3rd DRAFT

THE

DYNAMIC OPERATIONAL

OF STANDARD ML

Robin Milner, April 1985

SEMANTICS

1 INTRODUCTION

This paper formally defines the dynamic operational semantics of the Standard
ML core language, as reported in a forthcoming report of the Computer Science
Department, Edinburgh University (referred to below as CoreML). The semantics
is presented in the structural axiomatic style which is most fully developed in
Plotkin (A Structural Approach to Operational Semantics, Report DAIMI FN-19,
-Computer Science Department, University of Aarhus), having its origin in the
reduction rules of the lambda calculus.

The core language is reducible to a "bare™ language, by translating
convenient syntactic forms into their bare equivalent. It is therefore only
necessary to treat the bare language here. The syntax of the bare language is
tabulated below, in a very slightly modified version of the original, which
appeared as Section 2.8 of CoreML. The modifications are: (1) Some syntax
classes have been given more descriptive names; (2) Some information - useful
only for parsing and type-checking - has been omitted, namely precedence rules,
optional parentheses, explicit type constraints and the separate syntax classes
apat, aexp for atomic patterns and atomic expressions.

The static semanties is not covered in this paper. However, two aspects of
the static semantics are relevant here. First, it determines whether each
identifier occurrence is a variable, a constructor, a type variable, a type
constructor, a record label or an exception name. We therefore assume this
knowledge here. Second, and more significantly, the static semantics determines
whether each top-level phrase is well-typed; if so, it provides the types of all
its component phrases. This allows the meaning of certain overloaded function
identifiers (e.g. +) to be settled. Apart from this, evaluation of well-typed
phrases depends in no way upon their type, and so our evaluation rules make no
mention of type (if a phrase is ill-typed we do not care what evaluation, if
any, is given to the phrase by our rules). To justify this, we expect in later
work to formulate and prove a theorem which asserts that, if a phrase is
well-typed, then its evaluation according to the present rules agrees, in an
appropriate sense, with evaluation according to a more refined scheme in which
values carry their types, and in which instances of ill-typing are detected "at
run-time"®.

This approach - factoring apart the static and dynamic semantics ~ agrees
with the usual way of implementing ML, where type-checking and evaluation are
separate phases. The Type Enviromnment, which is used and modified during
type-checking, is of no further concern in this paper; occurrences of types and
type bindings are treated by our rules as though they were absent.

The syntax table defines the principal syntax classes of ML in terms of the
following primitive classes, representing the six uses of identifiers:

var value variables
con value constructors
tyvar type variables
tycon type constructors
ladb record labels

exn exception names

Note that value constants (resp. type constants) are a subclass of value
constructors (resp. type constructors). Essentially, a value constant con is a
value constructor whose argument type is "unit®™; a value constant is declared by
omitting the "of" part in a generic type binding. Thereafter every occurrence
of con, in its role as a value constant, is to be regarded as an abbreviation
for "con()" - the comstruction resulting from applying con to the null tuple.

Conventions:

(1) <<..>> means optional.

(2) Repetition of iterated phrases is represented by "__".

(3) For any syntax class s, define

s seq ::= S

(s1, __ ,sn) (n>1)

EXPRESSIONS exp

exp ::=
var (variable)
con (constructor)
{ lablzexpl , __ (record, ny0)
labn=expn }
exp exp' (application)

exp handle handler
raise exn with exp
let dec in exp end
fun mateh

(raise exe'n)
(local dec'n)
(function)

mateh ::=

mrulel | __ | mrulen (ny1)
rule ::=

pat => exp

handler ::=
hrulel || __ }| hrulen (ny1)

hrule ::=
exn with match
? => exp

DECLARATIONS dec
dec ::=
¥al valbind
type tybind
datatype databind
abstype databind
¥ith dec end

exception excbind

(values)
(types)
(datatypes)

(abs. types)
(exceptions)

Jocal dec in dec' end (local dec'n)
dect {;} ___ deen {;}

| PROGRAMS : dect ; ..decn ;]

(handle exc'ns)

(sequence, ny0)

PATTERENS pat
pat ::=
_ (wildeard)
var (variable)
con (constant)

{ labi=pat?t , __ , (record,n,0)
labn=patn<<,...>>}

con pat (construction)

var as pat - (layered)

YALUE BINDINGS valbind
valbind ::=

pat = exp (simple)
valbind1 and ___

and valbindn (multiple,n>2)
rec valbind (recursive)

IYPE BINDINGS tybind
tybind ::=
{<tyvar_seqg>>tycon

=ty (simple)
tybind1 and
and tybindn (multiple,ny2)

DATATYPE BINDINGS databind
databind ::=
<<Ltyvar_seg>>tycon

= constrs (recursive)
databind1 and __
and databindn (multiple,n>2)
constrs ::=
coni<<of tyi1>>] __ | conn<<of tyn>>
EXCEPTION BINDINGS excbind
excbind ::=
exn<<= exn'>> (simple)

excbind1 and ___
and excbindn (multiple,ny2)

IYPES ty
ty ::=
tyvar (type variable)
<<ty_seq>>tycon (type constr'n)
{ labtl:tyt , __ (record type,n,0)

v

labn:tyn }
ty -> ty!

(function type)

2 SEMANTIC CONSTRUCTIONS

2.1 Object Classes

Before giving the operational semantic rules, we must define the objects in
terms of which they are expressed. Some of these objects are syntactic, and
these were defined in the previous section. For the further object classes we
first need to postulate two primitive sets; these are Addr , the addresses (or
references), and Exc , the exceptions. Each of these sets is denumerably
infinite; the nature of their elements is immaterial except that we assume that
they may be tested for equality. (An implementation also needs to be able to
generate an element different from any of an arbitrary finite set of elements.)

We also need the set Basfun, the names of basic functions. These are the
functions which are bound to value variables in the standard environment, which
are not definable in ML itself, and which have no side-effects. See Section 2.3
on the standard environment.

In the following definitions of object classes, we use the cartesian product
(x) and disjoint union (+) of sets, and MAP(S,S') - the set of finite partial
functions from S to S'. The object classes Val of values and Valenv of value
environments are defined by mutual recursion. On the right of the page, after
each object class, is a typical variable name (or notation) which will denote a
member of the class.

YALUES

Addr addr

Record = MAP (Lab , Val) {lab1=val1l,__,labn=valn}

Fun = {ASS,REF} + Basfun + Closure

Closure = Match x Env x Valenv [match,E,VE]

Val = Con + (Con x Val) + Record + Addr + Fun val
ENVIRONMENTS

Valenv = MAP (Var , Val) VE

Excenv = MAP (Var , Exc) EE

Env = Valenv x Excenv N E or (VE,EE)
STORES

Mem = MAP (Addr , Val) mem

Exes = MAP (Exc , Exn) excs

Store = Mem x Exes store or mem,exes
PACKETS

Pack = Exc x Val pack or <exc,val>

1) A function value which is a closure, [match,E,VE] , is the value of an
ML expression "fn match®; see 2.2 below.

2) The first component mem of a store (mem,excs) is a normal map from
addresses to values. The second component excs , a map from exceptions
to exception names, serves two purposes. First, it records all
exceptions which have been generated. Second, for each such exception,
it records the exception name to which it was first bound by a
declaration; this permits the exception name to be reported at top-level
whenever an exception packet is raised but not handled.

3) An exception packet consists of an exception paired with an "excepted"
value. The exception component determines which handling rule (if any)
of a handler will handle the packet; then the match part of this rule
will be applied to the excepted value.

If m is any map in MAP(X,Y), then m(x) denotes y whenever (x,y) is a
member of m. Maps are often written expliecitly as {(x1,y1),__,(xn,yn)} . For
two maps m and m', the map m+m' is defined as follows:

(m+m')(x) = m'(x) if m'(x) is defined,
n(x) otherwise

For enviromments E = (VE,EE) and E* = (VE',EE'), we write E+E' for
(VE+VE' ,EE+EE'). We also write E+VE' for (VE+VE',EE), and' E+EE' for
(VE,EE+EE').

2.2 Closures

The enviromment component E of a closure [match,E,VE] is the enviromment
in which the function was defined, i.e. the one in which its body must be
evaluated when it is applied to a value. In addition, if the function was
declared by (simultaneous) recursion, then the third component VE of the closure
will be non-empty and will contain value bindings which are to be interpreted
recursively when the function is applied. This treatment of function values is
discussed in detail in the Appendix, where an ®unrolling" operation on Value
environments

REC : Valenv => Valenv

is described informally. Here we give its formal definition, since it is used
in semantices rules for function declaration and application:

If VE = { (vari,valt), __, (varn,valn) }
then REC(VE) = { (var1,recVE(vall)), _ , (varn,recVE(valn)) }

where the operation recVE on values is defined, for given VE, as follows:

recVE(con) = con

recVE(con val) = con(recVE(val))

recVE({labl=vall,__,labn=valm}) = {labl=recVE(vall),_ ,labn=recVE(valm)}
recVE(addr) = addr

recVE([match,E',VE']) = [match,E',VE]

recVE(f) = f (f in Fun\Closure)

2.3 The Standard Environment

Since we are not concerned here with static semantics, the standard Type
Environment is of little relevance; all we need to know is that it establishes
the following value constructors: nil, ::, true and false (nil, true and false
being constants). Note that the identifier ref is also allowed in constructor
position in patterns, but is treated by a special rule.

For the purpose of dynamic semantics, the Standard Environment - called ENVO
in CoreML - consists of the standard value enviromment VENVO and the standard
exception environment EENVO. VENVO contains three kinds of binding:

(1) Each basic function identifier, i.e. each member of Basfun, is bound to
itself. Recall that these identifiers are indeed values, as defined in
Section 2.1. For each F in Basfun, the result of applying F to a value
v is independent of the context of evaluation, and is written
"APPLY(F,v)™ in our rules of evaluation. The members of Basfun are as
follows:

div mod & 7/ + - ~ abs floor real sqrt sin cos arctan
exp 1ln size chr ord explode implode = <> < > <= >=

(2) The function identifiers := and ref are bound to ASS and REF
respectively. Since these standard "functions" cause side-effects on
the memory, there are special rules dealing with their application to a
value.

(3) The following declarations are also assumed to contribute to VENVO; they
declare those standard functions which are easily definable in ML. (For
clarity we show the standard infix status for these functions; of course
several members of Basfun also have infix status.)

fun map f nil = nil
! map £ (x::L) = (£ x)::(map £ L)

val rev = let fun rev'! L' nil = L*
! rey' L' (x::L) = rev' (x::L') L
in rev' nil end

infix 5 fun nil M= M
} (x::L) M = x::(L M

.E. 6
fun s s' = implode [explode s, explode s']
fun not true = false
| not false = true
fun ! (ref x) = x
infix 3 o
fun (fog) x=f (g x)

In EENVO, distinet exceptions are bound to the following standard exception
names: match, bind, interrupt, ord, chr, %, /, div, mod, +, -, floor, sqrt, exp,
1n. The conditions under which these exceptions are raised are given in Section
5.3 of CoreML.

3 EVALUATION RULES

In a given enviromment, and for each syntax class, the evaluation of each
phrase of the class yields a result (whose nature is dependent upon the syntax
class). This may be expressed by a formal sentence whose simplest form is

E |- phrase ==z=> result

However, for some syntax classes, the evaluation requires another parameter.
For example, the evaluation of a match requires as an extra parameter a value
(to which the match is being applied); in this case the form of the sentence is

E |- match, val ===> result

We shall sometimes omit the enviromment in such séntenees, when it does not
affect the evaluation.

Evaluation is formally defined by inference rules, from which sentences may
be inferred. When all the rules are given, the evaluation i Bz==>" is
then fully defined, and we call its members (the inferrable sentences) the
evaluatjons. The general form of an evaluation rule is

E1 |- item1 ===> resultl .o Fn |- itemn ===> resultn
- (1)

E |- item ===> result

The sentences above the line are the hypotheses, and that below the line is the
conclusion, of the rule. In an instance of the rule, whose conclusion evaluates
a certain phrase, the hypotheses are usually evaluations of subphrases; we
therefore call them subevaluations. When there are no hypotheses (n=0) then the
horizontal line is omitted, and we may call the rule an axiom; its instances are
atamic evaluations, having no subevaluations.

So far we have not explicitly considered side-effects of evaluation, in
particular changes to the store by assignment. These changes can indeed be
accommodated by allowing every item (to be evaluated) and every result (of
evaluation) to contain a store component. Since this component is always
present, we render it explicit by adopting the following full form of sentence:

But it would be tedious to write this full form in all our rules, since so few
of them contribute side-effects directly. We therefore adopt the convention
that when a rule is written in the form (1) above, it is intended to mean that
the side-effects of all the subevaluations, taken in order from left to right,
comprise the total side-effect of the main evaluation. That is, (1) is an
abbreviation for the following rule:

itemt resulti itemn resultn
E1 |- ==22==2= =z=z=) =z=z=z=z== cee En |- ========= ===2) =======
stored storel store(n-1) storen
item result
E |- ====== === =z==z===
storel storen

Note that in the case of an axiom (n=0) this degenerates to

store0 store0
which is an (atomic) evaluation causing no side-effect.

Concerning exceptions there is a uniform principle that, whenever the result
of a subevaluation is a packet, then no further subevaluations occur, and the
packet is also the result of the main evaluation. This prineiple applies to all
evaluations except - of course - the evaluation of a handle expression, whose
purpose is precisely to trap certain packets and hence to violate the principle.
Thus we adopt the convention that, for every rule whose full form is

item1 resulti itemn resultn
E1 }- ===== =z=z=) =c====== P En 1- ===== ==z) ===z====
storel storel’ storen storen'

item result

E |= ===z =22 =zzz===

store store!

- except for the rule for evaluating a handle expression - we assume the
presence of n further rules, one for each k (1<k<n) as follows:

item? result1t itemk pack
E1 }= ==2s== =zz=> zz===== ces Ek }= ===== ===) z=z=zzz==
storel storel! storek storek'
item pack
E }- ==== === =======
store storek!

on condition that resultil,..,result(k-1) are not packets. Note particularly
that the store resulting from the main evaluation is exactly that which results
from the first subevaluation which returns a packet.

With the help ‘of these conventions, the presentation of the rules becomes
reasonably brief. The ensuing subsections deal with separate phrase classes in

order: patterns, matches, handlers, expressions, value bindings, exception
bindings and declarations.

3.1 Matching a Pattern to a Value

In matching, a pair consisting of a pattern and a value evaluates either to a

value environmment or to fail.

VE

- pat , val ===>
===> FAIL

The second case (evaluation to FAIL) holds just in the case that no evaluation
can be inferred for the pair (pat,val) from the rules below. Matching is
independent of the enviromment.

- _, val ===> {}
|- wvar , val ===> {(var,val)}

|- econ, con ===> {}

|- con pat , con val ===> VE
pat , val VE
|- —=a=x=z=s =="'> _—aa=a===
mem, excs mem, excs
a8 (mem(addr)=val)
ref pat , addr VE
- S===s==s===z ===) ==z====z==
' —————————— P2V AR T
mem, exXcs mem, eXcs

l= pat , val ===> VE

- var as pat , val ===> {(var,val)} + VE

|- patl , vall ===> VE1 __ |- patn, valn ===> VEn

(n>0)
i- {lab1=pati,___,labn=patn},{labl=valt,__,labn=valn} ===> VE1+__+VEn

= patl , vall ===> VE1 — |- patn, valn ===> VEn

(myn,0)
i- {labi=patil,__,labn=patn,...},{labl=valtl, _,labm=valm} ===> VE1+__+VEn

#% TIn this rule the store is made explicit, since the evaluation depends upon
it. Note that the store is assumed to be unchanged by the subevaluation;
it is easy to show that pattern matching has no side-effects.

3.2 Applying a Match

In the application of a match to a value, a pair consisting of a match and a
value evaluates either to a value, or to a packet. As part of this evaluation,
the rules of the match (here called mrules) are applied singly to the value. A

pair consisting of a mrule and a value evaluates either to a value, or to a
packet, or to FAIL.

E |- mrule , val

==z> val' // pack // FAIL
E |- match , val ===)>

val' // pack

The rules for applying an mrule are as follows:

|- pat , val ===> VE E+VE |- exp ===z=> val!

E |- pat => exp , val ===> val'

i- pat , val ===> FAIL

E |- pat => exp , val ===> FALL

The rules for applying a match are as follows:

E |- mrulel , val ===> FAIL _ E |- mrule(k-1) , val ===> FAIL
E |- mrulek , val ===)> val!
E |- mrulet|__|mrulen , val ===) val!
E |- mrulel , val ===> FAIL __ E |- mrulen, val ===> FAIL
—— (n>1)

E |- mrulel|__|mrulen , val ===> <ematech, ()>

10

3.3 Applying a Handler

In the application of a handler to a packet, a pair consisting of a handler

and a packet evaluates either to a value, or to a packet.

As part of this

evaluation, handling rules (hrules) of the handler are applied singly to the
packet; a pair consisting of a hrule and a packet evaluates either to a value,

or to a packet, or to FAIL.

E |- hrule , pack

E |- handler , pack ===> val // pack®

The rules for applying a hrule are as follows:
VE,EE |- exn with match , <exe,vald ===> FAIL

VE,EE |- match , val =z=)> val'

VE,EE |- exn with match , <exe,vald ===> val'

E |- exp ===> val!

E |- ? => exp , pack ===) val'

The rules for applying a handler are as follows:

==> val // pack' // FAIL

(EE(exn)#exc)

(EE(exn)=exc)

E |- hrulel , pack ===> FAIL __ E |- hrule(k-1) , pack ===> FAIL
E |- hrulek , pack ===> val!
(1<k<n)
E |- hruletl}]_ _|lhrulen , pack ===> val!
E |- hrulel , pack z==> FAIL ___ E |- hrulen , pack ===> FAIL

E |- hrulel}]_ }lhrulen , pack ===> pack

11

(ny1)

3.4 Evaluating an Expression
An expression evaluates either to a value, or to a packet.

E |- exp ===> val // pack
The rules are as follows:
VE,EE |- var ===> val (VE(var)=val)
E |- con ===> con

E |- expl ===> vall .. E |- expn ===> valn
- (ny0)
E |- {lablzexpil,__,labn=expn} ===> {labi=vall,_,labn=valn}

E |- exp ===> con E |- exp' ===> val'

E |- exp exp' ===> con(val')

exp ASS exp' (addr,val)
E |- ======== ===2)> =s==ss=z=== E |= ==s=z======z ===> s=========
mem, exes men',execs' mem',excs’ mem'',exes'!
exp exp' 0
E |- ==zz=z===z ==zz) =z=z=z===zz=zszsszs=z=ssss=====
‘mem, excs mem' '+{ (addr,val)}, excs''
exp REF exp' val
E !- =====z==z ===) =zZ======= E |- ========== ===) =ss====s=z===
mem, €xXcs men',excs' mem',excs' mew'',excs'!
exp exp' addr
E }J- ==z=z=z==z ===) ==z=z=z=zzzs=s=sss===sc=z=z:c= (addr not bound
mem, exes mem' *+{(addr,val)}, exes"! in mem'*)
E |- exp ===>F E |- exp' === val
- (F in Basfun)

E |- exp exp' ===> APPLY(F,val)

E |- exp =z==> [match,E',VE'] E |- exp' ===> val'
E'+REC(VE') |- mateh , val' ===)> val

E |- exp exp' ===> val

12

&

VE,EE |- exp ===> val

(EE(exn)=exc)
VE,EE |~ raise exn with exp ===> <exe,val)

E |- dec ===> E' E+E!' |- exp ===> val

E |- let dec in exp end ===> val
E |- fn mateh ===> [match,E,{}]

E |- exp ===z> val
' T

E |- exp handle handler ===> val

E |- exp ===> pack E |- handler , pack ==z> val' // pack'
1]

E |- exp handle handler ===> val' // pack'

%% The last two rules, concerning exception handling, are the only rules for
which the auxiliary rules for exception transmission are not added.

13

3.5 Evaluating a Value Binding

A value binding evaluates either to a value enviromment, or to a packet.

E |- valbind ===> VE // pack
The rules are as follows:

E |- exp ===> val |- pat , val ===> VE // FAIL

E |- pat = exp ===> VE // <ebind, ()>

E |- valbindl ===> VE1 .. E |- valbindn ===> VEn
- (ny2)

E |- valbind1 and ___ and valbindn ===> VE1+__+VEn
E |- valbind ===> VE
E |- rec valbind ===> REC(VE)

3.6 Evaluating an Exception Binding

An exception binding evaluates to an exception environment.

E |- excbind ===> EE

The rules are as follows:

exn {(exn, exc)}
8 E |- ===== ===) ==z=========z== + (exc not in exes)
(mem, exes) (mem, excs+{ (exc, exn)}
VE,EE |- exn = exn' ===> {(exn,exc)} (exe = EE(exn'))
E |~ exebind1 ===> EE1 .o E |- execbindn ===> EEn

(ny2)
E |- excbindl and __ and excbindn ===> EE1+__+EEn

#% Tn this rule the store is made explicit since the evaluation both depends
upon the store and changes it.

14

i\ P

3.7 Evaluating a Declaration
A declaration evaluates either to an enviromment, or to a packet.
E |- dec ==z=> E' // pack

The rules are as follows:

E |- valbind ===> VE

E |- yal valbind ===> VE,{}

E |- excbind ===)> EE

E |- exception exebind ===> {},EE

E |- type typbind ===> {},{}

E |- datatype databind ===> {},{}

E |- deec ===> E!

E |- abstype databind with dec end ===> E'

E |- dectl ==z=> E1 E+E1 |- dec2 ===> E2

E |- local dec1 in dec2 end ===> E2

E |- deecl ===> E1 E+E1 |- dec2

===> E2
_ E+El+__+E(n-1) |- decn ===>

En

(ny0)
E |- deel __ decn ===> El+__+En

Note: there are no rules for evaluating type bindings and datatype bindings,
since they have no effect at run-time.

15

4

APPENDIX: The treatment of Recursion

The treatment of recursion in a semantic definition is peculiarly-central,
since it is only through recursion that a program can perform computations whose
length is not bounded by some simple function of the size of the program.

In this Appendix we first examine the syntactic restriction which should be
placed upon recursive value bindings, and then we discuss the treatment of
function values which we have adopted, and the method by which recursive
bindings are evaluated.

Consider a value binding
f = exp

in which exp is of functional type. The binding is evaluated in a given
enviromment E by first evaluating exp to a value v (in this case a function
value), and then returning the value environment VE={(f,v)}. Now it is natural
to expect that the value enviromment returned by the evaluation of the recursive
binding

rec f = exp
is obtained in a simple manner from VE, rather than by other means.

With this prescription, it is confusing (at least) if the evaluation of exp
entails the evaluation of any value variable. For if this variable is f itself
(or something being declared simultaneously with f by mutual recursion) then the
prescription implies that it will - in this evaluation - be interpreted in the
outer enviromment E; this conflicts with our normal understanding of recursive
bindings, which dictates in this case that f is interpreted in the environment
which results from evaluating the recursive binding itself.

This argument led to the restriction in CoreML that the right side of any
binding within rec (e.g. exp in the case above) should always be a function
expression ® match®”. This is more restrictive than we may wish, as the
following example shows.

Consider the following data type of "lazy" lists:

datatype 'a lazylist = empty
| prefix of 'a ® (unit -> ‘'a lazylist)

Intuitively, a non-empty lazy list L consists of an element, of some type 'a,
paired with a function (of no arguments) returning a lazy list. Then, to define
a lazy list ONES which is in effect the infinite sequence of 1's, we expect to
be allowed to write

yal rec ONES : int lazylist = prefix(1, fn ()=>ONES) "
But the strong restriction above forbids this, and we must write instead

yal rec ONES' : unit -> int lazylist = () => prefix(1,ONES')
¥al ONES = ONES'()
Of course the first line would naturally be sugared thus : “fun ONES'() =
prefix(1,0NES*')"m
Now there is a reasonable relaxed restriction which allows (#), for which the
rules in this paper are sound. It is as follows:

16

oy

For each value binding "pat = exp" within rec, the expression exp must be
built from function expressions using only constructors and record formation.

The semantic treatment of recursive bindings described below is a minor
modification of what Plotkin proposes in his Aarhus paper, and has been proved
equivalent to it under the above relaxed restriction. Note that the restriction
indeed ensures that no variable is evaluated during the evaluation of exp.

The representation for a function value in ML, following Landin, would be as
a pair

[match, E]

where E is an enviromment. This would be the value of the function expression
"fun match®™ evaluate in E. With this representation, the environment returned
by evaluating the recursive binding

rec f = fn match
should be a value enviromment VE which satisfies the equation
VE = { (£, [match,E+VE]) }

While this equation can be shown to determine a unique - but infinitely deep -
value enviromment VE, it is important in operational semantics to restrict our
structures to be finite. This can be simply achieved as follows, and we thus
Justify the choice of the semantic structures used in this paper:

(1) We adopt the form [match,E,VE] for a function value. The third
component records those value bindings to be interpreted recursively when
the function is applied to a value.

(2) We define an operation REC upon value environments as follows:

if VE = { (vari,vall), .., (varn,valn) }
then REC(VE) = { (vari,vall!), .., (varn,valn') }

where, whenever vali contains a function value [match,E',VE'] not
contained in another function value within vali, the value vali' contains
instead the function value [match,E',VE] . This ensures that, when the
function is applied to a value, the variables vari will be interpreted
(recursively) in VE.

(3) When .the evaluation of a value binding - valbind say - returns VE, then
the evaluation of "rec valbind" returns REC(VE) .

(4) The value of "pn match" evaluated in E will be [mateh,E,{}] .

(5) When a function value [match,E,VE] is applied to a value v, then match
will be applied to v in the enviromment E+REC(VE) .

In effect, the operation REC "unrolls® VE once, in preparation for any

application; at each application of a function value its "recursive® component
is "unrolled®™ once more in preparation for further applications.

17

