
CSE 6730 Project Report:
Parallel Molecular Dynamics Simulation

Mary Benage, Andrew Champion,
Zhejiang Dong, Mohan Rajendran

Georgia Institute of Technology

April 27, 2012

Introduction

Molecular dynamics simulations allow researchers to investigate phenomena
emergent in systems at the molecular scale, such as protein assembly and
formation of hydrodynamic flows. The goal of this project is to implement a
cluster-parallelized molecular dynamics simulation (PMDS) for periodic sys-
tems on the order of thousands of entities. To meet this goal, this project’s
objectives are to implement a simulation of Lennard-Jones potentials [3] and
bonds between atoms and parallelize this simulation with MPI by distribut-
ing atoms and decomposed blocks of the force matrix to nodes in the system.
We used only the short-range force models and ignore the Coulomb forces
to limit the computational effort and to meet the criteria of [4] to parallelize
the algorithm. To validate this implementation, a model of lipid-like entities
in a solution was simulated and the results compared with theoretical expec-
tations and simulation outcomes from the LAMMPS Molecular Dynamics
Simulator [4, 1].

Background

Molecular dynamics simulations are used to compute equilibrium and trans-
port properties of interacting molecules that obey the laws of classical me-

1



chanics. A typical simulation has a timestep around femptoseconds and
therefore tens, hundreds or thousands of timesteps are needed [4]. The first
molecular dynamic paper was in 1956 by Alder and Wainwright at Liver-
more National Laboratory. Molecular dynamics simulations have since been
used essentially as real experiments aimed at better understanding proper-
ties of materials such as liquids and solids. The approach for these numerical
experiments are as follows: prepare the sample with the proper structure,
equilibrate the system by solving Newton’s equations of motion for the N
atoms until there is no change, then perform the experiment [2].

The individual force equations for each atom are derived from the poten-
tial energy functions, such as the Lennard-Jones potential used for calculat-
ing van der Waals forces. MD simulations extensively only solve the short-
range forces – bonded forces and van der Waals – and ignore the long-range
Coulombic forces [4, 1]. MD simulations typically have periodic boundary
conditions and a cutoff distance for the distance between each pair of atoms,
i and j. The cutoff distance is used to limit the number of calculations, thus
if the distance between two atoms is greater than the cutoff distance, their
force is not calculated. The distance between two atoms is used to solve
the Lennard-Jones potential (or other potentials) and update the forces for
each atom [2]. The most computationally intensive part of MD simulations
is the computation of the forces. There are two common methods to reduce
computation by limiting the number of times the algorithm has to check that
atoms are within the cutoff distance: the neighbor list and link-cell method
or a combination of the two [4, 1]. Once the forces are determined, indi-
vidual atoms’ motion is found by integrating Newton’s equation of motion,
commonly using the Verlet algorithm [2].

Molecular dynamics are considered inherently parallel since the force and
position updates can be done simultaneously. We will follow the methods
proposed by [4] to parallelize. The two basic assumptions for this method
are that the forces are limited in range or are only short-range forces, and the
atoms can undergo large displacements. The three basic methods proposed
for parallelization are either atom decomposition, force decomposition, or
spatial decomposition. Atom decomposition assigns a subset of atoms to
each processor and that processor is responsible for calculating the total
forces on each atom and updating the velocity and positions of it’s atoms.
Force decomposition assigns each processor with a fixed set of atom pairs that
it is responsible for calculating the force. There is then a fold operation and
each processor is then responsible for updating the position and velocity of a

2



Figure 1: Illustration of relationship between cut-off radius rc, skin distance
rs, and cell length Lc.

subset of atoms (it is the same as in the atom decomposition). Lastly, spatial
decomposition assigns a fixed space to each processor. At each timestep, the
processor calculates force and updates position and velocity for each atom
in its associated space. In this decomposition, the atoms will move among
processors. In summary, the atom and force decompositions are analogous
to a Lagrangian frame of reference and spatial decomposition is analogous to
an Eulerian frame of reference [4, 5].

Neighbour List

Due to the fact that the intermolecular forces considered are short-range,
we do not need to consider all the pairs of atoms for the purpose of force
calculation. A näıve method which goes through all the pairs of particles
assigned to a processor would have a time complexity OpN2q. Thus, the
concept of Verlet neighbour list presented in [6] is used. This concept uses an
array for each particle in each processor to maintain the list of local particles
within the cut-off radius rc plus a small distance rs called skin distance.

When particle interactions are calculated, only the particles in the neigh-
bour list are considered. This saves computation time by removing the need
to look for all the particles in the system. Further, the skin radius gives lee-

3



way by tracking particles slightly beyond of the cut-off radius. This means
that the neighbour list need not be updated every timestep.

Further, the solution domain may be divided into cells of length Lc ď
rc ` rs and each cell can have its own linked list of atoms lying within that
cell. When a neighbour list is built, the program need not check all the cells
but only 9 cells forming the square around the atom in consideration. This
reduces the computation time further. However, if the number of particles
tracked by each processor is small, there is no need to create the cell list.

Serial Simulation

The following simulation procedure has been adapted from [1] and gives a
general procedure and formulas involved in the solution procedure. Please
refer to Figures 3-5 for a flow chart of the algorithms used.

1. Set all the atoms in their locations by reading from an input file from
LAMMPS.
See parser.f90, in.micelle, and data.micelle.

(a) 1200 atoms - 750 water(1), 150 head(2), 150 tail1(3), 150 tail2(4)

(b) 300 bonds

(c) Bounding box (0,0) to (35.85686,35.85686)

2. Let system attain thermal equilibrium
See parser.f90, initial.f90, pmds.f90, force soft.f90 (or force -

soft neighbor.f90, neighbor.f90 for use of neighbor list), integrate.f90,
normalize vel.f90, and in.micelle.
(Note: parameters are defined below in equations used)

(a) Set special bonds to fene which sets LJ interaction with parame-
ters 0, 1.0 and 1.0

(b) Set pair style between all atoms as soft interactions with param-
eters 0, 1.2246

(c) Set bond style between atoms to be harmonic with parameters
50.0, 0.75

(d) Set initial velocity with uniform distribution for temperature 0.45

(e) Set integration conditions(fix)

4



i. Set NVE(Number, Volume, Energy) conservation integration

ii. Update temperature to 0.45 every 100 time steps by rescaling
velocity

iii. Set soft interaction constant A to ramp from 1 to 20 as time
proceeds

(f) Run for 1000 timesteps

3. Actual development of micelle layer

(a) Remove soft interactions
Set interaction style to Lennard Jones with cut-off
atom1 atom2 ε σ rc
water water 1.0 1.0 2.5
head head 1.0 1.0 2.5
water head 1.0 1.0 2.5
tail 1 tail 1 1.0 0.75 2.5
tail 2 tail 2 1.0 0.50 2.5
tail 1 tail 2 1.0 0.67 2.5
water tail 1 1.0 1.0 1.12246
water tail 2 1.0 1.0 1.12246
head tail 1 1.0 0.88 1.12246
head tail 2 1.0 0.75 1.12246

(b) Run for 60000 time steps

The serial algorithm for the force computation and integration is below.
For the serial version we took advantage of Newtons Third Law, thus de-
creasing the force computation cost in half.

Force

See force.f90 and soft force.f90 (or force neighbor.f90, force soft neighbor.f90

and neighbour.f90)

• Loop through each atom to calculate the distance between two atoms
(or loop through neighbor list)

– 1st loop through particle i “ 1 to Natom ´ 1

– 2nd loop through particle j “ i` 1 to Natom

5



∗ Calculate distance (X and Y) between two particles based on
their positions.

∗ e.g. Distance “ Xpiq ´Xpjq

– apply periodic boundary conditions to both DX & DY

∗ DX “ DX ´ box ˚ nintpDX{boxq

– Calculate R2 “ D2
X `D

2
Y

• Determine the atom type for i & j using the array atom type (called
AT in code)

• Use the atom types to query matrix of parameters needed to calculate
force

– Lennard Jones: cut off radius, sigma, epsilon (See 3.b. above)

– Soft: cut off radius, energy (See 2.b. above)

– Harmonic Bonds: energy/distance2 , equilibrium bond distance
(See 2.c. above)

• Calculate the Nonbonded Forces using either Soft for initialization or
Lennard-Jones for the Simulation Run.

– Lennard Jones: F “ ´48εr
r2σ

`

σ
r

˘6
”

`

σ
r

˘6
´ 0.5

ı

dx (or dy)

– Soft: F “ ´A
”

π
rc

sin
´

πr
rc

¯ı

dx (or dy)

– Update total forces on atoms using Newtons Third Law:

Fxpiq “ Fxpiq ` FDX

Fypjq “ Fypjq ´ FDY

• Loop through the atom bonded list to calculate the bond forces

– Harmonic Bonds: F “ ´2kpr ´ roqdx (or dy)

– Update total forces on atoms using Newtons Third Law:

Fxpiq “ Fxpiq ` FDX

Fypjq “ Fypjq ´ FDY

• End when have looped through all the atoms.

6



Integration

See integrate.f90 and normalize vel.f90

• Loop through each particle

– Calculate predicted position
x1pt`∆tq “ 2xptq ´ xpt´ t∆q ` F ptq

∆t22

– Calculate predicted velocity
v1ptq “ x1pt`∆tq´xpt´∆tq

2∆t

– Sum up kinetic energy

Ukin “ Ukin `
v2x`v

2
y

2

• At every Estep, rescale to ensure desired temperature

– Calculate velocity scaling

scale “
b

p2N´2q˚Tdesired
Ukin

• Loop through each particle

– Find actual velocity
vptq “ scale ˚ v1ptq

– Find actual position
xpt`∆tq “ xpt´∆tq ` vptq ˚ 2∆t

– Increment timestep
xpt´∆tq “ xptq xptq “ xpt`∆tq

– Make sure all particles end up inside box

Neighbor List

See neighbour.f90

• Set up cells

– Set the cell width to be equal to the maximum of cut-off radius +
skin radius

– Increase the cell width slightly so that the cell size divides the box
size evenly

7



– Calculate number of cell in each direction(no. of cells = numcell2)

• Bin atoms via a linked list

– Loop through all cells

∗ Set head of linked list(cellnum) = 0

– Loop through atoms

∗ Calculate the i and j index of the cell where the current atom
belongs to

∗ Using i and j calculate the actual cellID (j*numcell+i)

∗ Set LL(atomID) = head(cellID)

∗ head(cellID) = atomID

· This method stores numbers in an array of size equal to
the number of atoms. To retrieve the atoms in a given
cell, we just go to LL(head(cellID)) and loop backwards
to LL(LL(head(cellID))) and so on till LL(atom) = 0

• Set up neighbour list

– Loop through all atoms

∗ Set number of entries in current atoms neighbour list to zero

∗ Calculate the cell that the current atom belongs to

∗ Offset the cell by -1,0 and 1 in each direction

· At each of these cells, loop through the atoms in the cell If
distance between the two atoms is less than rskin`rcutoff ,
add to the neighbour list of whichever atom has the higher
atomID

Equations Used

The following equations are used in the simulation, where E is potential
energy and F is force.

• Lennard-Jones interaction

E “ 4

„

´σ

r

¯12

´

´σ

r

¯6


for r ă rc

F “ ´
48εr

r2σ

´σ

r

¯6
„

´σ

r

¯6

´ 0.5



dx (or dy)

8



Parameters: ε, σ, rc

• Soft interaction

E “ A

„

1` cos

ˆ

πr

rc

˙

for r ă rc

F “ ´A

„

π

rc
sin

ˆ

πr

rc

˙

dx (or dy)

Parameters: A, rc

• Harmonic bonds

E “ kpr ´ roq
2

F “ ´2kpr ´ roq

Parameters: k, ro

• Temperature-velocity formula for 2D cases

1

2
m ă v2

ą“kT

• Verlet velocity integration (NVE)

xpt`∆tq “ xptq ` vptq∆t`
F ptq

2m
∆t2

vpt`∆tq “ vptq `
F ptq ` F pt`∆tq

2m
∆t

• Kinetic energy

Ukin “
ÿ 1

2
mpv2

x ` v
2
yq

• Temperature

T “
Ukin

2N ´ 2

• Pressure

P “
NT

V
`

1

6V

ÿ

rij ¨ fij

9



Parallelization Process

The parallelization process that was used is adopted from [4]. The method
involves the use of a distributed memory system to run the simulation proce-
dure. For simplicity, atom and processor numbers are chosen so N/P atoms
can be assigned to each processor. The parallelization was implemented us-
ing a procedure called atom decomposition, where the atoms are assigned to
processors at the start of the simulation and the processor is responsible for
updating the position of its assigned atom through the time integration of
Newtons equations of motion. We implemented two forms of the atom de-
composition, called A1 or A2. A1 calculates the total force on each atom and
does not take advantage of Newton’s Third Law. The A2 implementation
takes advantage of Newton’s Third Law and decreases the computation cost
of the forces in half as compared to A1. There are added communication
costs for A2, since while A1 requires only a single collective operation per
timestep to exchange atom positions, A2 must exchange forces and pressures.

The algorithm for atom decomposition 1 per timestep and per processor
is as follows:

1. Send and receive the particle positions to and from all the processors
(fold operation).

2. Determine which forces to be computed using the neighbor lists.

3. Compute the total force for each atom

4. Do time integration of Newton’s equations of motion to update assigned
atom velocity and position.

Atom Decomposition 2

This approach takes advantage of Newtons 3rd Law, Fij “ ´Fji, where it
computes the force between a pair of atoms once and not twice. A processor
is responsible for calculating the force that N{P atoms have between them
and the rest of atoms. And, it calculates the force between a pair of atom
when their ID satisfies: i ă j and i`j is even, or i ą j and i`j is odd. Figure
7 shows an 8 atoms 2 processors example, processor 1 is responsible for the
force calculations for lattice marked in red and processor 2 is responsible for
those in blue. They will compute the force only for the lattice marked with
a cross sign. And, as shown in the right matrix of Figure 7, if we fold the

10



matrix along the red line, the lattice will cover lower triangle of the matrix
without overlapping, which indicates the property that the force between all
the pair have been covered once and only once. After finishing the force
calculation, each processor does a MPI ALLREDUCE operation to compute the
total force acting on each atom, and then they update the position for N/P
atoms with performing an MPI ALLGATHER operation to collect the updated
position for all atoms.

Performance Evaluation

The performance of our program is evaluated over time consumption, which
was obtained from 1200 atoms, 10,000 time steps simulation runs. As shown
in Figure 6, with neighbor list optimization we obtained over 6 times the
speedup compared to the case without any optimization. The best case
atom decomposition can lead to another 30% speed up on top of neighbor
list implementation due to utilizing Newtons third law and the elimination
of redundant calculations. Atom decomposition 2 has slightly better perfor-
mance than atom decomposition 1. An interesting observation is that the
introduction of more processors increased the time consumption. One possi-
ble reason for this phenomenon is when the problem scale is relatively small,
the time consumed during communication can overwhelm the speedup gain
by introducing more computational power.

To evaluate the weak scaling performance of the serial, A1 and A2 imple-
mentations, a generator was written to create micelle datasets for arbitrary
numbers of atoms. In these generated datasets, the atoms are initialized on
a grid of the same scale as the original dataset, only the bounds of the simu-
lation and extent of the grid are varied to fit the requested number of atoms.
Molecules are randomly initialized on atoms in the grid as in the original
dataset, maintaining the same ratio of molecules to atoms as the original
dataset. As shown in Figure 11, with these generated datasets, the run-
time of each of the implementations was averaged across 5 trials for process
counts of 2i for i P r0, 4s (or 1 process for the serial implementation). Since
weak scaling considers performance as the problem size per process is held
constant, this corresponds to problem sizes between 1200 and 19,200 atoms.
As expected, the serial implementation has the longest runtime. Though it
requires somewhat less communication than A2, A1 is slower than A2 since
it requires twice the amount of computation.

11



Validation

LAMMPS [1] is a widely used and well tested molecular simulation tool.
We validated the following data in our simulation against that obtained by
running LAMMPS. We ran 10 runs for our code and 10 for LAMMPS and
each was started with a different random seed for initial velocity. We then
took the average of the 10 runs and compared the following values:

1. Total Energy over time

2. Final velocity distribution

3. Pressure over time

As shown in Figures 8-10, with same trend and a acceptable deviation, our
simulation result agree with that of LAMMPS simulation.

12



References

[1] Lammps molecular dynamics simulator. http://lammps.sandia.gov.

[2] D. Frenkel and B. Smit. Understanding molecular simulation: from algo-
rithms to applications, volume 1. Academic Pr, 2002.

[3] JE Jones. On the determination of molecular fields. ii. from the equa-
tion of state of a gas. Proceedings of the Royal Society of London. Se-
ries A, Containing Papers of a Mathematical and Physical Character,
106(738):463–477, 1924.

[4] S. Plimpton. Fast parallel algorithms for short-range molecular dynamics.
Journal of Computational Physics, 117(1):1–19, 1995.

[5] D.E. Shaw. A fast, scalable, method for the parallel evaluation of
distance-limited pairwise particles interactions. Journal of Computational
Chemistry, 26(13):1318–1328, 2005.

[6] Loup Verlet. Computer ”experiments” on classical fluids. i. thermody-
namical properties of lennard-jones molecules. Phys. Rev., 159:98–103,
Jul 1967.

13



Figure 2: Flow chart of the main simulation loop.

14



Figure 3: Flow chart of the model initialization.

15



Figure 4: Flow chart of sequential force calculation.

16



Figure 5: Flow chart of velocity integration.

17



Figure 6: Strong scaling performance for small problem size of the three
implementations.

18



Figure 7: Atom decomposition 2 of force matrix calculation. Entries marked
with ‘X’ are calculated, while others are skipped. The right matrix shows
that if folded along the diagonal, the left matrix is triangular.

19



(a) Our Implementation

(b) LAMMPS

Figure 8: Distribution of velocity at the end of simulation averaged over 10
trials.

20



Figure 9: Pressure over simulation run averaged across 10 trials.

21



Figure 10: Total energy over simulation run averaged across 10 trials.

22



Figure 11: Weak scaling performance of the three implementations.

23


