f(x) = 0} ↪→ X is a synthetic closed immersion.

Proposition 19.32. Let X be an S-scheme.

(1) Let Z ↪→ X be a closed subscheme. Then the subfunctor Z ↪→ X is a
synthetic closed immersion from the internal point of view of Zar(S).

(2) Assume that X is locally representable by an object of the site used to
define Zar(S). Let Z ↪→ X be a synthetic closed immersion. If the site is
one of the parsimonious sites or if the witnessing ideals for the immersion are
finitely generated from the internal point of view, then Z ↪→ X is isomorphic
to the subfunctor associated to a closed subscheme of X.

Proof. To verify the first claim, let a quasicoherent OX -algebra J0 be given such
that the closed subscheme Z ↪→ X is the vanishing scheme of J0. Following the
translation with the Kripke–Joyal semantics, let f : T → S be an object of the site
used to define Zar(S) and let x ∈ X(T ). We define J := (f∗J0)Zar ∈ Zar(S)/T .
Then T |= ⌜A1

S/J is synthetically quasicoherent⌝ and T |= (x ∈ Z ⇔ J = (0)),
therefore “x ∈ Z” is a closed truth value.

For the converse direction, we may assume that X = S since Zar(S)/X ≃ Zar(X),
as discussed in Section 16.3. We then observe that the problem is local on S, since we
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can glue matching schemes defined over the members of an open covering of S [126,
Tag 01JJ]. We may therefore assume that we are given an A1

S-algebra J such
that A1

S/J is synthetically quasicoherent from the internal point of view and such
that Z = JJ = (0)K. The assumptions ensure that Theorem 18.19 is applicable.
Therefore there is a quasicoherent OS-module E such that A1

S/J
∼= EZar. We

set J := ker(OS ↠ E). Lemma 18.22 then implies that Z is the functor of points of
the S-scheme V (J ). □

Proposition 19.33. Let Zar(S) be defined using a parsimonious site and assume
that S is locally Noetherian. Then the witnessing ideals of closed truth values are
uniquely determined by the truth value.

Proof. We argue internally. Let φ be a closed truth value. Let J ⊆ A1
S be an ideal

such that A1
S/J is synthetically quasicoherent and such that φ holds if and only

if J = (0).
We set K := {f :A1

S |φ ⇒ f = 0}. Then, trivially, J ⊆ K. For the converse
containment relation, let f ∈ K. The canonical homomorphism A1

S/J → [JφK,A1
S ]

is bijective by synthetic quasicoherence of A1
S/J and by Scholium 18.20 (it is

here that we need that S is locally Noetherian – else we can’t ensure that the S-
scheme SpecS((A

1
S/J)|Sh(S)) is locally finitely presented). The image of [f ] is zero,

hence f is an element of J . □

Remark 19.34. Without any assumptions on S or on the site used to define Zar(S),
Proposition 19.33 holds for those closed truth values which admit a finitely generated
witnessing ideal. For those closed truth values, any given finitely generated witnessing
ideals are equal.

Lemma 19.35. If Zar(S) is defined using one of the parsimonious sites, then
finite conjunctions of closed truth values are closed from the internal point of view
of Zar(S).

Proof. We argue internally. Let φ and ψ be closed truth values with witnessing
ideals I and J . Then φ ∧ ψ is equivalent to I + J = (0) and the module A1

S/(I + J)
is synthetically quasicoherent (as in the proof of Lemma 19.17). Hence φ ∧ ψ is a
closed truth value. □

It’s in general not the case that finite disjunctions of closed truth values are
closed, and it’s instructive to see why. The external interpretation of this failure is
the following: Let A ↪→ S and B ↪→ S be closed subschemes. Then the functor of
points of the union A∪B does not coincide with the union of the subfunctors A ↪→ S
and B ↪→ S. An explicit description of the former functor is

(X
f−→ S) 7−→ {⋆ | f factors over A ∪B}

and of the latter is

(X
f−→ S) 7−→ {⋆ | locally on the target, f factors over A or over B}.

The inclusion A ∪B ↪→ S trivially factors over A ∪B, but in general there isn’t an
open covering S =

⋃
i Ui such that for each i, the restriction (A ∪ B) ∩ Ui ↪→ Ui

factors over A ∩ Ui or over B ∩ Ui. For instance, this isn’t the case if S is the affine
plane over a field and A and B are the two axes.

This phenomenon doesn’t happen for open subschemes, which explains why finite
disjunctions of open truth values are open.

Remark 19.36. There is the notion of a closed geometric morphism of toposes. For
an arbitrary topos E and an object A ∈ E , the canonical geometric morphism E/A→

https://stacks.math.columbia.edu/tag/01JJ
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E is closed if and only if

∀U ⊆ A. ∀φ : Ω. A ⊆ (U ∪ {x ∈ A |φ}) =⇒ (A ⊆ U) ∨ φ
from the internal point of view of E . If X → S is a closed morphism of schemes,
then the induced geometric morphism Sh(X) → Sh(S) between the little Zariski
toposes is closed in this sense.

However, the induced geometric morphism Zar(X) → Zar(S) is typically not
closed. For instance, if X → S is the embedding of a closed subset V (f) with f ∈
Γ(S,OS), then the morphism Zar(X) → Zar(S) is isomorphic to Zar(S)/V (f) →
Zar(S), as discussed in Section 16.3. In the special case U := ∅ and φ := Jf = 0K,
the displayed closedness condition simplifies to ⌜f inv.⌝ ∨ (f = 0). This is typically
not true in the internal language of Zar(S). A specific counterexample is given in
Example 6.39.

19.7. Surjective morphisms.

Proposition 19.37. Let f : X → S be an arbitrary S-scheme. Consider the
following statements:

(1) The morphism f is surjective.
(2) From the internal point of view of Zar(S), it’s not the case that X is empty,

that is
Zar(S) |= ¬¬(⌜X is inhabited⌝).

If X is locally contained in the site used to define Zar(S) (for instance, if X is
contained in the universe used to define Zar(S) or if one of the parsimonious sites
is used and X is locally of finite presentation over S), then (1) implies (2). The
converse holds if the site is closed under taking spectra of residue fields or if one of
the parsimonious sites is used and f is quasicompact and quasiseparated.

Proof. The translation of the internal statement using the Kripke–Joyal semantics
is:

For any S-scheme T of the site used to define Zar(S), if X ×S T = ∅ (as
functors of points of T -schemes), then T = ∅.

In the case that the site used to define Zar(S) is closed under taking spectra of
residue fields, this implies that f is surjective as follows. Let s ∈ S be an arbitrary
point. The S-scheme T := Spec(k(s)) is not empty. Therefore the fiber Xs = X×ST
of f over s is not empty.

If one of the parsimonious sites is used to define Zar(S), we can’t apply the
assumption to the S-scheme T = Spec(k(s)) since it might not be locally of finite
presentation over S. We therefore argue as follows. Without loss of generality,
we may assume that S is affine. Writing k(s) as the canonical filtered colimit of
all finitely presented Γ(S,OS)-algebras mapping to k(s) (and then rewriting this
filtered colimit as a directed colimit [3, Theorem 1.5]), we see that Spec(k(s)) is
the directed limit of an inverse system of finitely presented affine S-schemes Ti
with affine transition maps. In particular, the structure morphisms Ti → S are
quasicompact and quasiseparated. By the assumption that the morphism X → S is
quasicompact and quasiseparated as well, the schemes X×S Ti are quasicompact and
quasiseparated (as absolute schemes). Therefore, if Xs = X ×S T = limi(X ×S Ti)
is empty, then so is X ×S Ti for some i [126, Tag 01ZC]. Thus Ti = ∅ and
hence Spec(k(s)) = ∅; this is a contradiction.

For the converse direction, let an S-scheme T contained in the site used to
define Zar(S) be given such that X ×S T = ∅ as functors of points of T -schemes.
The assumption that X is locally contained in the site used to define Zar(S) implies
that X ×S T = ∅ as schemes. Since the base change X ×S T → T of f is surjective,
this implies that T is empty. □

https://stacks.math.columbia.edu/tag/01ZC
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Corollary 19.38. Let p : X → Y be a morphism of S-schemes. Assume that Y is
locally contained in the site used to define Zar(S). Further assume that the site used
to define the big Zariski toposes are closed under taking spectra of residue fields or
that the parsimonious sites are used and that p is quasicompact and quasiseparated.
Consider the following statements:

(1) The morphism p is surjective.
(2) From the internal point of view of Zar(S) all fibers of p are nonempty, that

is

Zar(S) |= ∀y :Y . ¬¬∃x :X. p(x) = y.

If X is locally contained in the site used to define Zar(Y ), then (1) implies (2). The
converse holds if the sites used to define the big Zariski toposes are closed under
taking spectra of residue fields or that the parsimonious sites are used and that p is
quasicompact and quasiseparated.

Proof. Immediate using Proposition 19.37 and the equivalence Zar(Y ) ≃ Zar(S)/Y ,
as explained in Section 16.3. □

Remark 19.39. Combining Proposition 17.1 and Proposition 19.37 yields a proof
of the fact that a quasicompact, quasiseparated, and locally finitely presented
morphism X → S, where S is locally of finite type over a field, is surjective if it is
surjective on closed points.

Remark 19.40. In the case that the parsimonious sites are used, the assumption
in Proposition 19.37 that the morphism f is quasicompact can’t be dropped. For
instance, let k be an algebraically closed field. Then the canonical morphism

X :=
∐
a∈k

Spec(k[X]/(X − a)) −→ Spec(k[X]) =: S

is surjective on closed points. By Proposition 17.1, it’s not the case that X is empty
from the internal point of view of Zar(S). However, the morphism is not surjective.

19.8. Universally injective morphisms.

Proposition 19.41. Let f : X → S be an S-scheme which is locally contained in
the site used to define Zar(S). In the case that the parsimonious sites are used to
define Zar(S), further assume that f is quasicompact and quasiseparated. Then the
following statements are equivalent:

(1) The morphism f is universally injective.
(2) The diagonal morphism X → X ×S X is surjective.
(3) From the internal point of view of Zar(S), any given elements of X are

not not equal, that is

Zar(S) |= ∀x :X. ∀x′ :X. ¬¬(x = x′).

Proof. The equivalence “(1) ⇔ (2)” is well-known [126, Tag 01S4]. The equiva-
lence “(2) ⇔ (3)” is by Corollary 19.38 and the fact that, internally, there is not not
a preimage for any element of X ×X under the diagonal map X → X ×X if and
only if any given elements of X are not not equal. □

Corollary 19.42. Let p : X → Y be a morphisms of S-schemes which are locally
contained in the site used to define Zar(S). In the case that the parsimonious sites
are used to define Zar(S), further assume that f is quasicompact and quasiseparated.
Then the following statements are equivalent:

(1) The morphism p is universally injective.
(2) From the internal point of view of Zar(S), any given elements of any fiber

of p are not not equal.

https://stacks.math.columbia.edu/tag/01S4
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Proof. Immediate using Proposition 19.41 and the equivalence Zar(Y ) ≃ Zar(S)/Y ,
as explained in Section 16.3. □

19.9. Universally closed morphisms.

Definition 19.43. In the context of a specified local ring, a set X is synthetically
closed if and only if, for any synthetic closed immersion Z ↪→ X, there is a closed
truth value φ such that Z is not not inhabited if and only if ¬¬φ.

Example 19.44. Any singleton set is synthetically closed.

Example 19.45. The specified local ring R is typically not synthetically closed.
For let f :R be an element. Then the inclusion Z := {g :R | fg − 1 = 0} ↪→ R is
a synthetic closed immersion. The set Z is not not inhabited if and only if f is
not not invertible if and only if f is invertible (by Proposition 18.27); typically, there
is no closed truth value φ such that ¬¬φ is equivalent to the open truth value “f is
invertible”.

Proposition 19.46. Assume that S is locally Noetherian. Let f : X → S be a
finitely presented morphism. In the situation that one the parsimonious sites is used
to define Zar(S), the following statements are equivalent:

(1) The morphism f has closed image.
(2) The morphism f has universally closed image, that is for any S-scheme T

the image of the induced morphism X ×S T → T is closed.
(3) Zar(S) |= ∃φ : Ω. ⌜φ is a closed truth value⌝∧(¬¬(⌜X inhabited⌝)⇔ ¬¬φ).

Proof. The direction “(2) ⇒ (1)” is trivial, and the direction “(1) ⇒ (2)” is imme-
diate, since the image of X ×S T → T is the preimage of the image of f under the
structure morphism T → S.

For the “(1) ⇒ (3)” direction, we may pick the subfunctor of S induced by the
closed immersion im(f) ↪→ S as the sought truth value. This truth value is closed
by Proposition 19.32 and its double negation is equivalent to ⌜X is inhabited⌝ by
Lemma 17.3.

For the converse direction, we see that, after passing to an open covering of S
which we won’t reflect in the notation, there is a closed subfunctor Z ↪→ 1 such
that Zar(S) |= ¬¬(⌜X inhabited⌝)⇔ ¬¬(⌜Z is inhabited⌝). By Proposition 19.32,
this subfunctor is the functor of points of a closed subscheme of S. Since S is
locally Noetherian, this subscheme is locally of finite presentation over S. Therefore
Lemma 17.3 is applicable and yields that the image of X → S coincides with the
found closed subscheme. This concludes the proof. □

Corollary 19.47. Assume that S is locally Noetherian. Let f : X → S be a finitely
presented morphism. In the situation that one the parsimonious sites is used to
define Zar(S), the following statements are equivalent:

(1) The morphism f is universally closed.
(2) Zar(S) |= ⌜X is synthetically closed⌝.

Proof. Immediate using Proposition 19.32 and Proposition 19.46. □

In view of Corollary 19.47, Example 19.44 and Example 19.45 have a geometric
interpretation. The first example reflects the fact that the identity morphism S → S
is universally closed. The second example reflects the fact that the projection
morphism A1

S → S is typically not universally closed.
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19.10. Quasicompact and quasiseparated morphisms.

Definition 19.48. In the context of a specified local ring R, a synthetic affine
scheme is a set which is isomorphic (as a set) to the synthetic spectrum of a
synthetically quasicoherent R-algebra.

Definition 19.49. In the context of a specified local ring R:

(1) A quasicompact synthetic scheme is a set X which admits a finite open
covering X =

⋃n
i=1 Ui by synthetic affine schemes Ui.

(2) A locally finitely presented quasicompact synthetic scheme is a set X which
admits a finite open covering X =

⋃n
i=1 Ui such that the sets Ui are

isomorphic to spectra of finitely presented R-algebras.
(3) A finitely presented synthetic scheme is a set X which admits a finite open

covering X =
⋃n
i=1 Ui such that the sets Ui are isomorphic to spectra of

finitely presented R-algebras and such that the intersections Ui ∩ Uj can be
covered by finitely many open subsets which are isomorphic to spectra of
finitely presented R-algebras.

Proposition 19.50. Let X ∈ Zar(S) be a Zariski sheaf. Consider the following
statements:

(1) X is the functor of points of a quasicompact S-scheme.
(2) X is the functor of points of a locally finitely presented quasicompact S-

scheme.
(3) X is the functor of points of a finitely presented S-scheme (locally finitely

presented, quasicompact, and quasiseparated over S).
(1’) Zar(S) |= ⌜X is a quasicompact synthetic scheme⌝.
(2’) Zar(S) |= ⌜X is a locally finitely presented quasicompact synthetic scheme⌝.
(3’) Zar(S) |= ⌜X is a finitely presented synthetic scheme⌝.

Then:

• (1) ⇒ (1’), (2) ⇒ (2’), and (3) ⇒ (3’).
• If the parsimonious sites are used to define Zar(S), then all three converses
hold.
• If the given synthetic open immersions are even quasicompact open immer-
sions, then (2’) ⇒ (2) and (3’) ⇒ (3).

Proof. For proving (1) ⇒ (1’), (2) ⇒ (2’), and (3) ⇒ (3’), we may assume that S
is affine, since the internal language is local. Let X0 be an S-scheme representing
the functor X. Since the structure morphism X0 → S is quasicompact and S is
quasicompact, there exist finitely many open affine subschemes Ui ⊆ X0 which
cover X0. By Proposition 19.7, the subfunctors Ui ↪→ X are synthetic open
immersions from the internal point of view of Zar(S). The internal union

⋃
i Ui ↪→ X

is the functor

T/S 7−→ {f : T → X0 | locally, the morphism f factors over one of the opens Ui}
and therefore coincides with X.

Since each scheme Ui can be realized as a relative spectrum of a quasicoherent OS-
algebra, both Ui and S being affine, the sets Ui are synthetic affine schemes from
the internal point of view. Hence (1) ⇒ (1’). If (2) holds, then the Ui are spectra of
finitely presented OS-algebras, so (2’) holds. If (3) holds, then the intersections Ui ∩
Uj can be covered by finitely many open subschemes which are spectra of finitely
presented OS-algebras, so (3’) holds.

For the converse directions, we first note that the problem is local on S, since we
can glue matching schemes defined over the members of an open covering of S [126,
Tag 01JJ]. We may therefore assume that we are given subfunctors U1, . . . , Un ↪→ X

https://stacks.math.columbia.edu/tag/01JJ
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such that, from the internal point of view of Zar(S), the subsets Ui ⊆ X are synthetic
affine schemes and the inclusions Ui ↪→ X are synthetic open immersions. The
extra assumptions ensure that Proposition 19.13 and Proposition 18.9 are applicable.
These imply that the functors Ui are representable by affine S-schemes. These can
be glued to yield an S-scheme which represents the functor X [126, Tag 01JJ].

In case that internally further finiteness conditions are satisfied, the resulting
scheme X will satisfy the corresponding external finiteness conditions. □

One can reasonably wonder why we didn’t include the following notion in Defini-
tion 19.49: A synthetic scheme is a set X which admits an arbitrary open covering
by synthetic affine schemes. The reason is that, with this definition, any subset X
of the singleton set 1 = {⋆} is a synthetic scheme, since it admits the open affine
covering X =

⋃
{1 | ⋆ ∈ X}. But not any subfunctor of the terminal functor is

representable by a scheme.
This phenomenon is well-known in synthetic topology; one has to put some

restrictions on the kind of allowed open coverings. Being finite is the simplest such
condition.

Proposition 19.51. Let Zar(S) be defined using the parsimonious sites. Let f :
X → S be a locally finitely presented morphism. Then:

(1) The morphism f is quasicompact if and only if X is a quasicompact synthetic
scheme from the internal point of view of Zar(S).

(2) The morphism f is quasiseparated if and only if, internally, for any ele-
ments x, y :X the set Jx = yK is a quasicompact synthetic scheme.

(3) The morphism f is separated if and only if, internally, for any elements x, y :X
the truth value Jx = yK is closed. If this is the case, the witnessing ideal can
be chosen to be finitely generated.

Proof. The first statement is by Proposition 19.50 and by the fact that the scheme
representing a representable functor is unique.

The second statement follows from the first by applying it to the diagonal
morphism ∆ : X → X ×S X. More precisely, we have the following chain of
equivalences:

Zar(S) |= ∀x, y :X. ⌜Jx = yK is a quasicompact synthetic scheme⌝

⇐⇒ Zar(X ×S X) |= ⌜X is a quasicompact synthetic scheme⌝

⇐⇒ ∆ : X → X ×S X is quasicompact

The first step is by the discussion in Section 16.3 and the second by applying the first
statement; the diagonal morphism is locally of finite presentation [126, Tag 0818],
as required.

The third statement follows in a similar way, but employing Proposition 19.32
instead of the first statement. □

Lemma 19.52. Internally in Zar(S), a set X is separated if and only if all of its
points are closed. More formally, the following two statements are equivalent:

(1) For all x :X, the inclusion {x} ↪→ X is a synthetic closed immersion.
(2) The diagonal morphism X ↪→ X ×X is a synthetic closed immersion.

Proof. We argue internally. Let x :X be fixed. The inclusion {x} ↪→ X is a synthetic
closed immersion if and only if, for all y :X, the truth value “the fiber over y is
inhabited” is closed. This truth value is equal to the truth value of “x = y”.

With these observations, the equivalence of the two statements is immediate. □

https://stacks.math.columbia.edu/tag/01JJ
https://stacks.math.columbia.edu/tag/0818
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19.11. Proper morphisms.

Proposition 19.53. Let Zar(S) be defined using the parsimonious sites. Assume
that S is locally Noetherian. Let X ∈ Zar(S) be a Zariski sheaf. Then the following
statements are equivalent:

(1) The sheaf X is the functor of points of a proper S-scheme.
(2) Zar(S) |= ⌜X is a finitely presented synthetic scheme and synthetically closed⌝.

Proof. Follows immediately from Proposition 19.50, Proposition 19.51, and Corol-
lary 19.47. □

20. Case studies

20.1. Punctured plane.

Definition 20.1. The synthetic punctured plane is the set P := (A1
S)

2 \ {0}.

Proposition 20.2. The synthetic punctured plane, as constructed by the internal
language of Zar(S), is the functor of points of the ordinary punctured plane over S,
that is the open subscheme D(X) ∪D(Y ) ↪→ A2

S.

Proof. The set P can be written as {(x, y) : (A1
S)

2 |x inv. ∨ y inv.}. □

Proposition 20.3. The evaluation morphism A1
S [X,Y ]→ [P,A1

S ] is bijective.

Proof. The synthetic punctured plane can be expressed as the pushout

P ∼= D(X)⨿D(X)∩D(Y ) D(Y ).

Therefore we have the chain of isomorphisms

[P,A1
S ]
∼= [D(X)⨿D(X)∩D(Y ) D(Y ),A1

S ]

∼= [D(X),A1
S ]×[D(X)∩D(Y ),A1

S ] [D(Y ),A1
S ]

∼= A1
S [X,X

−1]×A1
S [XY,(XY )−1] A1

S [Y, Y
−1]

∼= A1
S [X,Y ].

The penultimate isomorphism exploits the synthetic quasicoherence of A1
S , which

ensures that the canonical map

A1
S [X,X

−1] −→ [Spec(A1
S [X,X

−1]),A1
S ]
∼= [D(X),A1

S ]

is bijective. The ultimate isomorphism rests on the purely algebraic argument that el-
ements of A1

S [X,X
−1] and A1

S [Y, Y
−1] which agree as elements of A1

S [(XY ), (XY )−1]
are both given by an element of A1

S [X,Y ] and in fact by the same element. □

Corollary 20.4. The punctured plane is not affine.

Proof. The canonical map P → Spec([P,A1
S ]) is isomorphic to the strict inclu-

sion P ↪→ (A1
S)

2 and therefore not bijective. □

20.2. Cohomology of projective space. Let V be a finite locally free OS-module.
In this section, we give internal descriptions of the projectivization of V and of
Serre’s twisting bundles on P(V ), and show how their cohomology groups can be
computed internally. Let V := VZar.

Definition 20.5. The synthetic projective space is the set

P(V ) := {ℓ ⊆ V | ⌜ℓ is a one-dimensional subspace⌝}.

The twisting bundles are modules over the affine line of P(V ). As such they
are P(V )-indexed families of A1

S-modules, as in Section 19.4. We set X := P(V ).
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Definition 20.6. Form ∈ Z, the twisting bundle O(m) is the A1
X -module (ℓ⊗(−m))ℓ:X .

In particular, the tautological bundle O(−1) is (ℓ)ℓ:X and its dual is O(1) = (ℓ∨)ℓ:X .

We stress that Definition 20.6 formalizes the common geometric intuition about
the twisting bundles. In algebraic geometry, one often pictures a bundle as the
collection of its fibers, well knowing that this picture is formally incomplete and that
a bundle is not really determined by the collection of its fibers. In our account of
synthetic algebraic geometry, the statement that a bundle is given by its collection
of fibers is just true, and in fact is so by definition.

Proposition 20.7. (1) The canonical map A1
S → Γ(X,O(0)) = [X,A1

S ] is an
isomorphism.

(2) The canonical map V ∨ → Γ(X,O(1)), ϑ 7→ (ϑ|ℓ)ℓ:X is an isomorphism.
(3) The module Γ(X,O(−1)) is zero.

Proof. For notational convenience, we assume that V is isomorphic to (A1
S)

2. In
this case X = {[x : y] |x ̸= 0 ∨ y ̸= 0}. Let X = U0 ∪ U1 be the standard open
covering with

U0 = {[x : y] |x ̸= 0} = {[1 : y] | y :A1
S} ∼= A1

S

and similarly with U1.
For the first claim, let f : X → A1

S be an arbitrary function. Since A1
S is

synthetically quasicoherent, the canonical morphism A1
S [T ] −→ [U0,A1

S ] is bijective.
Hence there is a unique polynomial p0 :A1

S [T ] such that f([x : y]) = p0(y/x) for
all [x : y] ∈ U0. Analogously, there is a unique polynomial p1 :A1

S [T ] such that f([x :
y]) = p1(x/y) for all [x : y] ∈ U1.

Since A1
S is synthetically quasicoherent, the canonical morphism

A1
S [T, T

−1] −→ [U0 ∩ U1,A1
S ]

is bijective. Because p0(y/x) = p1(x/y) as functions on U0 ∩ U1, the polynomi-
als p0(T ) and p1(1/T ) agree as elements of A1

S [T, T
−1]. Hence p0 and p1, and thus f ,

are constant.
This shows that the canonical morphism A1

S → [X,A1
S ] is surjective. This

morphism is trivially injective since X is inhabited.
The other claims are verified similarly. □

In the same spirit as in the proof of Proposition 20.7, we can compute the
cohomology of the twisting bundles, if we define it as the cohomology of the Čech
complex associated to the standard open covering. We want to indicate how the
general idea of the usual proof can be carried out in the synthetic account.

For notational convenience, we assume that V is isomorphic to (A1
S)

2. The Čech
complex for computing H•(X,O(−2)) is

0 −→ Γ(U0,O(−2))× Γ(U1,O(−2)) −→ Γ(U0 ∩ U1,O(−2)) −→ 0.

The differential maps (f, g) to g|U0∩U1
− f |U0∩U1

.
The verification that H0(X,O(−2)) is zero proceeds similarly to the proof of

Proposition 20.7. To verify that H1(X,O(−2)) ∼= A1
S , we explicitly describe the iso-

morphism. Given a function h : Γ(U0∩U1,O(−2)), there is for any number y : (A1
S)

×

a unique value h0(y) such that

h([1 : y]) = h0(y) ·
((

1
y

)
⊗
(
1
y

))
: span

((
1
y

))⊗2

.

By the principle of unique choice, the mapping y 7→ h0(y) defines a well-defined func-
tion on (A1

S)
× as the notation suggests. Because A1

S is synthetically quasicoherent,
the canonical map

A1
S [T, T

−1] −→ [U0 ∩ U1,A1
S ]
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is bijective. Hence there is a unique Laurent polynomial p0 ∈ A1
S [T, T

−1] such
that h0(y) = p0(y) for all y ∈ (A1

S)
×. The sought isomorphism maps h to the

coefficient of T−1 in p0.

20.3. Grassmannian. Let V be a finite locally free OS-module. We want to
illustrate the synthetic approach by verifying the basic fact that the Grassman-
nian Gr(V, r) of rank-r locally free quotients of V, defined as a certain functor of
points, is representable by a locally finitely presented S-scheme using the internal
language of Zar(S).

Definition 20.8. The Grassmannian Gr(V, r) is the functor which associates to
an S-scheme f : T → S the set

Gr(V, r)(T ) := {U ⊆ f∗V sub-OT -module | (f∗V)/U is locally free of rank r}.
Definition 20.9. The synthetic Grassmannian of rank-r quotients of a module V
is the set

Gr(V, r) := {U ⊆ V submodule |V/U is free of rank r}.
We could just as well define the synthetic Grassmannian somewhat more directly

as the set of free rank r-quotients (up to isomorphism). This set is canonically
isomorphic to the Grassmannian as we chose to define it, by mapping a quotient π :
V ↠ Q to the kernel of π.

Proposition 20.10. The synthetic Grassmannian of V, as constructed by the
internal language of Zar(S) where V looks like an ordinary free module, coincides
with the functorially defined Grassmannian.

Proof. Immediate from Definition 2.8 and Proposition 18.1. □

Having established that the internally constructed synthetic Grassmannian actu-
ally describes the external Grassmannian which we’re interested in, we can switch
to a fully internal perspective. We’ll reflect this switch notationally by referring to
the A1

S-module V := VZar instead of V.
We define for any free submodule W ⊆ V of rank r the subset

GW := {U ∈ Gr(V, r) |W → V → V/U is bijective}.
This sets admits a more concrete description, since it is in canonical bijection to the
set

G′
W := {π : V →W |π ◦ ι = id}

of all splittings of the inclusion ι : W ↪→ V : An element U ∈ GW corresponds to

the splitting V ↠ V/U
(∼=)−1

−−−−→ W . Conversely, a splitting π corresponds to U :=
ker(π) ∈ GW .

Proposition 20.11. The union of the subsets GW is Gr(V, r).

Proof. Let U ∈ Gr(V, r). Then there exists a basis ([v1], . . . , [vr]) of V/U . The
family (v1, . . . , vr) is linearly independent in V , therefore the submodule W :=
span(v1, . . . , vr) ⊆ V is free of rank r. The canonical linear map W ↪→ V ↠ V/U
maps the basis (vi)i to the basis ([vi])i and is therefore bijective. Thus U ∈ GW . □

Proposition 20.12. The sets GW are (quasicompact-)open subsets of Gr(V, r).

Proof. Let U ∈ Gr(V, r). Then U ∈ GW if and only if the canonical linear mapW ↪→
V ↠ V/U is bijective. Since W and V/U are both free modules of rank r, this map
is given by an (r × r)-matrix M over A1

S ; therefore it’s bijective if and only if the
determinant of M is invertible.

Thus we’ve found a number which is invertible if and only if U ∈ GW . By
Corollary 19.14, the truth value of “U ∈ GW ” is open. □
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Proposition 20.13. The sets GW are synthetic affine schemes. Moreover, the
algebras which the GW are spectra of are finitely presented.

Proof. The set of all linear maps V →W is the spectrum of the A1
S-algebra A :=

Sym(HomA1
S
(V,W )∨), since

Spec(A) = HomAlg(A1
S)(Sym(HomMod(A1

S)(V,W )∨),A1
S)

∼= HomMod(A1
S)(HomMod(A1

S)(V,W )∨,A1
S)

= HomMod(A1
S)(V,W )∨∨

∼= HomMod(A1
S)(V,W ).

In the last step the assumption that not only W , but also V is a free module of
finite rank enters. (This is the first time in this development that we need this
assumption.)

The set G′
W is a closed subset of this spectrum, namely the locus where the generic

linear map V → W is a splitting of the inclusion ι : W ↪→ V . If we choose bases
of V and W , whereby Sym(HomA1

S
(V,W )∨) is isomorphic to A1

S [M11, . . . ,Mrn], we

can be more explicit: The set G′
W is isomorphic to

Spec(k[M11, . . . ,Mrn]/(MN − I)),

where I is the (r× r) identity matrix, M is the generic matrix M = (Mij)ij , and N
is the matrix of ι with respect to the chosen bases. The notation “(MN − I)”
denotes the ideal generated by the entries of MN − I. □

Corollary 20.14. The Grassmannian Gr(V, r) is a locally finitely presented quasi-
compact synthetic scheme.

Proof. We need to verify that Gr(V, r) admits a finite covering by spectra of finitely
presented A1

S-algebras. We already know that Gr(V, r) can be covered by the open
subsets GW and that these sets are spectra of finitely presented algebras. Therefore
it remains to prove that finitely many of these subsets suffice to cover Gr(V, r).

In fact, if we choose an isomorphism V ∼= (A1
S)
n, we see that

(
n
r

)
of these subsets

suffice: namely those whereW is one of the standard submodules of (A1
S)
n (generated

by the standard basis vectors). For if U ∈ Gr((A1
S)
n, r), the surjection V → V/U

maps the basis of at least one of these standard submodules to a basis and is
therefore bijective. This is because from any surjective (r × n)-matrix over a local
ring one can select r columns which form an linearly independent family. □

Proposition 20.15. Let U ∈ Gr(V, r). Then the tangent space at U is given by
TUGr(V, r) ∼= HomA1

S
(U, V/U).

Proof. For notational simplicity, we verify the claim in the case r = 1, in which
case Gr(V, r) is the projectivization of V . Let γ : ∆ → P(V ) be a tangent vector
with base point ℓ := γ(0) :P(V ). By Corollary 19.21 and Corollary 20.14, there’s
a lift γ : ∆ → V such that γ(ε) = span(γ(ε)) for all ε :∆. We define a linear
map α : ℓ→ V/ℓ by setting

x 7−→ α(x) = [x/γ(0) · γ′(0)].

The expression “x/γ(0)” should be read as follows: The vector x, being an element
of ℓ, is some multiple λ of γ(0). The expression “x/γ(0)” denotes this unique
number λ. It can be checked that the vector α(x) :V/ℓ does not depend on the choice
of the lifting γ. The element α is therefore a well-defined element of HomA1

S
(ℓ, V/ℓ).

Conversely, let an element α : HomA1
S
(ℓ, V/ℓ) be given. We choose vectors x0 :V

and z :V such that ℓ = span(x0) and α(x0) = [z] and define γ : ∆ → P(V ) by
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setting
ε 7−→ γ(ε) = span(x0 + εz).

The definition of γ(ε) is invariant under scaling of x0 and also under changing z to
some other vector z + λx0 in its equivalence class:

span(x0 + ε(z + λx0)) = span((1 + ελ)x0 + εz)

= span(x0 + ε/(1 + ελ)z)

= span(x0 + εz),

since ε/(1 + ελ) = ε(1− ελ) = ε. Therefore γ is a well-defined element of TℓP(V )
which only depends on α and not on the arbitrary choices of x0 and z.

One can check that the two described constructions are mutually inverse. □

Remark 20.16. The arguments given in this section are intended to be applied
internally to the big Zariski topos of a base scheme. However, one can also apply
them internally to well-adapted models for synthetic differential geometry. In
this way, one almost obtains that the differential-geometric Grassmannian can be
represented as a manifold; only a verification of smoothness is missing.

21. Beyond the Zariski topology

The Zariski topology is of course not the only interesting topology on Sch/S. For
any finer topology τ , such as the Nisnevich, étale, or fppf topology (a valuable
hyperlinked chart of the various topologies is located at [21]), the big τ -topos of S,
that is the topos of sheaves on Sch/S with respect to τ , is a subtopos of the big
Zariski topos. Therefore there is a modal operator □τ in Zar(S) reflecting the
topology τ . Explicitly, for an S-scheme T and a formula φ over T , the meaning of

T |= □τφ

is that there exists a τ -covering (Ti → T )i of T such that Ti |= φ for all i (where
parameters appearing in φ have to be pulled back along Ti → T ). Succinctly, the
formula “□τφ” means that φ holds τ -locally. Generalizing Theorem 6.31 from
sheaves on locales to sheaves on arbitrary Grothendieck sites we also have

Zar(S) |= φ□τ iff Sh((Sch/S)τ ) |= φ.

21.1. The étale topology. A basic illustration of these modal operators is pro-
vided by the Kummer sequence, that is the short sequence

1 −→ µn −→ Gm
( )n−→ Gm −→ 1

of multiplicatively-written commutative group objects in Zar(S). With the internal
description of µn and Gm, there is a purely internal and straightforward proof that
this sequence is exact at the first two terms. But except for trivial cases, the n-th
power map Gm → Gm will fail to be an epimorphism; internally speaking, the
statement

∀f : (A1
S)

×. ∃g : (A1
S)

×. f = gn

is false in general. However, if n is invertible in Γ(S,OS), the internal statement

∀f : (A1
S)

×. □ét(∃g : (A1
S)

×. f = gn)

is true. In fact, the more general statement

∀p :A1
S [X]. ⌜p is monic, of positive degree, and separable⌝ =⇒

□ét(∃x :A1
S . p(x) = 0 ∧ ⌜p′(x) inv.⌝)

is true from the internal point of view, where a polynomial p is called separable if
and only if there exists a Bézout representation ap + bp′ = 1. After simplifying,
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the interpretation of that statement with the Kripke–Joyal semantics is that for
any S-scheme T and any monic separable polynomial p ∈ Γ(T,OT )[X] of positive
degree there exists an étale covering (Ti → T )i of T such that the pullbacks of p to
each of the Ti possess a simple zero. The required covering is given by the canonical
surjective étale map SpecT OT [X]/(p)→ T .

The following theorem shows that the modal operator □ét corresponding to the
étale topology admits a purely internal characterization in Zar(S), which furthermore
resonates well with the intuition about the étale topology.

Theorem 21.1. Let S be a scheme. Employ one of the parsimonious sites to
define Zar(S). The modal operator □ét in Zar(S) corresponding to the étale topology
is the smallest operator □ such that the □-translation of the statement “A1

S is
separably closed” holds.

Here, a ring A is separably closed if and only if

∀p :A[X]. ⌜p is monic, of positive degree, and unramifiable⌝ =⇒
∃x :A. p(x) = 0 ∧ ⌜p′(x) inv.⌝.

We call a polynomial p over a ring A unramifiable if and only if it admits at least
one simple root in every algebraically closed field over A. Since quantifying over
algebraically closed fields raises red flags from an intuitionistic point of view, just
as quantifying over maximal ideals does, this condition has to be formulated in a
sensible way. One possibility is to use the hyperdiscriminants of p, i. e. the elementary
symmetric polynomials in the values of p′ at the roots of p, resulting in a simple
existential statement involving only the coefficients of p; in particular, the condition
for a polynomial to be unramifiable is a geometric formula. See [145, p. 751] for the
precise formulation.

In more detail, the claim is that firstly □ét is a modal operator such that the
displayed formula holds and that secondly, if □ is any modal operator verifying the
formula, internally it holds that □étφ⇒ □φ for any truth value φ : Ω.

Proof. For the proof we require some familiarity with the concept of classifying
toposes. We are grateful to Felix Geißler for contributing a key step of the argument.

To verify the first statement, we observe that the displayed formula is a geometric
implication and that the big étale topos Ét(S) has enough points. Therefore it
suffices to show that for any S-scheme T and any geometric point t̄ of T , the
stalk OT,t̄ is separably closed. It is well-known that this is true.

For the second statement we may assume without loss of generality that S =
SpecA is affine. It is well-known that, for any cocomplete topos E , geometric
morphisms E → Zar(SpecA) are in canonical one-to-one correspondence with local
algebras over A in E (where A denotes the pullback of A along the unique geometric

morphism E → Set) and that geometric morphisms E → Ét(SpecA) are in canonical
one-to-one correspondence with algebras over A which are local and separably closed
from the internal point of view of E ; see [92, Section VIII.6] and [5].

Therefore a geometric morphism E → Zar(SpecA) factors over the geomet-

ric embedding Ét(SpecA) ↪→ Zar(SpecA) if and only if the pullback of A1
SpecA

along E → Zar(SpecA) is separably closed.
Let □ be a modal operator in Zar(SpecA) such that the □-translation of “A1

SpecA

is separably closed” holds. Then the pullback of A1
SpecA along Zar(SpecA)□ ↪→

Zar(SpecA) is separably closed and therefore this geometric embedding factors

over Ét(SpecA) ↪→ Zar(SpecA). This shows that any □-sheaf is also a □ét-sheaf.
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The claim that □étφ⇒ □φ for any truth value φ : Ω then follows by combining
the following two basic observations of the theory of modal operators, valid for any
modal operator □:

(1) □φ⇐⇒ ∀ψ : Ω. ((□ψ ⇒ ψ) ∧ (φ⇒ ψ))⇒ ψ.
(2) (□ψ ⇒ ψ)⇐⇒ ⌜{x ∈ 1 |ψ} is a □-sheaf⌝. □

21.2. The fppf topology. The big Zariski topos of a scheme S is the classifying
topos of local rings over S, when employing one of the parsimonious sites. The
big fppf topos of S is a particular subtopos of the big Zariski topos; it therefore
classifies a particular quotient theory of the theory of local rings of S, obtained by
adding certain further axioms [31]. What are these axioms?

The analogous question for the big étale topos has been answered by Wraith,
building upon work by Hakim [63]: The big étale topos classifies separably closed
local rings [145]. Since the big fppf topos is a subtopos of the big étale topos (any
étale covering being in particular an fppf covering), the sought axioms need to at
least imply the axioms for separably closed rings.

Wraith conjectured that the big fppf topos classifies algebraically closed local
rings (local rings for which any monic polynomial of positive degree has a zero, also
called absolutely integrally closed local rings). We neither confirm nor refute his
conjecture, but we are able to give an alternative explicit description: The big fppf
topos of a scheme classifies fppf-local rings over S.

These kinds of rings where studied by Schröer and independently by Gabber and
Kelly [117, 55]; we’ll review the notion below. Every fppf-local ring is algebraically
closed, therefore the theory of fppf-local rings encompasses the theory of algebraically
closed local rings. It is an open question whether these two theories coincide.

As discussed in Section 15, one can only expect the big fppf topos to classify a
simple theory if one employs parsimonious sites.

Definition 21.2. The big fppf topos of a scheme S is the topos of sheaves over
the category (Sch/S)lfp of locally finitely presented S-schemes, where a family (fi :
Xi → X)i of morphisms is deemed a covering if and only if the morphisms fi are
flat, locally of finite presentation, and jointly surjective.

The condition that the morphisms fi are locally of finite presentation is automati-
cally satisfied in our setup, since we require that source and target are locally of finite
presentation [126, Tag 02FV]. One can equivalently define the big fppf topos as the
topos of sheaves over the category (Aff/S)lfp of locally finitely presented S-schemes
which are affine as absolute schemes.

Definition 21.3. Let A be a ring.

(1) An fppf-algebra over A is an A-algebra B such that the structure mor-
phism A→ B is faithfully flat and of finite presentation.

(2) A basic fppf-algebra over A is an A-algebra which is finite free of positive
rank as an A-module.

Since algebras which are free as modules are also finitely presented as algebras,
a basic fppf-algebra is also an fppf-algebra and in fact an integral fppf-algebra.
Conversely, an integral fppf-algebra over a local ring is a basic fppf-algebra, since
integral algebras which are finitely presented as algebras are also finitely presented
as modules [126, Tag 0564], finitely presented flat modules are projective [126,
Tag 058R], and finitely generated projective modules over local rings are finite
free [126, Tag 00NX]. This equivalence even holds intuitionistically.

Definition 21.4. An fppf-local ring is a local ring A such that any finite system of
polynomial equations over A which has a solution in some basic fppf-algebra over A
admits a solution in A.

https://stacks.math.columbia.edu/tag/02FV
https://stacks.math.columbia.edu/tag/0564
https://stacks.math.columbia.edu/tag/058R
https://stacks.math.columbia.edu/tag/00NX
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An fppf-local ring is algebraically closed, since the A-algebra A[X]/(f) is a basic
fppf-algebra whenever f is a monic polynomial of positive degree.

We refer to basic fppf-algebras instead of arbitrary integral fppf-algebras in
Definition 21.4 in order to ensure that the condition for a ring to be fppf-local is a
geometric implication; we’ll expand on this below. The standard definition of fppf-
locality refers to arbitrary (not necessarily integral) fppf-algebras [117, Definition 4.1].
The following proposition establishes the equivalence of our definition with the
standard one.

Proposition 21.5. Let A be a local ring. The following statements are equivalent.

(1) The ring A is fppf-local.
(1’) Any finite system of polynomial equations over A which has a solution in

some fppf-algebra over A admits a solution in A.
(2) The structure morphism A→ B of any basic fppf-algebra has a retraction.
(2’) The structure morphism A→ B of any fppf-algebra has a retraction.
(3) The functor

Sch −→ Set, X 7−→ Hom(Spec(A), X)

maps fppf coverings to jointly surjective families. That is, the canonical
map

∐
iHom(Spec(A), Xi) → Hom(Spec(A), X) is surjective for any fppf

covering (Xi → X)i.

Furthermore, for any scheme S and any morphism Spec(A) → S, the following
statement is equivalent to the others:

(4) The functor Sch/S → Set, X 7→ HomS(Spec(A), X) maps fppf coverings to
jointly surjective families.

Proof. The directions (1’) ⇒ (1), (2’) ⇒ (2), and (3) ⇔ (4) are trivial.
For verifying (1) ⇒ (2), let a basic fppf-algebra B over A be given. Writ-

ing B ∼= A[X1, . . . , Xn]/(f1, . . . , fm), we see that the polynomial system “f1 =
0, . . . , fm = 0” has the tautologous solution ([X1], . . . , [Xn]) in B. Since A is fppf-
local, it therefore has a solution in A. Such a solution gives rise to an A-algebra
homomorphism A[X1, . . . , Xn]/(f1, . . . , fm)→ A, so to a retraction of the structure
morphism A→ B.

The proof of the converse direction is similar: A solution of a polynomial system
of equations in a basic fppf-algebra B can be transported along a retraction to yield
a solution in A.

The directions (1’) ⇒ (2’) and (2’) ⇒ (1’) can be verified in exactly the same
way.

We now verify (2) ⇒ (3). Let (fi : Xi → X)i be an fppf covering and let a
morphism g : Spec(A) → X be given. We want to show that g factors over one
of the morphisms fi. Since the fppf topology is generated by Zariski coverings
and singleton coverings (T → W ) where T → W is a surjective finite locally free
morphism [126, Tag 05WN], we may assume that the given covering (Xi → X)i
consists entirely of open immersions or is such a singleton covering.

In the first case, the morphism g lifts to one of the open subschemes Xi since the
preimages g−1Xi cover Spec(A) and Spec(A) is a local topological space.

In the second case, we may assume that W is affine and that f is not only finite
locally free, but finite free. The left morphism in the pullback diagram

Spec(A)×W T //

��

T

��
Spec(A) // W

https://stacks.math.columbia.edu/tag/05WN
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admits a section since it is the induced morphism on spectra of a basic fppf-algebra.
The sought lift is then the composite Spec(A)→ Spec(A)×W T → T .

Finally, we verify (3) ⇒ (2’). Let an fppf-algebra B over A be given. The
singleton family (Spec(B)→ Spec(A)) is an fppf covering. Therefore the identity
morphism on Spec(A) lifts to Spec(B). This lift yields the desired retraction. □

Remark 21.6. A scheme T such that the functor Hom(T, ) : Sch → Set maps
Zariski coverings to jointly surjective families is already the spectrum of a local ring.
Thus Proposition 21.5 implies that a scheme T such that Hom(T, ) maps fppf
coverings to jointly surjective families is the spectrum of an fppf-local ring.

Remark 21.7. The proof of Proposition 21.5 is intuitionistically valid, with the
possible exception of the part (2) ⇒ (3). This part of the proof crucially rests upon
the description of the fppf topology given in the Stacks Project [126, Tag 05WN],
which is proved in the usual language involving prime ideals and is therefore not
obviously intuitionistically valid.

Lemma 21.8. (1) The condition for a finitely presented algebra to be a basic
fppf-algebra can be expressed as a geometric formula.

(2) The condition for a ring to be fppf-local can be expressed as a countable
conjunction of geometric implications.

Proof. A finitely presented A-algebra B := A[X1, . . . , Xn]/(f1, . . . , fm) is a basic
fppf-algebra if and only if there exists a number r ≥ 1, polynomials g1, . . . , gr :A[X1, . . . , Xn],
vectors v1, . . . , vn :A

r, a vector u :Ar, and vectors wij :A
r for i, j = 1, . . . , r such

that

• the multiplication defined on Ar by (ei, ej) 7→ wij is associative, commuta-
tive, and has u as neutral element,
• the map B → Ar given by [Xk] 7→ vk is well-defined, that is fl(v1, . . . , vn) =
0 for l = 1, . . . ,m, and
• the map B → Ar and the map Ar → B sending ei to [gi] are inverse to each
other.

Each of these conditions can be expressed by geometric formulas involving the
components of the data gi, vk, u, wij .

A ring A is fppf-local if and only if it is local, and for any numbers n ≥ 0,m ≥ 0
and polynomials f1, . . . , fm ∈ A[X1, . . . , Xn] the implication

⌜A[X1, . . . , Xn]/(f1, . . . , fm) is a basic fppf-algebra⌝ =⇒

∃x1, . . . , xn :A.
m∧
l=1

fl(x1, . . . , xn) = 0

holds. Since the antecedent can be expressed as a geometric formula, this formula is
a geometric implication. □

Theorem 21.9. The big fppf topos of a scheme S is the largest subtopos of Zar(S)
where A1

S is fppf-local.

Proof. Let □fppf be the modal operator associated to the fppf topology; the big fppf
topos of S is the subtopos Zar(S)□fppf

↪→ Zar(S). We verify that

Zar(S) |=
∧
n≥0

∧
m≥0

∀f1, . . . , fm :A1
S [X1, . . . , Xn].

⌜A1
S [X1, . . . , Xn]/(f1, . . . , fm) is a basic fppf-algebra⌝ =⇒

□fppf(∃x1, . . . , xn :A1
S .

m∧
j=1

fj(x1, . . . , xn) = 0)

https://stacks.math.columbia.edu/tag/05WN
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and we show that if □ is any modal operator with this property, then

Zar(S) |= ∀φ : Ω. □fppfφ⇒ □φ.

For the first part we may assume, by Lemma 21.8, that S = Spec(A) is affine
and that we’re given polynomials f1, . . . , fm ∈ A[X1, . . . , Xn] such that B :=
A[X1, . . . , Xn]/(f1, . . . , fm) is a basic fppf-algebra. Then, trivially,

Spec(B) |= ∃x1, . . . , xn :A1
S .

m∧
j=1

fj(x1, . . . , xn) = 0.

Since (Spec(B)→ Spec(A)) is an fppf covering, we have

Zar(S) |= □fppf(∃x1, . . . , xn :A1
S .

m∧
j=1

fj(x1, . . . , xn) = 0)

as claimed.
For the second part, let an fppf covering (Xi → X)i be given such that Xi |= φ

for all i. We want to show that X |= □φ. Since the fppf topology is generated
by Zariski coverings and singleton coverings (T → W ) where T → W is a sur-
jective finite locally free morphism [126, Tag 05WN] and the internal language
of Zar(S) is (Zariski-)local, we may assume that the given covering is such a sin-
gleton covering. Moreover, we may assume that W is affine and that T is of the
form Γ(W,OW )[X1, . . . , Xn]/(f1, . . . , fm). Then

W |= ⌜A1
S [X1, . . . , Xn]/(f1, . . . , fm) is a basic fppf-algebra⌝ and

W |= ∀x1, . . . , xn :A1
S .

( m∧
j=1

fj(x1, . . . , xn) = 0
)
⇒ φ.

The latter is because for any Γ(W,OW )-algebra R such that there are elements
x1, . . . , xn ∈ R with fj(x1, . . . , xn) = 0 for j = 1, . . . ,m, the structure mor-
phism Spec(R)→W factors over T →W . The assumption on the modal operator □
implies W |= □φ. □

The next statement uses the concept of a local ring over S. This was defined on
page 147.

Corollary 21.10. The big fppf topos of a scheme S is the classifying topos of the
theory of fppf-local rings over S.

Proof. The ring object A1
S of the big fppf topos of S is an fppf-local ring by

Theorem 21.9. Equipped with the morphism ♭A1
S → A1

S , it is thus an fppf-local ring
over S.

Let E be an arbitrary cocomplete topos containing an fppf-local ring A over S. As
detailed in Remark 16.4, this comprises an fppf-local ring A, a model of the theory
which Sh(S) classifies (yielding a geometric morphism f : E → Sh(S)), and a local
homomorphism α : f−1OS → A. By Theorem 16.1, this homomorphism gives rise
to a unique geometric morphism g : E → Zar(S) over Sh(S) such that g−1A1

S
∼= A

and such that the induced morphism g−1(♭A1
S)→ g−1A1

S coincides with α.
The geometric morphism g factors over the inclusion of the big fppf topos by

Theorem 21.9, yielding a geometric morphism from E to the big fppf topos such
that the pullback of A1

S coincides with A as rings over S.
Uniqueness of the geometric morphism constructed in this way follows already

from the universal property of the big Zariski topos. □

Corollary 21.11. The points of the big fppf topos of a scheme S are in canonical
one-to-one correspondence with the fppf-local rings over S, that is fppf-local rings A
equipped with a morphism Spec(A)→ S.

https://stacks.math.columbia.edu/tag/05WN
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Proof. By Proposition 16.3, the points of Zar(S) are in canonical one-to-one corre-
spondence with the local rings over S. Such a point is contained in the big fppf topos
(that is, the associated geometric morphism Set→ Zar(S) factors over the inclusion
of the big fppf topos) if and only if the underlying local ring is fppf-local. □

We wish to record some algebraic and logical facts about fppf-local rings, hoping
that they entice the reader to tackle the question whether any algebraically closed
ring is already fppf-local.

• For any prime ideal p of an algebraically closed ring, it holds that p2 = p,
since any element of p possesses a square root.
• If an algebraically closed ring A is Noetherian, it is already a field, since by
Krull’s intersection theorem (0) =

⋂
n≥0 m

n
A = mA.

• Algebraically closed fields K are fppf-local: Let K → B be a basic fppf-
algebra. Since B ̸= 0, there exists a maximal ideal n ⊆ B. The quotient
ring B/n is an algebraic extension of K. Since K is algebraically closed,
the identity morphism K → K can be extended to a morphism B/n→ K
of K-algebras, yielding the desired retraction. This statement can also be
verified intuitionistically, see Proposition 21.21 below.
• Since the condition that a ring is fppf-local is a conjunction of geometric
implications, a proof that any algebraically closed ring is fppf-local using
classical logic and the axiom of choice implies that (nonconstructively) there
also exists an intuitionistic proof of this statement.
• The proof of Lemma 21.8 yields a way to phrase fppf-locality of a local ring

in the language of linear algebra: A local ring A is fppf-local if and only if for
any number n ≥ 1 and any pairwise commuting (n×n)-matricesW1, . . . ,Wn

over A such that the first matrix is the identity matrix and such that the i-th
row of Wj coincides with the j-th row of Wi, there is a common eigenvector
of the matrices W1, . . . ,Wn whose first component is the unit of A.

An equivalent condition is the following: A local ring A is fppf-local if and
only if for any matricesW1, . . . ,Wn as above there are elements λ1, . . . , λn ∈
A such that λ1 = 1 and such that Wi · (λ1, . . . , λn)T = λi · (λ1, . . . , λn)T .

The condition is nontrivial only for n ≥ 3.
• In order to show that any algebraically closed local ring is fppf-local, it
would suffice to show that commuting matrices over algebraically closed
local rings admit a common nontrivial eigenvector. However, we suspect
that this stronger statement is false, since it would imply that any matrix
over an algebraically closed local ring admits a nontrivial eigenvector.

Owing to the logical form of this statement, if it admits a classical
proof, then there is also a constructive proof; however, there is probably
no such constructive proof, since it would imply that, internally to any
topos, matrices over algebraically closed local rings admit a nontrivial
eigenvector. Since the complex numbers (constructed using Cauchy reals)
form an algebraically closed local ring [114, Theorem 3.13], this would imply
that complex matrices admit nontrivial eigenvectors. Since eigenvectors are
in general uncomputable [146, Proposition 12], there is probably a suitable
realizability topos in which this statement fails.

21.3. The fpqc topology.

Definition 21.12. The big fpqc topos of a scheme S is the topos of sheaves over
the category (Sch/S)lfp of locally finitely presented S-schemes, where a family (fi :
Xi → X)i of morphisms is deemed a covering if and only if the morphisms fi are
flat, jointly surjective, and each affine open subset of X is the union of the images
of finitely many affine open subsets of some of the Xi.
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Every fppf covering is an fpqc covering. Conversely, since we employ the parsi-
monious sites, every fpqc covering is an fppf covering. Therefore in our setup there
is no difference between the big fppf topos and the big fpqc topos.

21.4. The ph topology. The goal of this section is to give an explicit description
of the theory which the big ph topos of a scheme classifies, conditional on a conjecture
we didn’t prove.

Definition 21.13. (1) A standard ph covering of an S-scheme X is a family
of the form (Ui ↪→ T → X)i, where T → X is a proper surjective morphism
and T =

⋃
i Ui is an open affine covering.

(2) A family (fi : Xi → X)i of morphisms between locally finitely presented S-
schemes if a covering for the ph topology if and only if for any affine open
subset U ⊆ X the family (Xi ×X U → U)i can be refined by a standard
ph covering.

(3) The big ph topos Zar(S)ph of a scheme S is the topos of sheaves over the
category (Sch/S)lfp of locally finitely presented S-schemes equipped with
the ph coverings.

The ph topology is not subcanonical, therefore we mean by “the affine line in
the big ph topos” the sheafification of A1

S . We write “□ph” for the modal operator
of Zar(S) corresponding to the ph topology.

Definition 21.14. A valuation ring is an integral domain R in the weak sense (see
Definition 3.16) such that, for any elements a, b :R, a | b or b | a.

With this definition, valuation rings are local rings.

Proposition 21.15. From the point of view of Zar(S)ph, the affine line is an
algebraically closed valuation ring and a field in the sense that nonzero elements are
invertible.

Proof. Since Zar(S)ph is a subtopos of Zar(S)fppf , the affine line is algebraically
closed (and even fppf-local) from the internal point of view of Zar(S). The proof
that nonzero elements are invertible proceeds just as in Proposition 14.3, exploiting
that an S-scheme for which the empty family is a covering is empty.

To show that A1
S is an integral domain in the weak sense, we employ the ph cov-

ering (V (a)→ X,V (b)→ X) for S-schemes X and functions a, b ∈ Γ(X,OX) such
that ab = 0.

To show that for any given functions a, b ∈ Γ(X,OX) one divides the other, we
employ the ph covering (ProjX OX [U, V ]/(bU − aV )→ X). This covering ensures
that, from the internal point of view, the set {[u : v] | bu− av = 0} is inhabited. If u
is invertible, then a | b; if v is invertible, then b | a. □

Proposition 21.16. The affine line of Zar(S) has the following closure prop-
erty: Any finite system of homogeneous polynomial equations which the projective
Nullstellensatz predicts to have a nontrivial solution □ph-has a solution. Formally,

Zar(S) |=
∧

n,m≥0

∀f1, . . . , fm :A1
S [X0, . . . , Xn].(

⌜the fj are homogeneous⌝ ∧ ¬
(
(X0, . . . , Xn) ⊆

√
(f1, . . . , fm)

))
=⇒

□ph

(
∃x0, . . . , xn :A1

S .

n∨
i=0

⌜xi inv.⌝ ∧
m∧
j=1

fj(x0, . . . , xn) = 0
)
.
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Proof. Let homogeneous polynomials f1, . . . , fm ∈ Γ(T,OT )[X0, . . . , Xn] be given
such that

T |= ¬
(
(X0, . . . , Xn) ⊆

√
(f1, . . . , fm)

)
.

Then the projection morphism T ′ := ProjT OT [X0, . . . , Xn]/(f1, . . . , fm) → T is
surjective. Since

T ′ |= ∃x0, . . . , xn :A1
S .

n∨
i=0

⌜xi inv.⌝ ∧
m∧
j=1

fj(x0, . . . , xn) = 0

and since (T ′ → T ) is a ph covering, it follows that

T |= □ph

(
∃x0, . . . , xn :A1

S .

n∨
i=0

⌜xi inv.⌝ ∧
m∧
j=1

fj(x0, . . . , xn) = 0
)
. □

To proceed further, we need to assume the following statement.

Conjecture 21.17. For any natural numbers n and m and any finite set of variables
organized to yield the coefficients of m homogeneous polynomials f1, . . . , fm in n+1
variables, there is a geometric formula α(f1, . . . , fm) which is equivalent to the
formula

¬
( n∧
i=0

Xi ∈
√
(f1, . . . , fm)

)
in the intuitionistic first-order theory of algebraically closed valuation rings which
are fields in the sense that an element is invertible if and only if its nonzero.

We believe that this conjecture can be verified by using classical resultant theory.
For instance, the conjecture holds in the easy case of two linear homogeneous
polynomials in two variables, where α(f, g) can be chosen as Res(f, g) = 0.

Proposition 21.18. Let S be a locally Noetherian scheme. Assuming the existence
of geometric formulas α(f, g) as in Conjecture 21.17, the big ph topos of S classifies
algebraically closed valuation rings with the extra property that

α(f1, . . . , fm) =⇒ ∃x0, . . . , xn.
n∨
i=0

⌜xi inv.⌝ ∧
m∧
j=1

fj(x0, . . . , xn) = 0.

Proof. We show that Zar(S)ph is the largest subtopos of Zar(S) where A1
S has the

properties mentioned in the statement of the proposition. The claim then follows in
the same way as Corollary 21.10 follows from Theorem 21.9.

Applying Proposition 21.16, one can see that the affine line has these properties
internally in Zar(S)ph.

Conversely, let a modal operator □ be given such that A1
S has these properties

in Zar(S)□. We want to verify that Zar(S) |= ∀φ : Ω. □phφ⇒ □φ. Let a ph cover-
ing (Xi → X)i of an S-scheme X be given such that Xi |= φ for all i. We are to
show that X |= □φ.

Without loss of generality, we may assume that X is affine and that the covering is
a standard ph covering. Furthermore, we may assume that the covering is a singleton
covering (T → X) where T → X is a proper surjective morphism. By Chow’s lemma,
we can further assume that T → X is the canonical projection of a closed subscheme
of some projective space PnX toX. SinceX is locally Noetherian, the defining sheaf of
ideals is of finite type. Thus we may assume T = ProjX OX [U0, . . . , Un]/(f1, . . . , fm).
Since T |= φ, we have

X |= ⌜the system “f1 = · · · = fm = 0” has a nontrivial solution⌝⇒ φ.
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Since T → X is surjective, we have

X |= ¬
( n∧
i=0

Ui ∈
√
(f1, . . . , fm)

)
and therefore X |= □(α(f1, . . . , fm)) (we might not have X |= α(f1, . . . , fm), since
the proof of equivalence may assume that A1

S is an algebraically closed valuation
ring, which A1

S ∈ Zar(S) is only in the pathological case S = ∅). Combining these,
we see that X |= □φ. □

A corollary of Proposition 21.18 (assuming Conjecture 21.17) is that the points
of the big ph topos are those algebraically closed valuation rings over S which
satisfy the condition on solvability of systems of homogeneous polynomial equations.
Goodwillie and Lichtenbaum have already determined the points of the big ph topos
to be the valuation rings with algebraically closed field of fractions over S [60,
Proposition 2.2], without any extra condition on solvability of systems of equations.

This mismatch can be explained as follows. In classical logic one can show,
using the valuative criterion for properness, that the rings studied by Goodwillie
and Lichtenbaum automatically satisfy the condition on solvability of systems of
equations. However, we don’t believe that the proof can be made intuitionistic.
Assuming this, it’s no surprise that the theory which the big ph topos classifies
contains further axioms.

21.5. The surjective topology.

Definition 21.19. A family (fi : Xi → X)i of morphisms between locally finitely
presented S-schemes is a covering for the surjective topology if and only if the
morphisms fi are jointly surjective and each affine open subset of X is the union of
the images of finitely many affine open subsets of some of the Xi.

Equivalently, a family (Xi → X)i is a covering for the surjective topology if and
only if any affine open subset of X is the image of a quasicompact open subset
under the induced morphism

∐
iXi → X.

Definition 21.20. An algebraically closed geometric field is a ring such that 1 ̸= 0,
any element is zero or invertible, and that any monic polynomial of positive degree
has a zero.

In contrast with other field conditions in intuitionistic mathematics, the condition
for a ring to be an algebraically closed geometric field is the (countable conjunction
of) geometric implications.

Proposition 21.21. Intuitionistically, an algebraically closed geometric field is
fppf-local.

Proof. Over geometric fields, the kernel of any matrix admits a finite basis. Moreover,
the kernel of any matrix of determinant zero contains a vector which has at least one
invertible component. Therefore the usual proof that commuting matrices admit
a common eigenvector (with at least one invertible component) applies. This fact
can be used to show that the linear algebra problem stated on page 192 which
characterizes fppf-locality is solvable. □

Theorem 21.22. The topos of sheaves over (Sch/S)lfp for the surjective topology

is the largest subtopos of Zar(S) where A1
S is an algebraically closed geometric field.
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Proof. Let □surj be the modal operator associated to the surjective topology. We
verify that

Zar(S) |=
(
∀s :A1

S . □surj(s = 0 ∨ ⌜s inv.⌝)
)
∧∧

n≥0

∀a0, . . . , an−1 :A1
S . □surj(∃x :A1

S . x
n + an−1x

n−1 + · · ·+ a1x+ a0 = 0)

and we show that if □ is any modal operator with this property, then

Zar(S) |= ∀φ : Ω. □surjφ⇒ □φ.

For the first part it suffices to prove the following two statements: If s ∈ A is
an element of a ring, then there is a covering (Xi → Spec(A))i for the surjective
topology such that, for each i, Xi |= s = 0 or Xi |= ⌜s inv.⌝. If p ∈ A[X] is a monic
polynomial of positive degree over a ring, then there is a covering (Xi → Spec(A))i
for the surjective topology such that, for each i, Xi |= ∃x :A1

S . p(x) = 0.
For the first claim, we may use the covering (D(s)→ Spec(A), V (s)→ Spec(A)).

For the second claim, we may use the singleton covering (Spec(A[X]/(p)) →
Spec(A)).

For the second part, let a covering (Xi → X)i of the surjective topology be given
such that Xi |= φ for each i. We want to show that X |= □φ. Without loss of
generality, we may assume that X is affine and that the given covering is a singleton
covering (Y → X) where Y is affine and therefore Y → X is of finite presentation.

By the lemma on the existence of a flattening stratification [126, Tag 0ASY], there
exist finitely many locally closed subschemes Ej = D(fj) ∩ V (gj1, . . . , gj,mj ) ⊆ X
such that the pullback Yj := Y ×X Ej → Ej is flat (and, being surjective, therefore
faithfully flat). Since Yj |= φ and since (Yj → Ej) is an fppf covering, we have Ej |=
□fppfφ. By Proposition 21.21 and Theorem 21.9, we also have Ej |= □φ.

It’s easily checked that E |= (⌜fj inv.⌝∧gj1 = 0∧· · ·∧gj,mj
= 0)⇒ φ, for each j.

To conclude that X |= □φ, it therefore suffices to verify that

X |= □
( n∨
j=1

(⌜fj inv.⌝ ∧ gj1 = 0 ∧ · · · ∧ gj,mj = 0)
)
.

This claim follows from distributivity of disjunction over conjunction44 and the
elementary reformulation of the statement that X =

⋃n
j=1Ej : For any finite

subset J ⊆ {1, . . . , n} and any indices kj ∈ {1, . . . ,mj} for j ∈ J ,∏
j∈J

gj,kj ∈
√
(fj)j∈{1,...,n}\J . □

Corollary 21.23. The topos of sheaves over (Sch/S)lfp for the surjective topology
is the classifying topos of algebraically closed geometric fields over S. The points of
that topos are the algebraically closed geometric fields over S.

Proof. Follows from Theorem 21.22 in the same way as Corollary 21.10 and Corol-
lary 21.11 follow from Theorem 21.9. □

21.6. The double negation topology. As in Section 6.3, let Zar(S)¬¬ be the
smallest dense subtopos of Zar(S) (defined using the parsimonious sites). It is the
Boolean topos of sheaves over (Sch/S)lfp for the double negation topology. The
following proposition describes the double negation topology in explicit terms.

44Let statements ψjk where j = 1, . . . , n, k = 1, . . . , rj be given. We picture this situation as a
ragged matrix of statements with ψjk located at column k of row j. Assume that, for any selection
of one statement from each row, at least one of the selected statements holds. By distributivity of
disjunction over conjunction, there is a row all of whose statements hold.

https://stacks.math.columbia.edu/tag/0ASY
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Proposition 21.24. The subtopos Zar(S)¬¬ can be presented as the topos of sheaves
over the site (Sch/S)lfp whose covering families (Xi → X)i are precisely the families
such that

T ×X Xi = ∅ for all i implies T = ∅ (⋆)

for all locally finitely presented X-schemes T .
In case that S is locally of finite type over a field, condition (⋆) is satisfied if and

only if for every closed point x ∈ X there is a finite field extension K | k(x) such
that x has a K-valued preimage in one of the Xi.

Proof. For the first claim, we note that by a general fact Zar(S)¬¬ can be presented
as the topos of sheaves over (Sch/S)lfp whose covering families (fi : Xi → X)i
are precisely the families such that (Xi

++ → X++)i is a jointly epimorphic family
in Zar(S)¬¬, where ( )++ : Zar(S)→ Zar(S)¬¬ is the sheafification functor.

This is the case if and only if the morphisms Xi
++ → X++ are jointly surjective

from the internal point of view of Zar(S)¬¬. By the generalization of Theorem 6.31
from locales to toposes, this is the case if and only if

Zar(S) |= ∀x :X. ¬¬
(∨
i

∃u :Xi. fi(u) = x
)
.

As detailed in Section 16.3, this is the case if and only if

Zar(X) |= ¬¬
(∨
i

⌜Xi is inhabited⌝
)
.

Similarly to the (easy part of) Proposition 19.37, this in turn is equivalent to
condition (⋆).

The second claim follows from Proposition 17.1. □

Proposition 21.25. Let p be a point of Zar(S). By Proposition 16.3, the point p
corresponds to a local ring A over S. If p is even a point of Zar(S)¬¬, then A is an
algebraically closed geometric field.

Proof. By Proposition 18.27 and Proposition 18.32, the ¬¬-translation of “A1
S is an

algebraically closed geometric field” holds in Zar(S). Therefore A1
S is an algebraically

closed geometric field from the internal point of view of Zar(S)¬¬. Since being an
algebraically closed geometric field is a (conjunction of) geometric implications, this
property is preserved under pullback along geometric morphisms. This suffices to
establish the claim. □

Since A1
S is an algebraically closed geometric field from the internal point of

view of Zar(S)¬¬, Theorem 21.22 implies that Zar(S)¬¬ is a subtopos of the subto-
pos Zar(S)surj.

45

These toposes don’t coincide, however, for Zar(S)¬¬ is Boolean while Zar(S)surj
is not. One way to see this is to appeal to the syntactic characterization of when
the classifying topos of a coherent theory is Boolean [72, Theorem D3.4.6]. In
the coherent theory of an algebraically closed geometric field (which is the theory
which Zar(S)surj classifies in the special case S = Spec(Z)), the formulas “p · 1 = 0”
for prime numbers p are pairwise non-equivalent. By the cited characterization, the
existence of an infinite family of pairwise non-equivalent formulas is sufficient to
ensure that the classifying topos is not Boolean.

This observation settles a question by Madore [93, entry 2002-03-16:036].

45This can also be seen more directly by observing that Zar(S)surj is a dense subtopos of Zar(S).
Because Zar(S)¬¬ is the smallest dense subtopos of Zar(S), this observation implies that Zar(S)¬¬
is a subtopos of Zar(S)surj. Denseness of Zar(S)surj can be checked by verifying that the internal
statement Zar(S) |= ¬□surj⊥ holds; this amounts to verifying that a scheme which admits a cover
in the surjective topology by empty schemes is empty.
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We don’t know much more about Zar(S)¬¬. Far from knowing which the-
ory Zar(S)¬¬ classifies, we don’t even have a full description of its points. In the
case that S is Spec(Z), determining this theory would solve the purely algebro-logical
problem of describing the Booleanization of the theory of a local ring.

22. Outlook

We believe that the approach of using the internal language in algebraic geometry
is already in its current form as developed in Part II and Part III useful to working
algebraic geometers and interesting for topos theorists and logicians. However, there
are many intriguing avenues for further research.

Further axioms for synthetic algebraic geometry. We showed in Section 18.4
and in Section 19 that from the single axiom

“The ring A1
S is local and synthetically quasicoherent.”

a surprising number of properties can be deduced and that the core of a synthetic
account for algebraic geometry, comprising notions such as affine schemes, open
and closed immersions, surjective, universally closed and proper morphisms, and
quasicompact synthetic schemes, can be built around it.

However, we still don’t feel that we have a full understanding of the notion of
quasicoherence.

Firstly, there are several properties of synthetically quasicoherent modules which
we couldn’t account for internally. For instance, the tensor product of synthetically
quasicoherent modules is synthetically quasicoherent, but our only proof of this fact
is external (Lemma 18.25). It doesn’t seem prudent to just add statements like
these as axioms on a case-by-case basis. We rather need to find further suitable
general axioms from which these statements can be deduced.

Secondly, we know of no properties of A1
S , formulated purely within the first-

order language of rings, which wouldn’t follow from the axiom that A1
S is local and

synthetically quasicoherent. Have we just not looked hard enough, or does this
observation have a deeper reason? Determining the first-order properties of the
universal model of a geometric theory is a well-known problem; maybe having a
look at this special case can shed light on this problem.

While speculating, we can just as well remark that the question can be generalized
considerably:

Speculation 22.1. Let T be an equational theory. Let T′ be a geometric theory
obtained from T by adding further axioms. Then every first-order sequent which is
true for the universal model U of T′ can be deduced from the following quasicoherence
condition: “For any finitely presented T-model A, the canonical map

A −→ [[A,U ]Mod(T), U ]

is bijective.”

To make this speculation into a rigorous conjecture, we would have to specify
what kind of deductions from the quasicoherence condition (which is a higher-order
statement) are allowed.

Characterizing Zariski toposes among arbitrary toposes. When is an arbi-
trary topos the big Zariski topos of a scheme? How can this property be detected in
the internal language, or in otherwise intrinsic terms? An answer to this question
would also tell us which axioms should be stipulated for synthetic algebraic geometry.

Conversely, we proposed on page 152 a definition of what could be called the
big Zariski topos of an arbitrary locally ringed locale S (or even a locally ringed
topos): the classifying Sh(S)-topos of the Sh(S)-theory of local OS-algebras which



22. OUTLOOK 199

are local over OS . Internal to any such topos, one can try to conduct synthetic
algebraic geometry. Which properties of S, shared by all schemes, are needed for
which results in synthetic algebraic geometry?

Proper morphisms. In Section 19.11, we characterized proper morphisms in the
internal language of the big Zariski topos by mimicking the classical definition as a
separated universally closed morphism (fulfilling a finiteness condition). Although
we didn’t tell so in Part II, a characterization along similar lines is possible in the
internal language of the little Zariski topos.

However, the synthetic approach should facilitate a characterization which is
closer to the intuitive way of thinking about proper morphisms: that any one-
parameter family has a unique limit. This intuition can be formally expressed by
the valuative criterion for properness, which states that a morphism X → S of
schemes is proper if and only if it is of finite type and if for every valuation ring A
with field of fractions K, any solid diagram

Spec(K) //

��

X

��
Spec(A) //

;;

S

can be filled by a unique dashed morphism. It is evident from this formulation of
the valuative criterion that it depends only on the functor of points of X; therefore
it should be perfectly suited to internalization in the big Zariski topos of S.

However, as of yet, we failed to do so. One difficulty is that we don’t know a
description of the sheaf of rational functions in the internal language of the big
Zariski topos. We showed in Section 9 that KS is, from the point of view of the
little Zariski topos, just the localization of OS at the filter of regular elements. This
description can’t be carried over to the big Zariski topos: Since regular elements
of A1

S are already invertible by Proposition 18.27, the localization of A1
S at the filter

of regular elements is just A1
S .

Moreover, depending on the site used, the synthetic spectrum of KZar
S can be

empty from the internal point of view. A specific example is given by S = Spec(Z)
and the parsimonious sites. In this case, the synthetic spectrum of KZar

S coincides
with the functor of points of the Z-scheme Spec(Q), which is empty from the internal
point of view by Proposition 11.19.

A related problem is that we don’t know how to properly describe punctured
germs of curves. For instance, a candidate for what could be considered a germ
of a curve is the synthetic spectrum of the formal power series ring A1

SJT K. This
spectrum is canonically isomorphic to the subset of A1

S consisting of those elements
which are not not zero.46 Removing the origin from this subset yields, however, the
empty set, and not some nontrivial punctured germ.

We strongly believe that these hurdles can be overcome and that there exists an
characterization of proper maps in the big Zariski topos which is close to geometric
intuition.

Cohomology, intersection theory, derived categories. Real algebraic geometry
starts where the basics of scheme theory end. Therefore there should be an internal
treatment of advanced tools like cohomology, intersection theory, and bounded

46Given an element a :A1
S which is not not zero, the evaluation map A1

SJT K → A1
S , f 7→ f(a)

is a well-defined element of Spec(A1
SJT K) since a is nilpotent by Proposition 18.29. Conversely,

let φ : A1
SJT K → A1

S be a homomorphism of A1
S-algebras. If φ(T ) is invertible, then so is φ(φ(T )−

T ) = φ(T )− φ(T ) = 0, since φ(T )− T is invertible in A1
SJT K. Hence φ(T ) is not invertible and

hence not not zero.
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derived categories of coherent sheaves. Such an account would be particularly
interesting in the big Zariski topos, where the largest simplifications can be expected.

Stacks and other kinds of generalized schemes. These notes only deal with
classical 1-categorical schemes. An internal treatment of higher stacks and derived
schemes is also desirable; it would probably rest upon a version of homotopy type
theory as the internal language of ∞-toposes.

If one wants to stay in the 1-categorical setting, then one could extend the
internal language to the various accounts of scheme theory over the field with one
element [102].

Applications to constructive algebra. We demonstrated in Section 11.5 using
the example of Grothendieck’s generic freeness lemma how the internal language
of the little Zariski topos can be used to derive results in constructive algebra.
Particularly useful is the property

Sh(S) |= ∀f :OS . ¬¬(f = 0) =⇒ f = 0,

valid for reduced schemes, which allows us to use classical logic to some extent and
still obtain intuitionistically valid results. The internal language is therefore a tool
for constructively pretending that a reduced ring is an anonymously Noetherian
local ring with ¬¬-stable equality and the field property ¬(⌜f inv.⌝)⇒ f = 0.

Any of the related toposes, such as the toposes of sheaves for related topologies
such as the constructible or the flat topology, or the various subtoposes of the big
Zariski topos, can be used for similar purposes. Which statements of constructive
algebra profit from the internal language of theses toposes? Are there further useful
toposes?

Constructive algebraic geometry. The book on homotopy type theory states [136,
Section 3.4]:

Thus, contrary to how it may appear on the surface, doing mathe-
matics “constructively” does not usually involve giving up important
theorems, but rather finding the best way to state the definitions so
as to make the important theorems constructively provable. That
is, we may freely use the [law of excluded middle] when first investi-
gating a subject, but once that subject is better understood, we can
hope to refine its definitions and proofs so as to avoid that axiom.

We believe that algebraic geometry has definitely reached the necessary maturity
alluded to in this quote and that it will be a rich and interesting endeavor to try to
give a completely constructive account of algebraic geometry, including nontrivial
results of current interest. We sketched why one might be interested in such an
account in Section 12.9.

The Stacks Project [126] already takes care to formulate statements in proper
generality, not needlessly requiring Noetherian hypotheses or demanding that fields
are algebraically closed. Having such a careful treatment is a very valuable first step
towards a fully constructive development. Additionally, a constructive account of
commutative algebra is readily available [98, 89]; a constructive account of algebraic
geometry is therefore entirely within reach.
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23. Dictionary relating external notions and notions internal to the
little Zariski topos

External Internal Reference

Sheaves of sets

sheaf of sets set

α : F → G monomorphism α injective Ex. 2.3

α : F → G epimorphism α surjective Ex. 2.3

int(X \ suppF) truth value of “F is a singleton” Rem. 4.11

f : X → N upper semicont. element of N̂ Lemma 5.5

f : X → N locally constant element of N Lemma 5.5

Sheaves of rings

sheaf of rings ring Prop. 3.1

local sheaf of rings local ring Prop. 3.5

X is reduced OX is reduced (and ¬invertible ⇒ zero) Prop. 3.3

dimX ≤ n Krull dimension of OX is ≤ n Prop. 3.13

X is integral at all points OX is an integral domain Prop. 3.17

X is locally Noetherian OX is processly Noetherian Prop. 3.24
(only “⇒”
holds)

X is normal OX is normal (assuming that X is locally Noe-
therian)

Prop. 9.6

relative spectrum SpecX A local spectrum Spec(A|OX) Thm. 12.10

relative Proj ProjX A local Proj Proj(A|OX) Thm. 12.44

Sheaves of modules

sheaf of modules module

F is finite locally free F is finite free Prop. 4.1

F is of finite type F is finitely generated Prop. 4.3

F is of finite presentation F is finitely presented Prop. 4.3

F is coherent F is coherent Prop. 4.3

F is quasicoherent F [f−1] is a sheaf wrt. (⌜f inv.⌝ ⇒ ) for f :OX Thm. 8.3

F is flat F is flat Prop. 4.9

F is torsion F is torsion Prop. 4.12

F is flabby partially-defined elements of F can be refined Prop. 13.1
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F is injective F is injective Thm. 13.4

rank function of F minimal number of generators for F Prop. 5.6

M∼ M [F−1] (localization at generic filter) Prop. 11.6

tensor product F ⊗ G tensor product F ⊗ G Prop. 4.7

dual F∨ = HomOX (F ,OX) dual F∨ = HomOX (F ,OX)

int(X \ suppF) truth value of “F = 0” Prop. 4.10

quasicoherator of I {s :OX | ⌜s inv.⌝ ⇒ s ∈ I} (I a radical ideal) Prop. 8.11

Ω1
X|S Ω1

OX |f−1OS
Prop. 4.14

Tor, sheaf Ext Tor, Ext Sect. 13.4

higher direct images cohomology Sect. 13.5

Subspaces (i : A ↪→ X closed immersion, j : U ↪→ X open immersion)

sheaf supported on A □-sheaf, where □ = ( ∨Ac) Lemma 10.3

sheaf of the form j∗(F) □-sheaf, where □ = (U ⇒ )

extension of F by the empty set j!(F) = {x :F |U} Lemma 10.1

extension of F by zero j!(F) = {x :F | (x = 0) ∨ U} Lemma 10.2

sheaf with empty/zero stalks
on Uc

sheaf of the form j!(F)

sections of F are equal if they
agree on dense open

F is ¬¬-separated Prop. 6.15

sheaf of sections of F defined
on dense open subsets

F+ with respect to □ = ¬¬ (assuming that F
is ¬¬-separated)

Prop. 6.15

U is dense ¬¬U Prop. 6.5

U is scheme-theoretically dense □̂U , i. e. OX is separated wrt. (U ⇒ ) Lemma 9.11

V (I) is reduced I is a radical ideal Lemma 10.6

OXred OX/
√

(0) Lemma 10.7

Over-schemes and over-toposes

relative spectrum SpecX(A) local spectrum Spec(A|OX) Thm. 12.10

relative Proj ProjX(S) local Proj construction Proj(S|OX) Thm. 12.44

big Zariski topos of X local Zariski topos Zar(OX |OX) Thm. 16.9

big Zariski topos of SpecX(A) local Zariski topos Zar(A|OX) Thm. 16.9

Rational functions and Cartier divisors

KX total quotient ring of OX Prop. 9.1

Cartier divisor element of K×
X/O

×
X

effective Cartier divisor [s/1] with s :OX regular Def. 9.21

line bundle OX(D) D−1OX ⊆ KX Def. 9.23

Topological properties

X is quasicompact “Sh(X) |=” commutes with directed disjunctions Prop. 7.1

X is local “Sh(X) |=” commutes with arbitrary disjunc-
tions

Prop. 7.7

X is irreducible if ¬(φ ∧ ψ), then ¬φ or ¬ψ Prop. 7.9
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24. The inference rules of intuitionistic logic

Structural rules

φ ⊢⃗x φ
φ ⊢⃗x ψ

φ[s⃗/x⃗] ⊢⃗y ψ[s⃗/x⃗]
φ ⊢⃗x ψ ψ ⊢⃗x χ

φ ⊢⃗x χ

Rules for nullary and binary conjunction

φ ⊢⃗x ⊤ φ ∧ ψ ⊢⃗x φ φ ∧ ψ ⊢⃗x ψ
φ ⊢⃗x ψ φ ⊢⃗x χ

φ ⊢⃗x ψ ∧ χ

Rules for nullary and binary disjunction

⊥ ⊢⃗x φ φ ⊢⃗x φ ∨ ψ ψ ⊢⃗x φ ∨ ψ
φ ⊢⃗x χ ψ ⊢⃗x χ

φ ∨ ψ ⊢⃗x χ

Rules for arbitrary set-indexed conjunction and disjunction∧
i∈I φi ⊢⃗x φj for all j ∈ I

φ ⊢⃗x ψj for all j ∈ I
φ ⊢⃗x

∧
i∈I ψi

φj ⊢⃗x
∨
i∈I φi for all j ∈ I

φj ⊢⃗x ψ for all j ∈ I∨
i∈I φi ⊢⃗x ψ

Double rule for implicationφ ∧ ψ ⊢⃗x χ
φ ⊢⃗x ψ ⇒ χ

Double rules for bounded and unbounded quantificationφ ⊢⃗x,y ψ
∃y :Y. φ ⊢⃗x ψ

(y not occurring in ψ)

φ ⊢⃗x,y ψ
φ ⊢⃗x ∀y :Y. ψ

(y not occurring in φ)

φ ⊢⃗x,Y ψ

∃Y. φ ⊢⃗x ψ
(Y not occurring in ψ)

φ ⊢⃗x,Y ψ

φ ⊢⃗x ∀Y. ψ
(Y not occurring in φ)

Rules for equality

⊤ ⊢x x = x (x⃗ = y⃗) ∧ φ ⊢⃗z φ[y⃗/x⃗]
(“x⃗ = y⃗ ” is short for “x1 = y1 ∧ · · · ∧ xn = yn”.)
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dimension I: integral extensions”. In: J. Algebra Appl. 8.1 (2009), pp. 129–138.

[40] T. Coquand and H. Lombardi. “A logical approach to abstract algebra”. In:
Math. Structures Comput. Sci 16.5 (2006), pp. 885–900. url: http://www.
cse.chalmers.se/~coquand/FISCHBACHAU/AlgebraLogicCoqLom.pdf.

[41] T. Coquand and H. Lombardi. “A short proof for the Krull dimension of a
polynomial ring”. In: Amer. Math. Monthly 112.9 (2005), pp. 826–829.

[42] T. Coquand, H. Lombardi, and M.-F. Roy. “An elementary characterisation
of Krull dimension”. In: From Sets and Types to Analysis and Topology:
Towards Practicable Foundations for Constructive Mathematics. Oxford Univ.
Press, 2005, pp. 239–244.

[43] T. Coquand, H. Lombardi, and P. Schuster. “Spectral schemes as ringed
lattices”. In: Ann. Math. Artif. Intell. 56 (3-4 2009), pp. 339–360.

[44] T. Coquand, H. Lombardi, and P. Schuster. “The projective spectrum as
a distributive lattice”. In: Cah. Topol. Géom. Différ. Catég. 48.3 (2007),
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Poigné, and D. Rydeheard. Vol. 283. Lect. Notes Comput. Sci. Springer-
Verlag, 1987, pp. 12–39.

[110] G. Reyes and G. Wraith. “A note on tangent bundles in a category with a
ring object”. In: Math. Scand. 42.1 (1978), pp. 53–63.

[111] F. Richman. “Nontrivial uses of trivial rings”. In: Proc. Amer. Math. Soc.
103 (1988), pp. 1012–1014.

[112] F. Richman. “The ascending tree condition: constructive algebra without
choice”. In: Comm. Algebra 31.4 (2003), pp. 1993–2002.

[113] E. Riehl and M. Shulman. A type theory for synthetic ∞-categories. 2017.
url: https://arxiv.org/abs/1705.07442.

[114] W. Ruitenburg. “Constructing roots of polynomials over the complex num-
bers”. In: Computational Aspects of Lie Group Representations and Related
Topics, Proc. of the 1990 Computer Algebra Seminar held in Amsterdam.
Ed. by A. Cohen. Vol. 84. CWI Tract. 1991, pp. 107–128.

[115] U. Schreiber. Differential cohomology in a cohesive ∞-topos. 2013. url:
https://arxiv.org/abs/1310.7930.

[116] U. Schreiber and M. Shulman. “Quantum gauge field theory in cohesive
homotopy type theory”. In: Proceedings 9th Workshop on Quantum Physics
and Logic. Ed. by R. Duncan and P. Panangaden. Vol. 158. Electronic
Proceedings in Theoretical Computer Science. 2014. url: https://arxiv.
org/abs/1408.0054.
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